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Deterministic x Stochastic Methods

• Deterministic
• The z *(u) value is estimated as a 

Deterministic Variable. An unique 
value is associated to its spatial location.                    

• No uncertainties are associated to the 
estimations

• Stochastic
• The z *(u) value is considered a Random 

Variable that has a probability 
distribution function associated to its 
possible values

• Uncertainties can be associated to the 
estimations

• Important: Samples are realizations of 
Random Variables

z*(u)?

+

z*(u) = K

cdf

o sample locations

+ estimation locations
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• A Random Variable (RV) is a variable that can take a 
variety of outcome values according to some probability 
(frequency) distribution. Deutsch and Journel, 1998.

• A RV has a cumulative distribution function (cdf) which 
models the uncertainty about its z values. The cdf of a 
continuous RV Z(u) is denoted: 

• A Random Function (RF) is a set of RVs defined over 
some field of interest. 

• A RF has a set of all its K-variate cdfs for any number k
and any choice of the K locations uk, k = 1,…K

• The multivariate cdf is used to model joint uncertainty 
about the K values z(u1),…,z(uK). The multivariate cdf of a 
continuous RF Z(u) is denoted:

cdf

( ) ( ){ }zZzF ≤= uu Prob;
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o  sampled location (realizations)

+ unsampled locations
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• What is a regionalized variable? 

• It is a variable that is distributed in a region of the earth space.

• It is used to represent spatial phenomena, which means, phenomena 
occurring in an earth region. Examples

• grade of clay, or sand, in the soil;

• grade of mineral in a rock, or soil.

• variations of elevation, temperature, pressure, etc…

• index of human development, illness taxes, etc…

• Geostatistics provide tools to perform analysis and modeling, for 
estimations and simulations, on regionalized variables.

Predictions with GeostatisticsPredictions with Geostatistics
• Regionalized variables
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The spatial variation of a regionalized variable, at a spatial location u,  can be 
expressed as an addition of three components Burrough (1987):

Z(u) = m(u) + ε′(u) + ε″
where:

m(u) is the variable tendency ( global or mean local information )

ε′(u): is the random term that varies locally and has a spatial dependency   
with m(u);

ε″ : is a uncorrelated random noise having a Gassian distribution with mean
equal 0 and standard deviation σ. 

Important: The geostatistics approaches works mainly on the 
modeling of the random term ε′(u): 

Predictions with GeostatisticsPredictions with Geostatistics
• Regionalized variables
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• Regionalized variables - Tendencies

Fonte: Fonte: ModifiedModified fromfrom BurroughBurrough (1987). (1987). 

m(u)

ε’(u)

ε”

ZoneZone AA

ZoneZone BB

ZoneZone AA

ZoneZone BB
With Tendency

Without Tendency

m(u) is ~ constante

m(u) is a deterministic
function

Predictions with GeostatisticsPredictions with Geostatistics
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1. All the RVs has the same mean value m (stationary of the first moment)
(or the increments [Z(u)-Z(u + h)] has the same expected value equal 0)

E[Z(u)] = E[Z(u+h)] = m or  E[Z(u) - Z(u + h)]=0 ,  ∀ u,h ∈ A.

2. The variogram (also the covariogram) varies only in function of h:

Var[Z(u) - Z(u + h)] = E[Z(u) - Z(u + h)]2 = 2γ(h) 

where:  2γ(h) is called the variogram function

3) Under the stationary hypothesis γ(h) = C(0) − C(h)

Predictions with GeostatisticsPredictions with Geostatistics
• Stationary hypothesis 

• The RF is said to be stationary within field A if its multivariate cdf is 
invariant under any translation the K coordinate vectors u (Journel, 1988)

• Stationary hypotheses of mean and covariance (intrinsic stationary)
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2γ(h) = E[Z(u) - Z(u + h)]2 and C(h) = E[Z(u)Z(u + h)] - E[Z(u)]E[Z(u + h)]

For stationary random functions E[Z(u)] = E[Z(u+h)] = m so:

C(h) = E[Z(u)Z(u + h) - E[Z(u)]2]= E[Z(u)Z(u + h)] - m2]

Developing the square terms of the variogram:

2γ(h) = E[Z(u)]2 + E[Z(u + h)]2 - 2E[Z(u)Z(u + h)]

γ(h) = E[Z(u)]2 - E[Z(u)Z(u + h)]

Subtracting m2 of each one of the terms

γ(h) = E[Z(u)]2 - m2 - {E[Z(u)Z(u + h)] - m2}

The relation between the variogram and the covariogram is reached

γ(h) = C(0) - C(h)

Predictions with GeostatisticsPredictions with Geostatistics
• Stationary Hypothesis

• Relation between the Covariogram and the Variogram on intrinsic stationary 
hypothesis – Formulations
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• Stationary Hypothesis

• Relation between the Covariogram and the Variogram on intrinsic stationary 
hypothesis

sill

when

when

γ(h) = C(0) − C(h)

Important: Under stationary hypothesis the covariance C(h) and the 
variogram 2γ(h) are equivalent tools for spatial dependency characterization.

Predictions with GeostatisticsPredictions with Geostatistics
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• Stationary Hypothesis

• Important: Stationary is a model hypothesis

• Geostatistics use the stationary hypothesis on these procedures to Estimate and 
Simulate values for Regionalized Variables

• Problems

• The Regionalized Variables to be modeled have an stationary behavior? What 
if they not? 

• How to use Geostatistics with attributes which have nonstationary behavior?

• How to check stationary in a sample set of a Regionalized Variable?

• Calculate local means with a moving window statistics

• The variogram must exist (with a low value of nugget effect)

• The sill C(0) must be approximately equal to the variance of the samples

• The range value can not be too large compared to the region of study
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• Kriging prediction – Introduction (Goovaerts, 1997)

• Kriging is a generic name adopted by geostatisticians for a family of 
generalized least-squares regression algorithms. 

• All kriging estimators are but variants of the basic linear regression 
estimator Z*(u) defined as:

( ) ( ) ( ) ( )[ ]
( )

∑
=

−=−
u

uuuuu
n

mZmZ
1

* )(
α
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where  

•λα(u) is the weight assign to datum z(uα) interpreted as a realization of 
the RV Z(uα)

•m(u) and m(uα) are the expected values of RVs Z(u) and Z(uα)

•n(u) is the number of data closest to the location u being estimated
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• Kriging prediction – Comparison with deterministic approaches
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• Kriging prediction – Introduction (Goovaerts, 1997)

• All kinds of kriging has the same objective of minimizing the estimation (or error) 
variance σ2

E(u) under the constraint of unbiasedness of the estimator; that is:

( ) ( ) ( ) )}({}E{ *2 uuuu ZZVarVarE −==σ

is minimized under the constraint that

( ) 0)}({E * =− uu ZZ

• The RF Z(u) is usually decomposed into a residual component R(u) and a trend 
component m(u): Z(u) = R(u) + m(u)

• R(u) is modeled as a stationary RF with zero mean and covariance CR(h):

( ) 0}{E =uR

( ) ( ) ( )hhuuhuu RCRRRR =+⋅=+ )}({E)}(,{Cov

( )uu mZ =)}({E• So, the expected value of Z at location u is m(u) or
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• Kriging Variants – (Goovaerts, 1997)

• Three kriging variants can be used according the model considered for m(u)

1. Simple Kriging (SK) – m(u) is known and is constant in the considered region A.

( ) Aknownmm ∈∀= uu ,

2. Ordinary Kriging (OK) – m(u’) is unknown but constant for sub regions W of A

( ) ( )uuu Wm ∈∀= 'unknown but constant '

3. Kriging with a trend model (KT) or Universal Kriging – m(u’) is unknown but 
varies smoothly within each local neighborhood W (u) of the region A. The trend 
component is modeled as a linear combination of functions fk(u) of the coordinates:
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• Kriging Predictions – The Simple Kriging (Goovaerts, 1997)

The trend component  m(u) = m is the stationary mean of the attribute in region A.
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As for all krigings the n(u) weights are determined such as to minimizing the estimation 
(or error) variance σ2

E(u) under the constraint of unbiasedness of the estimator.

Applying these two conditions the weights are evaluated from the solution of the following 
linear system (see mathematical deductions in section 5.2 of the Goovaerts book):

( )
( ) ( ) )(1,...,       ,

1
uuuuu

u

nαCC u

n

=−=+−∑
=

αβα
β

β µλ

( ) ( ) ( )
( )

∑
=

−⋅−=
u

uuuu
n

SK
SK CC

1

2 )0(
α

ααλσ

The minimum error variances, the SK variance, is 
given by:

Important: C(h) comes from 
the stationary relation

C(h) = C(0) - γ(h)

Predictions with GeostatisticsPredictions with Geostatistics
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• Kriging Predictions – The Ordinary Kriging (Goovaerts, 1997)

The trend component m(u) is unknown but is constant in sub-regions W of the region A.
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As for all krigings, the n(u) weights are determined such as to minimizing the estimation 
(or error) variance σ2

E(u) under the constraint of unbiasedness of the estimator.

Applying these two conditions the weights are evaluated from the solution of the following 
linear system (see mathematical deductions in section 5.3 of the Goovaerts book):
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Important: C(h) comes from 
the stationary relation

C(h) = C(0) − γ(h)
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Important: C(h) is calculated using the stationary relation
C(h) = C(0) - γ(h)

K is the matrix of Covariances 
between samples

k is the vetor of Covariances 
between samples and the 

estimation location u0

λ is the vector of Weights to be 
computed for each sample at uα

Predictions with GeostatisticsPredictions with Geostatistics
• Kriging prediction – Ordinary Kriging equation system in matrix notation

K.λ = k  or λ = K-1.k

1818



Given the below configuration how the Kriging estimates the value of the Z variable at location u0, using 
the samples z(u1), z(u2), z(u3) e z(u4).  Consider that the  semivariogram  was fitted by a spherical model 
with the following parameters: a (range)= 200, C1 (contribution)= 20,  and C0 (nugget)= 2.

Kriging prediction - EXAMPLE

Predictions with GeostatisticsPredictions with Geostatistics
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The matrix elements are evaluated as:  Cij = C0 + C1 - γ (h)

Theoretical Model
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= 9,84= (2+20) -
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5050

5050 uu11

uu22

uu33

uu44

uu00

C14 = C41 = C02 = (C0 + C1) - γ [ V  (100)2 + (50)2 ] = 4,98

C13 = C31 = (C0 + C1) - γ [ V  (150)2 + (50)2 ] = 1,23

C23 = C32 = (C0 + C1) - γ [ V  (100)2 + (100)2 ] = 2,33

C24 = C42 = (C0 + C1) - γ [ V  (100)2 + (150)2 ] = 0,29

C34 = C43 = (C0 + C1 ) - γ [ V  (200)2 + (50)2 ] = 0

C01 = (C0 + C1 ) - γ (50) = 12,66

C03 = (C0 + C1 ) - γ (150) = 1,72

C11 = C22 = C33 = C44 = (C0 + C1 ) - γ (0) = 22

Predictions with GeostatisticsPredictions with Geostatistics
Kriging prediction - EXAMPLE
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Kriging prediction - EXAMPLE

Filling out the Cij values in the matrices the following weights will be found:

λ1 = 0,518    λ2 = 0,022     λ3 = 0,089    λ4 = 0,371 

Finally the estimated value at u0 is given by: 

0,518 z(u1) + 0,022 z(u2) + 0,089 z(u3) + 0,371 z(u4)Z(u0) = ^

Observation: although the samples Z2 and Z3 have small influence in the 
final estimate value of Z0, their influences are not linear with respect to their 
distances to Z0.  The sample Z3 is far than Z2, but its contribution is more 
than 4x the contribution of sample 3.  This occurs due the fact that Z0 has a 
direct influence of  Z3, while  Z2 is to closer to the Z1. The introduction of the 
covariances between samples, besides the covariance between the 
samples and Z0, in the weight evaluation avoid the association of undue 
weights to “clustered” samples. This is a great advantage of the Kriging 
compared to the others that consider only the distances between each 
sample and the point to be estimated (IDW for example).         

5050

5050 uu11

uu22

uu33

uu44

uu00
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• Kriging prediction 
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• Cokriging prediction 
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-It is a predictor that works with 2 or more variables.

-Primary (main) variable values Z1
*(u) are estimated using a sample set of Z1

and sample set of secondary variables Z2,…,Zv .that are correlated to the 
primary.

- The secondary variables must have a high degree of correlation with the 
primary.

- The cokriging estimators make use of direct and crossvariograms.

- As for the kriging estimator, one can work with simple, ordinary and with a 
trend cokriging. 2323
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• Cross Validation and Validation

The modeled variogram can be considered 
valid or not by some exploratory analysis 
on the results of a (cross)validation
procedure. 

Cross Validation - Each sample αi is 
taken off the sample set and its z*(uαi) 
value is estimated using the current 
semivariogram model.

The differences (“errors”) between the two 
sample sets can be compared by some 
exploratory spatial data analysis such as: 
summary statistics, histograms, spatial 
distribution diagram, scatter plots of the 
observed x the estimated z values, etc…

2424

Validation – The above mentioned analysis can be done also if a different, and 
representative, sample set of Z is available for the same region.
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• ESDA examples for (Cross)Validation procedures
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• Problems with geostochastic procedures

The main drawback of using geostatistic approaches is the need of work on 
variogram generations and fittings. This work is interactive and require from 
the user knowledge of the main concepts related to basics of the geostatistics 
in order to obtain reliable variograms.

The kriging approach is an estimator based on weighted mean evaluations 
and is uses the hypothesis of minimizing the error variance. Because of these 
the kriging estimates create smooth models that can filter some details of the 
original surfaces.

2626



Master of Science in Geoespatial Technologies

Predictions with GeostatisticsPredictions with Geostatistics
• Advantages on using geostochastic procedures

• Spatial continuity is modeled by the variogram

• Range define automatically the region of influence and number of neighbors

• Cluster problems are avoided

• It can work with anisotropic phenomena

• Allows prediction of the Kriging variance

2727
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Summary and ConclusionsSummary and Conclusions

Summary and Conclusions

• Geostatistic estimators can be used to model spatial data.

• Geostatistics estimators make use of variograms that model the 
variation (or continuity) of the attribute in space. 

• Geostatistics advantages are more highlighted when the sample set is 
not dense 

• Current GISs allow users work with these tools mainly in Spatial 
Analysis Modules.

2828



Master of Science in Geoespatial Technologies

Predictions with GeostatisticsPredictions with Geostatistics
Exercises

1. Run the Lab3 that is available in the geostatistics course area of ISEGI 
online.

2. Find out a sample set of points of an spatial attribute of your interest (in the 
internet or with a friend, for examples). Important: The sample set should 
have more than 50 samples and less than 500 samples. 

3. Repeat the exercises you have realized in the Lab2 and Lab3 in order to 
model your attribute with geostatistical procedures. Use any software you 
want.

4. Report your work and results in an “article” that will be presented (in 10 
minutes) to the other students of the geostatistics course (to be scheduled).

5. Send the report to the e-mail of the geostatistics professor before november
8, 2007.

2929



Master of Science in Geoespatial Technologies

Predictions with Deterministic ProceduresPredictions with Deterministic Procedures

END 

of Presentation
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