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Introduction

» Uncertainties of data modeling can be accomplished by
geostatistics approaches

e Standard Kriging — kriging variance for multiGaussian models
e Indicator Kriging — local uncertainties (local cdf or pdf)
eIndicator Simulation — global uncertainties (global cdf or pdf)
e Uncertainties (cdfs or pdfs) qualify estimates

e Uncertainties should be accounted in decision making
processes because the estimates are uncertain.

- How to use the uncertainties in GIS Analysis and
Decision Makings ?
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Uncertainty Propagation on Spatial Modeling
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Spatial Modeling: Y(u) = g(Z,(u),...,Z,(u)) for n inputs

The Uncertainties of the Input representations propagate
to the Uncertainty of the Output representation.
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Uncertainty Propagation on Spatial Modeling

Heuvelink, 1998, presents 4 methods to assess the
problem of “Error Propagation in Environmental
Modelling with GI1S”.
1. First Order Taylor Method
2.Second Order Taylor Method
3. Rosenblueth’s Method

4. Monte Carlo’s Method
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Uncertainty Propagation on Spatial Modeling

1. First Order Taylor Method (Heuvelink, 1998)

The first order expansion of the Taylor series, around the mean vector of the n
input variables, ﬁ;[yz ----- uz] IS given by:

Y=g(z)=g(ﬁz)+iznlj{(z quj[ag )j}+residue

* From this expansion, and not considering the residue, one can obtain the
following approximations for the mean and variance values of the output R.V. Y:
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Uncertainty Propagation on Spatial Modeling

Considerations about the First Order Taylor Method

Used only for operations with continuous attributes
Aplicavel somente a operacfes com atributos qualitativos.

The mean value of the output Yis depends only of the means of the input
values. The standard deviations do not affect the output mean value.

The output variances depend on the standard deviations and correlations of
the inputs. Also there is a dependency related to the partial derivatives over
the input mean vectors. This method is applicable only to g functions
continually differentiable.

For independent input variables the correlation coefficient p; is equal O for
I#] and is equal 1 for i=j. In this case the formulation of the variance is

simplified to: 2
2 | 00— ) 2
GY - Z a—z 7 .GZi
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)
2. Second Order Taylor Method

* Extension of the First Order Taylor method, including the term of the second
order of the Taylor series.

Y:g(Z):g(/jz)+§{(z :Uzj(ag Z)]}
L zz{(zi ) [ | 8 )| s

=1 j=1

* In this case the approximation for the output mean value is assessed by:

)~ala): zz{p”az o 2% }

=1 j=1

* I[mportant: The output mean value can differ of the g value applied to the
Input mean values.
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)
2. Second Order Taylor Method

®* The approximation for the variance of Y is given by:

09 (-
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® The evaluation of the variance value requires the calculation of the 12, 22, 32 ¢ 4¢
moments and the partial derivatives of first and second orders.

e Comparing with the first order method:

 Approximations close to z, are better than those far from . Therefore the
variance can be worst.

 Second order method is better when the g is quadratic. g
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)

3. Rosenblueth’s Method

o It is equivalent to the first order Taylor method.
 Must be used when g is not continually differentiable over g,
 The output mean is evaluated by 2tnhe relation:

41, ~E)~ ¥ r9(6,)

onded, =(d,,...d_)ed = +0,0ud =u -0
m-1 m

I, = Zim(; j;lé‘ij (K)py "‘1j

k):+1 quando d; = +oed; = u;+0,

k)=+1 quando d; =y —oc,ed, =y —o,

k)=-1 quando d, =y +o,ed, =y, -0,

)

k)=-1 quando d;, =y —o,ed; =y, +o0, "
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)
3. Rosenblueth’s Method

 The variance of Y is given by:

2m ( 2m 2]
Gizzw{g(do—zr. g(dﬂ |
k=1 =1

\§ J

e \When m=1;
1
M, =5 (9, +0)+ 9l —o))

2

&= (gl + o)+ s, o)

« Comparing with the first order Taylor method, this method uses a
smoothed approximation of the first partial derivative over ..

=
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Uncertainty Propagation on Spatial Modeling (Heuvelink, 1998)
4. Monte Carlo’s method

* Compute Y repeatedly from z; input values randomly sampled from its joint
distribution (requires as joint simulation if inputs are not independent).

» The method follows the below steps:
At each spatial location u
» Repeat n time:
» Draw a set of R realizations z;, i=1,...,R.
» Evaluate and store the output value y=g(z,,...2,,) .

* Define the cdf, or pdf, model from the n output values. Evaluate
statistics, x e o for ex., from the output values as:

:%iyi(u ) and Gv —Z( )

N
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Constraints applied to the estimates

* Deriving estimate maps taken into account uncertainties: Uncertainty constraints
can be applied to estimates for categorical and continuous attributes.

e Continuous attribute

» Maps with constrained areas: derived map keeps only the locations where the
probability of the estimates are greater (or smaller) than a given probability
value. A dummy value is set to the other locations.

» Classified maps: derived map can be a classified map taken into account user
defined probability intervals.

» Categorical attribute

» Maps with constrained areas: derived map keeps only the locations where the
probability of the estimates are greater (or smaller) than a given z value. A
dummy z value is set to the other locations.

» Classified maps: derived map can be a reclassified map taken into account
user defined probability intervals.
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Example of Maps of Estimates and Uncertainties of categorical
attributes from realizations.

1 Arenoso
B Mmédio Argiloso
B Argiloso

I Muito Argiloso
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Constraints applied to the estimates
Uncertainty constraints applied to estimates for categorical variables (example)

D Sandy D Sandy

- Medium Clay - Medium Clay
[ cley ] clay
- Clayey - Clayey

D No class 38% D Noclass  50og
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Exceeding a probability threshold

* Defining a critical z value, z, of a continuous or a categorical
attribute, it is possible to create probability maps from the
uncertainty models of the RVs.

* For continuous variables: probabilities of your attribute value
be lower (or greater) than the threshold z value.

* For categorical variables: probabilities of your attribute value

be equal to the z value (user defined class).

 The probability values of the probability maps can be ranked or

classified (safe areas, hazardous areas, suitable regions, ...)
* The results are taken into account in decision making processes.
» Goovaerts example: Areas contaminated by Cadmium

 Consider cleaning all the locations where the probability of
exceeding the tolerable maximum 0.8 ppm is larger than a
marginal probability threshold.
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Exceeding a probability threshold - Example
Figure 7.47 - Goovaerts, 1998

Probability map (0.8 ppm) Classification

contaminated

safe
L

Classification of locations as contamined by cadmium on the basis that the probability
of exceeding the critical threshold 0.8 ppm is larger than the marginal probability of
contamination (0.625)
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Exceeding a physical threshold (Risk Analyses)

Given a map of optimal estimates Z, , a critical value z,and the cdf F(u;z|(n)) at u
Two misclassification risks can be assessed

1. The risk a(u) of wrongly classifying a location u as hazardous (false
positive) is:

a(u)=Prob{z(u)< z, |z, > z,,(n)}=F(u;z,|(n))
for all locations u such that the estimate z, "(u) > z,

2. The risk S(u) of wrongly classifying a location u as safe (false
negative) Is:

B(u)="Prob{z(u)>z, |z, <z,.(n)}=1-F(u;z,|(n))

for all locations u such that the estimate z, "(u) < z,

| €.
1g
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Exceeding a physical threshold
Example Risk analyses - risk o(u) and risk g(u) for z,. = .8

Map of estimates

Map of Risks -‘Probabilities

+.81 +.87 +.91/+.79 +.75

+.92 +.89 +.81}+.80 +.77

+.95 +.85 +.82+.75 +.77

Risk @ +— A—> Risk g

Not
Safe Safe

+.11 +.27 +.31/+.19 +.25
+.25 +.36/+.79 +.46 +.22
+.42 +.29 +.81\+.40 +.47

+.55 +.35 +.22+.35 +.27

Risk @ «— | —> Risk g

Misclassification risks can be used to rank locations candidates to additional sampli,pgg
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Exceeding a physical threshold - Example

Figure 7.48 - Goovaerts, 1998
E-type estimates Classification

‘J" r‘-gl-

Risk B

Classification of locations as contamined by cadmium on the basis that the E-type estimate
exceeds the critical threshold 0.8 ppm. Bottom graphs show the corresponding risks of wrongly
declaring that a location is hazardous (risk «) or safe (risk 5) 20)
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Minimization of the expected losses

Based on the specification of two economic functions that measure the
Impact of the two types of misclassification: safe and contaminated, for
example.

The loss associated with classifying a location u as safe could be modeled

Ll(z(u)):{o if z(u)<z,

w,[z(u)-z,] otherwise

The loss associated with classifying a location u as contaminated
(remediation cost) could be modeled as:

Lz(z(u)):{o if z(u)> z,

W, otherwise
where w1l and w2 are constants

N

=
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Minimization of the expected losses

* The conditional cdf model F(u; z|(n)) allows one to determine the expected loss
attached to the two type of classifications

p0)=EIL LD 0)]- | L ((u)HF 21 (n) i =12

* which are in practice approximated as:

A
[REN

+

0,(W)= Y LENF 2, ()~ Fuz, .| ()] i=12
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e the location u Is then declared safe or contaminated so as to minimize the
resulting expected loss:

qol(u) > @, (u):> u 1s classified as contamined
¢, (u)< @,(u)= uis classified as safe

N
N
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Minimization of the expected losses - Example

Figure 7.49 — Goovaerts, 1998

Health costs Remediation costs

Classification of locations as contamined by cadmium on the basis that the resulting expected
cost (unecessary cleaning) is smaller than the cost associated with wrongly classifying a
location as safe.

N
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Assessment of Global Uncertainty

Advanced Topics
Researches in decision making processes using GIS information
Non Parametrical Geostatistics (Baysean Approaches)
Exploration of Binomial models (Suzana-Eduardo-Miguel) to risk analysis
Spatio-Temporal Analysis using geostatistic (Suzana-Rodrigo)

See also: Short Course on Geostatistical Analysis of Environmental Data
(Goovaerts) and

From Goovaerts short course
Space-time Geostatistics - Approaches available
1. Space-rich Time-poor information
2. Space-poor Time-rich information
3. Space-rich Time-rich information
» A space-time model (Sulfate in Europe)

e Comparison of space-time interpolation methods

N
I


http://www.ai-geostats.org/index.php?id=206
http://conference.ifas.ufl.edu/soils/geostats/index.html
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Summary and Conclusions

e The spatial data must be modeled considering the uncertainties related to
these representations.

e The uncertainties of individual attributes propagates to the results obtained
with spatial modeling. The correlation between the attributes must be
considered in spatial modeling and in uncertainty propagation procedures.

e The uncertainty models of spatial information should be used in decision make
processes in order to get more reliable answers for spatial problems.

e GISs and their tools should be used to perform complex spatial analysis,
considering uncertainties in data, instead of being used only to create nice
colored maps.
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