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Introduction

• Uncertainties of data modeling can be accomplished by 
geostatistics approaches

• Standard Kriging – kriging variance for multiGaussian models

• Indicator Kriging – local uncertainties (local cdf or pdf)

•Indicator Simulation – global uncertainties (global cdf or pdf)

• Uncertainties (cdfs or pdfs) qualify estimates

• Uncertainties should be accounted in decision making 
processes because the estimates are uncertain.

• How to use the uncertainties in GIS Analysis and 
Decision Makings ?

33



44

Master of Science in Geoespatial Technologies
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Z1

Z2

Z3

Y

Unc(Z1)

Unc(Z2)

Unc(Z3)

Unc(Y)

Spatial Modeling: Y(u) = g(Z1(u),...,Zn(u)) for n inputs

The Uncertainties of the Input representations propagate 
to the Uncertainty of the Output representation.
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Heuvelink, 1998, presents 4 methods to assess the 
problem of “Error Propagation in Environmental 

Modelling with GIS”.

1. First Order Taylor Method

2. Second Order Taylor Method

3. Rosenblueth’s Method

4. Monte Carlo’s Method

Uncertainty Propagation on Spatial Modeling
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Uncertainty Propagation on Spatial Modeling
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1. First Order Taylor Method (Heuvelink, 1998)

The first order expansion of the Taylor series, around the mean vector of the n
input variables,                           , is given by:
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• From this expansion, and not considering the residue, one can obtain the 
following approximations for the mean and variance values of the output R.V. Y:
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• Used only for operations with continuous attributes

• Aplicável somente à operações com atributos qualitativos.

• The mean value of the output Y is depends only of the means of the input 
values. The standard deviations do not affect the output mean value.

• The output variances depend on the standard deviations and correlations of 
the inputs. Also there is a dependency related to the partial derivatives over 
the input mean vectors. This method is applicable only to g functions 
continually differentiable. 

• For independent input variables the correlation coefficient  ρij is equal 0 for 
i≠j and is equal 1 for i=j. In this case the formulation of the variance is 
simplified to:
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Uncertainty Propagation on Spatial Modeling

Considerations about the First Order Taylor Method 
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)

2. Second Order Taylor Method

• Extension of the First Order Taylor method, including the term of the second 
order of the Taylor series. 
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• In this case the approximation for the output mean value is assessed by:
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• Important: The output mean value can differ of the g value applied to the 
input mean values.
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)

2. Second Order Taylor Method

99
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• The approximation for the variance of Y is given by:

• The evaluation of the variance value requires the calculation of the 1o, 2o, 3o e 4o

moments and the partial derivatives of first and second orders.

• Comparing with  the first order method: 

• Approximations close to µz are better than those far from  µz. Therefore the 
variance can be worst.

• Second order method is better when the g is quadratic.
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)

3. Rosenblueth’s Method
• It is equivalent to the first order Taylor method.
• Must be used when g is not continually differentiable over µz

• The output mean is evaluated by the relation:
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)

3. Rosenblueth’s Method

• The variance of Y is given by:
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• Comparing with the first order Taylor method, this method uses a
smoothed approximation of the first partial derivative over µz. 1111
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)

4. Monte Carlo’s method

• Compute Y repeatedly from zi input values randomly sampled from its joint 
distribution (requires as joint simulation if inputs are not independent).

• The method follows the below steps:

• At each spatial location u

• Repeat n time:

• Draw a set of R realizations zi, i=1,...,R.

• Evaluate and store the output value y=g(z1,...zm) .

• Define the cdf, or pdf, model from the n output values. Evaluate 
statistics, µ e σ2 for ex., from the output values as:
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Constraints applied to the estimates

• Deriving estimate maps taken into account uncertainties: Uncertainty constraints 
can be applied to estimates for categorical and continuous attributes.

• Continuous attribute

• Maps with constrained areas: derived map keeps only the locations where the 
probability of the estimates are greater (or smaller) than a given probability 
value. A dummy value is set to the other locations.

• Classified maps: derived map can be a classified map taken into account user 
defined probability intervals.

• Categorical attribute

• Maps with constrained areas: derived map keeps only the locations where the 
probability of the estimates are greater (or smaller) than a given z value. A 
dummy z value is set to the other locations.

• Classified maps: derived map can be a reclassified map taken into account 
user defined probability intervals.
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Example of Maps of Estimates and Uncertainties of categorical 
attributes from realizations.

Arenoso
Médio Argiloso
Argiloso
Muito Argiloso

0.0

0.71

0.0

1.37
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Constraints applied to the estimates
Uncertainty constraints applied to estimates for categorical variables (example)

Sandy

Medium Clay

Clay

Clayey

No class

Sandy

Medium Clay

Clay

Clayey

No class 38% 50%
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Exceeding a probability threshold

1616

• Defining a critical z value, zc, of a continuous or a categorical 
attribute, it is possible to create probability maps from the 
uncertainty models of the RVs. 

• For continuous variables: probabilities of your attribute value 
be lower (or greater) than the threshold z value.

• For categorical variables:  probabilities of  your attribute value 
be equal to the z value (user defined class).

• The probability values of the probability maps can be ranked or
classified (safe areas, hazardous areas, suitable regions, …) 

• The results are taken into account in decision making processes. 

• Goovaerts example: Areas contaminated by Cadmium

• Consider cleaning all the locations where the probability of 
exceeding the tolerable maximum 0.8 ppm is larger than a 
marginal probability threshold. 

Figures ???
zc

pc

pc

zc

+  +  +  +  +

+  +  +  +  +

+  +  +  +  +
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Exceeding a probability threshold - Example

Figure 7.47 - Goovaerts, 1998

Classification of locations as contamined by cadmium on the basis that the probability 
of exceeding the critical threshold 0.8 ppm is larger than the marginal probability of 

contamination (0.625)

1717
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Exceeding a physical threshold (Risk Analyses)
Given a map of optimal estimates ZL

* , a critical value zc and the cdf F(u;z|(n)) at u
Two misclassification risks can be assessed 

1. The risk α(u) of wrongly classifying a location u as hazardous (false 
positive) is:

for all locations u such that the estimate zL
*(u) > zc

2. The risk β(u) of wrongly classifying a location u as safe (false 
negative) is:

for all locations u such that the estimate zL
*(u) ≤ zc

Decision making in the face of UncertaintyDecision making in the face of Uncertainty

( ) ( ) ( ){ } ( )( )nzFnzzzZ ccLc |;,|Prob * uuu =>≤=α

( ) ( ) ( ){ } ( )( )nzFnzzzZ ccLc |;1,|Prob * uuu −=≤>=β
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Exceeding a physical threshold
Example Risk analyses - risk α(u) and risk β(u) for zc = .8

Decision making in the face of UncertaintyDecision making in the face of Uncertainty

+.81  +.87  +.91  +.79  +.75 

+.85  +.86  +.79  +.66 +.72

+.92  +.89  +.81  +.80  +.77

+.95  +.85  +.82  +.75  +.77

Risk α Risk β

Map of estimates

+.11  +.27  +.31  +.19  +.25 

+.25  +.36  +.79  +.46  +.22

+.42  +.29  +.81  +.40  +.47

+.55  +.35  +.22  +.35  +.27

Risk α Risk β

Map of Risks - Probabilities

zc = .8

pc

zc

Safe
Not
Safe

Misclassification risks can be used to rank locations candidates to additional sampling
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Classification of locations as contamined by cadmium on the basis that the E-type estimate 
exceeds the critical threshold 0.8 ppm. Bottom graphs show the corresponding risks of wrongly 

declaring that a location is hazardous (risk α) or safe (risk β ) 

Exceeding a physical threshold - Example
Figure 7.48 - Goovaerts, 1998
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Minimization of the expected losses
Based on the specification of two economic functions that measure the 
impact of the two types of misclassification: safe and contaminated, for 
example.

The loss associated with classifying a location u as safe could be modeled 
as:

The loss associated with classifying a location u as contaminated 
(remediation cost) could be modeled as:

where w1 and w2 are constants

Decision making in the face of UncertaintyDecision making in the face of Uncertainty
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Minimization of the expected losses
• The conditional cdf model F(u; z|(n)) allows one to determine the expected loss 

attached to the two type of classifications

• which are in practice approximated as:

• the location u is then declared safe or contaminated so as to minimize the 
resulting expected loss:

Decision making in the face of UncertaintyDecision making in the face of Uncertainty
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Minimization of the expected losses - Example

2323

Figure 7.49 – Goovaerts, 1998

Classification of locations as contamined by cadmium on the basis that the resulting expected 
cost (unecessary cleaning) is smaller than the cost associated with wrongly classifying a 

location as safe. 



Master of Science in Geoespatial Technologies

Assessment of Global UncertaintyAssessment of Global Uncertainty
Advanced Topics

• Researches in decision making processes using GIS information

• Non Parametrical Geostatistics (Baysean Approaches)

• Exploration of Binomial models (Suzana-Eduardo-Miguel) to risk analysis

• Spatio-Temporal Analysis using geostatistic (Suzana-Rodrigo)

See also: Short Course on Geostatistical Analysis of Environmental Data
(Goovaerts)(Goovaerts) and    

From Goovaerts short course
Space-time Geostatistics - Approaches available 

1. Space-rich Time-poor information

2. Space-poor Time-rich information

3. Space-rich Time-rich information

• A space-time model (Sulfate in Europe)

• Comparison of space-time interpolation methods

http://www.ai-geostats.org/index.php?id=206
http://conference.ifas.ufl.edu/soils/geostats/index.html

2424
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Summary and Conclusions

• The spatial data must be modeled considering the uncertainties related to 
these representations.

• The uncertainties of individual attributes propagates to the results obtained 
with spatial modeling. The correlation between the attributes must be 
considered in spatial modeling and in uncertainty propagation procedures.

• The uncertainty models of spatial information should be used in decision make 
processes in order to get more reliable answers for spatial problems.

• GISs and their tools should be used to perform complex spatial analysis, 
considering uncertainties in data, instead of being used only to create nice 
colored maps.
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END 

of the Course
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