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Computations using the direct simulation Monte Carlo �DSMC� method are presented for
hypersonic flow on power-law shaped leading edges. The primary aim of this paper is to examine
the geometry effect of such leading edges on the shock-wave structure. The sensitivity of the
shock-wave shape, shock-wave thickness, and shock-wave standoff distance to shape variations of
such leading edges is investigated by using a model that classifies the molecules in three distinct
classes: �1� undisturbed freestream, �2� reflected from the boundary, and �3� scattered, i.e.,
molecules that had been indirectly affected by the presence of the leading edge. The analysis showed
that, for power-law shaped leading edge with exponent between 2 /3 and 1, the shock wave follows
the body shape. It was found that, at the vicinity of the nose, the shock-wave power-law exponent
is 1 /2. Far from the nose, calculations showed that the shock-wave shape is in surprising qualitative
agreement with that predicted by the hypersonic small disturbance theory for the flow conditions
considered. © 2008 American Institute of Physics. �DOI: 10.1063/1.2831135�

I. INTRODUCTION

The importance of the lift-to-drag ratio is well known to
all hypersonic vehicle designers since it gives the aerody-
namic efficiency of the vehicle. With the renewed interest in
aerodynamically efficient hypersonic vehicles, high-lift and
low-drag configurations, waveriders1 have been considered
as a promising concept for a high aerodynamic performance.
Waverider configuration is a shape designed analytically
with infinitely sharp leading edges for shock wave attach-
ment. Because the shock wave is attached to the leading edge
of the vehicle, the upper and lower surfaces of the vehicle
can be designed separately. Furthermore, this attached shock
prevents spillage of higher pressure air from the lower side
of the vehicle to the upper side. As a result of this attached
shock, waverider has been shown to have the potential to
provide high values for the lift-to-drag ratio at high Mach
numbers.

Nonetheless, it is known that very sharp leading edge is
not practical for a number of reasons: �1� it is difficult to
manufacture, �2� some blunting is required for structural
strength, and �3� the heat transfer to the nose is severe at high
Mach numbers. In this context, any practical waverider will
have some degree of bluntness dictated by either manufac-
turing or heating requirements. Coupled with viscous effects,
the resulting shock wave will exhibit a standoff distance. In
addition, shock wave detachment will allow pressure leakage
from the lower surface of the vehicle to the upper surface,
thereby degrading the aerodynamic performance of the
vehicle.2

Usually, a round leading edge with constant radius of
curvature �circular cylinder� near the stagnation point has
been chosen for blunting geometry. Nevertheless, shock de-
tachment distance on a cylinder, with associated leakage,
scales with the radius of curvature. With this perspective in

mind, power-law shaped leading edges �y�xn, 0�n�1�
may provide the required bluntness for heat transfer and
manufacturing concerns with reduced departures from ideal
aerodynamic performance. This concept is based on the work
of Mason and Lee,3 who have pointed out, based on New-
tonian flow analysis, that power-law shapes exhibit both
blunt and sharp aerodynamic properties. They suggested the
possibility of a difference between shapes that are geometri-
cally sharp and shapes that behave aerodynamically as if
they were sharp.

A great deal of experimental and theoretical works4–20

has been carried out previously on power-law forms repre-
senting blunt geometries. The major interest in these works is
twofold: �1� for Refs. 4–7, the interest had gone into finding
solutions to the hypersonic small disturbance form of the
inviscid adiabatic-flow equations, since the equations of mo-
tion for hypersonic flow over slender bodies can be reduced
to simpler form by incorporating the hypersonic slender-
body approximations;21 �2� for Refs. 8–20, the interest has
gone into considering the power-law shape as possible can-
didate for blunting geometries of hypersonic leading edges,
such as hypersonic waverider vehicles.

Lees and Kubota4 observed that similarity exists for hy-
personic flows whenever the shock shape follows a power-
law variation with the streamwise distance, provided the hy-
personic slender body equations are considered in the limit
as �M���−2→0, where M� is the freestream Mach number
and � is a characteristic shock slope. According to their
work, energy considerations combined with a detailed study
of the equations of motion show that flow similarity is pos-
sible for a class of bodies of the form xn, provided that
2 /3�n�1 for a two-dimensional body and 1 /2�n�1 for
an axisymmetric body. The similarity solutions referred
herein are solutions for self-similar flows, i.e., flows in which
the flowfield between the shock wave and the body can be
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expressed in terms of functions which, in suitable coordi-
nates, are independent of one of the coordinate directions.

Of particular significance on power-law shapes are the
works by Santos and Lewis.12–18 Through the use of the di-
rect simulation Monte Carlo �DSMC� method, they found
that the stagnation point heating behavior for power-law
leading edges with finite radius of curvature, n=1 /2, fol-
lowed that predicted for classical blunt body in that the heat-
ing rate is inversely proportional to the square root of curva-
ture radius at the stagnation point. For those power-law
leading edges with zero radii of curvature, n�1 /2, it was
found that the stagnation point heating is not a function of
the curvature radius at the vicinity of the leading edges, but
agreed with the classical blunt body behavior predicted by
the continuum flow far from the stagnation point. Results
were compared to a corresponding circular cylinder to deter-
mine which geometry would be better suited as a blunting
profile. Their analysis also showed that power-law shapes
provided smaller total drag than the circular cylinder, typi-
cally used in blunting sharp leading edges for heat transfer
considerations. However, circular cylinders provided smaller
stagnation point heating than power-law shapes under the
range of conditions investigated.

In order to study the shock-wave structure on power-law
leading edges, a preliminary investigation was performed by
Santos and Lewis.17 In their analysis, the shock-wave center
or shock-wave “location” was defined from the inflection
point in the shock-normal velocity profile. The shock-wave
thickness was defined with the maximum-slope definition of
shock thickness; for a given property �, which may be ve-
locity, temperature density or pressure, the thickness was de-
fined in a dimensional form in the shock-normal direction22

by

� =
�max − �min

�d�/d��max
, �1�

where the maximum and minimum values of � occur at
�= ±�. The term �d� /d��max represents the absolute value of
the maximum gradient of �, regardless of the location within
the shock wave where it occurs. � represents the spatial co-
ordinate. In this scenario, the velocity profile along the stag-
nation streamline was used not only to the shock-wave shape
but also for the shock-wave thickness determination. It
should be mentioned that, since each physical variable will
have its own profile, each one would also have its own char-
acteristic thickness. Therefore, the definition of thickness of
a shock wave depends on the quantity � that is being mea-
sured. Grad23 as well as Gilbarg and Paolucci24 emphasized
that an objection to the definition given by Eq. �1� is that it
depends on a purely local feature of the shock-wave profile,
and that in the general case this measure of shock thickness
is unrealistically small. In addition to that, Santos and
Lewis17 observed that some velocity profiles presented no
inflection point in the profiles along the stagnation stream-
line. A difference in the velocity profile behavior was ob-
served for n�2 /3 from that for n	2 /3. Consequently, due
to the lack of inflection point on the velocity profile for some

cases, it was not possible to apply Eq. �1� for all cases in-
vestigated.

Based on recent interest in hypersonic waveriders for
high-altitude/low-density applications,25–29 this paper ex-
tends the analysis presented by Santos and Lewis17 by com-
putationally investigating the shock-wave structure over
power-law leading edges by employing a procedure based on
the physics of the particles. In this scenario, the primary goal
is to assess the sensitivity of the shock-wave standoff dis-
tance, shock-wave thickness, and shock-wave shape to varia-
tions on the leading-edge shape and to compare them to the
round shape �circular cylinder�. Comparisons based on shock
standoff distance are made to examine the benefits and dis-
advantages of using power-law shapes over round shapes.

The study at hand focuses on the low-density region in
the upper atmosphere, where the nonequilibrium conditions
are such as the traditional computational fluid dynamics
�CFD� calculations are inappropriate to yield accurate re-
sults. In such a circumstance, the DSMC method will be
employed to calculate the rarefied hypersonic two-
dimensional flow on the power-law shaped leading edges.

II. LEADING-EDGE GEOMETRY DEFINITION

In dimensional form, the body power-law shapes are
given by the following expression:

y = axn, �2�

where n is the power-law exponent and a is the power-law
constant which is a function of n.

The power-law shapes are modelled by assuming a
sharp-edged wedge of half angle 
 with a circular cylinder of
radius R inscribed tangent to this wedge. The power-law
shapes, inscribed between the wedge and the cylinder, are
also tangent to them at the same common point where they
have the same slope angle. The circular cylinder diameter
provides a reference for the amount of blunting desired on
the leading edges. It was assumed a leading edge half angle
of 10°, a circular cylinder diameter of 10−2 m, and power-
law exponents of 1 /2, 3 /5, 2 /3, 7 /10, 3 /4, and 4 /5. Figure
1 illustrates schematically this construction for the set of
power-law leading edges investigated.

From geometric considerations, the common body
height H at the tangency point is equal to 2R cos 
. The
power-law constant a, obtained by the matching slope on the
wedge, circular cylinder and power-law body at the tangency

FIG. 1. Drawing illustrating the leading edge geometry.
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point, and the body length L, from the nose to the tangency
point in the axis of symmetry, are given by the following
expressions:

a =
� R2

1 + tan2 

��1−n�/2

� n

tan 

�n , �3�

L =
nR cos2 


sin 

=

nR

tan 
�1 + tan2 

. �4�

It was assumed that the power-law leading edges are
infinitely long but only the length L is considered in the
simulation since the wake region behind the power-law bod-
ies is not of interest in this investigation.

III. COMPUTATIONAL TOOL

It has been firmly established that the most successful
numerical technique for modelling complex flows in the
transitional flow regime is the direct simulation Monte Carlo
�DSMC� method developed by Bird.30 The DSMC method
models the flow as being a collection of discrete particles,
each one with a position, velocity, and internal energy. The
state of the particles is stored and modified with time as the
particles move, collide, and undergo boundary interactions in
simulated physical space. The molecular motion and the in-
termolecular collisions are uncoupled over the small time
step used to advance the simulation. Therefore, the time step
should be sufficiently small in comparison to the local mean
collision time.31,32

The molecular collisions are modelled by the variable
hard sphere �VHS� molecular model,33 and by the no time
counter �NTC� collision sampling technique.34 The energy
exchange between kinetic and internal modes is controlled
by the Larsen–Borgnakke statistical model.35 The conditions
used for the present investigation are for low-energy flow
where there are no chemical reactions. Therefore, simula-
tions are performed using a nonreacting gas model for air
consisting of two chemical species, N2 and O2. Energy ex-
changes between translational, rotational, and vibrational
modes are considered. The rate of rotational and vibrational
relaxation are dictated by collision numbers ZR and ZV, re-
spectively. Constant collision numbers of 5 and 50 are given
for rotation and vibration, respectively.

IV. COMPUTATIONAL FLOW DOMAIN AND GRID

In order to easily account for particle-particle collisions,
the flowfield is divided into an arbitrary number of regions,
which are subdivided into computational cells. The cells are
further subdivided into four subcells, two subcells/cell in
each coordinate direction. In this fashion, the cell provides a
convenient reference sampling of the macroscopic gas prop-
erties, while the collision partners are selected from the same
subcell for the establishment of the collision rate. The linear
dimensions of the cells should be of the order of or even
smaller than the local mean free path.36,37 Close to the body
surface, cell spacing normal to the body should be also of the

order of a third of the local mean free path. If the cell size
near the body surface is too large, then energetic molecules
at the far edge of the cell are able to transmit momentum and
energy to molecules immediately adjacent to the body sur-
face. This leads to overprediction of both the surface heat
flux and the aerodynamic forces on the body that would oc-
cur in the real gas.38

The computational domain used for the calculation is
made large enough so that body disturbances do not reach
the upstream and side boundaries, where freestream condi-
tions are specified. The boundary conditions are specified in
terms of the behavior of the individual molecules rather than
the distribution function. Four boundary conditions are
specified. A schematic view of the computational domain is
depicted in Fig. 2. According to Fig. 2, side 1 is defined by
the body surface. Diffuse reflection with complete thermal
accommodation is the condition applied to this side. An ad-
vantage of the flow symmetry is taken into account, and
molecular simulation is applied to one-half of a full configu-
ration. Thus, side 2 is a plane of symmetry. In such a bound-
ary, all flow gradients normal to the plane are zero. At the
molecular level, this plane is equivalent to a specular reflect-
ing boundary. Side 3 is the freestream side through which
simulated molecules enter and exit. Finally, the flow at the
downstream outflow boundary, side 4, is a boundary with a
vacuum or with a set of molecules crossing into the compu-
tational domain. The vacuum option is suitable for an out-
flowing gas with a highly supersonic velocity component
across such a boundary, since there are virtually no upstream
moving molecules in a flow with Mach number greater than
about 3.39 Hence, vacuum is the prescribed boundary condi-
tion for this side. Usually, the upstream extent of the inter-
ference due to this unrealistic boundary condition is deter-
mined by increasing the body length.

Numerical accuracy in the DSMC method depends on
the grid resolution chosen as well as on the number of par-
ticles per computational cell. Both effects were investigated
to determine the number of cells and the number of particles
required to achieve grid independence solutions. A grid in-
dependence study was made with three different structured
meshes in each coordinate direction, �- and �-direction as
shown in Fig. 2. The effect of altering the cell size in the
�-direction was investigated with grids of 35 �coarse�, 70

η

ξ
θ

FIG. 2. Schematic view of the computational domain.
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�standard�, and 105 �fine� cells, and 50 cells in the
�-direction for power-law exponent of 1 /2. In an analogous
fashion, an examination was made in the �-direction with
grids of 25 �coarse�, 50 �standard�, and 75 �fine� cells, and 70
cells in the �-direction for power-law exponent of 1 /2. Each
grid was made up of nonuniform cell spacing in both direc-
tions. The effect �not shown� of changing the cell size in both
directions on the heat transfer, pressure and skin friction co-
efficients was rather insensitive to the range of cell spacing
considered, indicating that the standard grid, 70�50 cells,
for the power-law shape defined by n=1 /2 is essentially grid
independent. A similar procedure was performed for the
other cases investigated. For instance, results indicated that a
grid of 80�50 and 90�50 for power-law exponents of 2 /3
and 4 /5, respectively, were considered fully independent. Of
particular interest is the number of cells in the �-direction for
the power-law cases investigated. It should be emphasized
that, even though the number of cells is the same in the
�-direction, the computational domain size is different for
each one of the cases. In this way, side 2 shown in Fig. 2
corresponds, for instance, to 8, 6, and 5 � for power-law
exponents of 1 /2, 2 /3, and 4 /5, respectively, where � is the
freestream mean free path.

In a second stage of the grid independence investigation,
a similar examination was made for the number of mol-
ecules. The standard grid for power-law exponent of 1 /2,
70�50 cells, corresponds to, on average, a total of
121 000 molecules. Two new cases using the same grid were
investigated. These two new cases correspond to 108 000
and 161 000 molecules in the entire computational domain.
As the three cases presented approximately the same results
for the heat transfer, pressure and skin friction coefficients,
hence the standard grid with a total of 121 000 molecules
was considered enough for the computation of the aerody-
namic surface quantities. Again, a similar procedure was per-
formed for the other cases investigated. As a result, a total of
126 000 and 144 000 simulated molecules were used for
power-law exponent cases of 2 /3 and 4 /5, respectively.

In order to obtain a more uniform distribution of simu-
lated particles per cell, a variable time-step method was em-
ployed. Advantages of implementing the variable time-step
scheme are to reduce both the simulated particle numbers
and the number of interactions for transient period towards
steady state, when sampling normally begins in DSMC. In
this fashion, time step changed from 2.8�10−11 to 1.4
�10−6 s. For the cases investigated, 20 000 time steps were
used in order to reach the steady state conditions and
100 000 independent samples, with 4 time steps between in-
dependent samples.

V. FREESTREAM AND FLOW CONDITIONS

The freestream flow conditions used for the numerical
simulation of flow past the leading edges are those given by
Santos and Lewis12 and summarized in Table I and the gas
properties30 are shown in Table II.

The freestream velocity V� is assumed to be constant at
3.56 km /s, which corresponds to freestream Mach number
M� of 12. The wall temperature Tw is assumed constant at

880 K. This temperature is chosen to be representative of the
surface temperature near the stagnation point and is assumed
to be uniform over the bodies. It is important to mention that
the surface temperature is low compared to the stagnation
temperature of the air. This assumption seems to be reason-
able since practical surface material will probably be de-
stroyed if surface temperature is allowed to approach stagna-
tion temperature.

The freestream Knudsen number, Kn�, corresponds to
0.0903, where the characteristic dimension was defined as
being the diameter of the reference circular cylinder �see
Fig. 1�. Finally, the freestream Reynolds number Re� by unit
meter is 21 455.

VI. COMPUTATIONAL PROCEDURE

The problem of predicting thickness, shape, and location
of detached shock waves has been stimulated by the neces-
sity for blunt noses and leading edges configurations de-
signed for hypersonic flight in order to cope with the aero-
dynamic heating. In addition, the ability to predict thickness,
shape and location of shock waves is of primary importance
in analysis of aerodynamic interference. Furthermore, the
knowledge of the shock-wave displacement is also especially
important in waveriders,1 since these hypersonic configura-
tions usually rely on shock-wave attachment at the leading
edge to achieve their high lift-to-drag ratio at high-lift coef-
ficient.

In the present account, the shock-wave structure, defined
by thickness, detachment, and shape of the shock wave, is
predicted by employing a procedure based on the physics of
the particles. In this respect, the flow is assumed to consist of
three distinct classes of molecules: class I molecules denote
those molecules from the freestream that have not been af-
fected by the presence of the leading edge; class II molecules
are those molecules that have collided and been reflected
from the body surface at some time in their past history; and
finally, those molecules that have been indirectly affected by

TABLE I. Freestream and flow conditions.

Parameter Value Unit

Temperature �T�� 220.0 K

Pressure �p�� 5.582 N /m2

Density ���� 8.753�10−5 kg /m3

Viscosity ���� 1.455�10−5 N s /m2

Number density �n�� 1.8209�1021 m−3

Mean free path ��� 9.03�10−4 m

TABLE II. Gas properties.

Parameter O2 N2 Unit

Molecular mass 5.312�10−26 4.65�10−26 kg

Molecular diameter 4.010�10−10 4.11�10−10 m

Mole fraction 0.237 0.763

Viscosity index 0.77 0.74
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the presence of the body are defined as class III molecules.
Figure 3 illustrates the definition for the molecular classes.

It is assumed that the class I molecule changes to class
III molecule when it collides with either class II or class III
molecules. Class I or class III molecules are progressively
transformed into class II molecule when it interacts with the
body surface. Also, a class II molecule remains class II in-
dependently of subsequent collisions and interactions.
Hence, the transition from class I molecules to class III mol-
ecules may represent the shock wave, and the transition from
class III to class II may define the boundary layer.

A typical distribution of class III molecules along the
stagnation streamline for blunt leading edges is displayed in
Fig. 4 along with the definition used to determine the thick-
ness, displacement and shape of the shock wave. In this fig-
ure, X is the distance x along the stagnation streamline, nor-
malized by the freestream mean free path �, and f III is the
ratio of the number of molecules for class III inside the cell
to the total number of molecules inside the same cell. Also,
the flow direction is from left to right side, as defined in
Fig. 2.

In a rarefied flow, the shock wave has a finite region that
depends on the transport properties of the gas, and can no
longer be considered as a discontinuity obeying the classical

Rankine–Hugoniot relations. In this sense, the shock standoff
distance � is defined as being the distance between the shock
wave center and the nose of the leading edge along the stag-
nation streamline. As shown in Fig. 4, the center of the shock
wave is defined by the station that corresponds to the maxi-
mum value for f III. The shock-wave thickness � is defined by
the distance between the stations that correspond to the mean
value for f III. Finally, the shock wave “location” is deter-
mined by the coordinate points given by the maximum value
in the f III distribution along the lines departing from the body
surface, i.e., �-direction as shown in Fig. 2.

The molecule classification that has been adopted here
was first presented by Lubonski40 in order to study the hy-
pervelocity Couette flow near the free molecular flow re-
gime. Lubonski41 divided the gas into three classes of mol-
ecules: “freestream,” “reflected from the boundary” and
“scattered.” Later, for the purpose of flow visualization,
Bird41 applied a similar scheme of classification by identify-
ing the classes by colors: blue for class I, red for class II, and
yellow for class III molecules.

VII. COMPUTATIONAL RESULTS AND DISCUSSION

This section focuses on the effects that take place on the
shock-wave structure due to variations on the leading-edge
shape. In this scenario, the purpose of this section is to dis-
cuss and to compare differences in the thickness, displace-
ment, and shape of the shock wave due to variations on the
power-law exponent n. Nevertheless, having computed mo-
lecular class properties over a wide range of simulation pa-
rameters, it proves instructive to summarize first the major
features of the results related to the class of molecules.

A. Distribution of molecular classes

The distribution of molecules for the three classes along
the stagnation streamline is demonstrated in Figs. 5�a� and
5�b� for power-law exponent n of 1 /2 and 4 /5, respectively.
In this set of figures, f I, f II, and f III are the ratio of the
number of molecules for class I, II, and III, respectively, to
the total amount of molecules inside each cell along the stag-
nation streamline, and X is the distance x along the stagna-
tion streamline normalized by the freestream mean free path
�. Again, the flow direction is from left to right as defined
in Fig. 2. The distributions for the other power-law cases,
intermediate to those shown in Figs. 5�a� and 5�b�, will not
be shown.

Of great significance in these figures is the behavior of
the molecules around sharp and blunt leading edges. It
should be noticed that molecules from freestream, repre-
sented by class I molecules, do not reach the nose of the
leading edge for the n=1 /2 case. This behavior is shown in
Fig. 5�a�, which represents a blunt leading edge. In contrast,
molecules from freestream collide with the nose of the lead-
ing edge for the n=4 /5 case, even after the establishment of
the steady state. This situation is illustrated in Fig. 5�b�,
which represents a sharp leading edge.

Before proceeding with the shock wave structure analy-
sis, it is desirable to present the distribution of the molecular
classes adjacent to the leading edge surfaces. In this way,

FIG. 3. Drawing illustrating the classification of molecules.
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FIG. 4. Drawing illustrating the shock wave structure.
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particular attention is paid to the power-law exponents of
1 /2 and 4 /5, the bluntest and the sharpest leading edges
investigated.

Molecular class contours are displayed in Figs. 6�a�–6�c�
for class I, II, and III, respectively. In this set of diagrams,
molecular class distribution for power-law exponent of 1 /2,
displayed on the upper part of the figures, is compared to that
for power-law exponent of 4 /5, shown on the lower part of
the figures.

Important features can be observed in Figs. 6�a�–6�c�.
From Fig. 6�a�, it is seen that the molecules for class I
reaches the surface of the leading edge only at the stagnation
region for power-law exponent of 4 /5, in contrast to power-
law exponent of 1 /2. As a result, the heat flux to the nose of
the leading edge for the n=4 /5 case is more severe as that
for the n=1 /2 case, as shown by Santos and Lewis.12

The region defined by class II molecules is related to the
boundary layer on the body surface. In this respect, it is
clearly seen from Fig. 6�b� that the boundary layer for the
n=1 /2 case is larger than that for the n=4 /5 case, as would
be expected since the leading edge defined by the n=4 /5
case is more streamlined than that for the n=1 /2 case.

Class III molecules represent the effect of the presence

of the leading edge that is propagated in the off-body direc-
tion. According to Fig. 6�c� the upstream disturbance along
the stagnation streamline is more significant for blunt leading
edge than that for sharp leading edge, as would be expected
too.
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FIG. 5. Distributions of molecules for classes I, II, and III along the stag-
nation streamline for power law exponents of �a� 1 /2 and �b� 4 /5.
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FIG. 6. Comparison of molecular class distribution adjacent to the body
surface for power law exponents of 1 /2 �upper part� and 4 /5 �lower part�.
Class �a� I, �b� II, and �c� III.
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B. Shock-wave standoff distance

Referring to the definition introduced in Fig. 4, the shock
standoff distance � can be observed in Fig. 5 for the power-
law leading edges shown. The calculated shock standoff dis-
tance �, normalized by the freestream mean free path � is
tabulated in Table III for the cases investigated. It is apparent
from these results that there is a discrete shock standoff dis-
tance for the cases shown. As would be expected, the shock
standoff distance decreases with increasing the power-law
exponent n. As a reference, the shock-wave standoff distance
for the bluntest leading edge case, n=1 /2, is around 4.1
times larger than that for n=4 /5.

According to Santos and Lewis,18 the round leading edge
�circular cylinder�, shown in Fig. 1, provides a shock detach-
ment � /� of 1.645 at the same flow conditions. For com-
parison purposes, this value is about 2.4 and 10 times larger
than the cases corresponding to n of 1 /2 and 4 /5, respec-
tively. The results confirm the expectation that the shock
standoff distance for sharp leading edge is smaller than that
for blunt leading edge. In fact, power-law leading edges be-
have as if they had a sharper profile than the representative
circular cylinder.

It should be emphasized that shock standoff distance be-
comes important in hypersonic vehicles such as waveriders,
which depend on the leading edge shock attachment to
achieve their high lift-to-drag ratio at high lift coefficient.
Nonetheless, smaller shock detachment distance is associated
with a higher heat load to the nose of the body. The heat
transfer coefficient Ch�=2qw /��V�

3 � at the stagnation point
for power-law leading edges with n of 1 /2 and 4 /5 is 1.5
and 3.4 times larger than the heat transfer coefficient for the
circular cylinder42 at the same conditions.

C. Shock-wave thickness

Based on the definition of the shock-wave thickness
shown in Fig. 4, the shock-wave thickness � along the stag-
nation streamline can be obtained from Fig. 5 for the leading
edge shapes. As a result of the calculation, Table IV tabulates
the shock-wave thickness �, normalized by the freestream
mean free path �, for the cases investigated.

Referring to Table IV, the shock-wave thickness for the
bluntest leading edge case, n=1 /2, is around 3 times larger
than that for n=4 /5.

In what follows, the reference circular cylinder42 pro-
vides a much larger shock thickness, � /� of 3.350 at the
same flow conditions. Compared to power-law leading
edges, this value is about 2.1 and 6.4 times larger than the
cases corresponding to power-law exponents of 1 /2 and 4 /5,
respectively.

D. Shock-wave shape

The shock-wave shape, defined by the shock-wave cen-
ter, is obtained by calculating the position that corresponds to
the maximum f III in the �-direction along the body surface
�see Fig. 4�.

Figures 7�a�–7�c� illustrate the shock-wave shape at the
vicinity of the leading edge noses for power-law shapes de-
fined by n of 1 /2, 2 /3, and 3 /4, respectively. In this set of
plots, X and Y are the Cartesian coordinates x and y normal-
ized by �.

It was pointed by Lees and Kubota4 that flow similarity
is possible for a class of bodies of the form xn. In the more
general case for 0�n�1, the shock wave grows like xm.
When n grows from zero, m begins by keeping the constant
value m=2 /3, and if n keeps on growing towards one, m
remains equal to n. The similarity solutions are obtained by
assuming the hypersonic slender body approximations.21

Consequently, they are not valid near the nose of the leading
edge where the approximations are violated. At or near the
nose, the surface slope, the curvature and higher derivatives
are infinite and, therefore, the similarity solutions break-
down.

It is very encouraging to observe that the Lees and
Kubota4 findings were obtained by considering the con-
tinuum assumptions. Although the present account considers
shock wave in the transitional flow regime, i.e., between the
continuum flow regime and the free molecular flow regime,
it becomes instructive to verify if the shock-wave shape on
power-law body in this flow regime follows the same behav-
ior of that in the continuum flow regime. Hence, a fitting
process is performed over the coordinate points yielded by
DSMC simulations in order to approximate the shock-wave
shapes by the following form:

y = A�x + B�m, �5�

where A is the power-law constant of the curve fit, B is the
distance from the nose of the leading edge, and m is the
power-law exponent of the curve fit, i.e., the shock-wave
power-law exponent.

Curve-fit solutions for shock-wave shape over power-
law leading edges given by n of 1 /2 and 2 /3 are displayed in
Figs. 8�a� and 8�b�. In this set of diagrams, n represents the
shock wave yielded by the DSMC solution and m the curve-
fit solution. In addition to that, the curve-fit solutions shown
were obtained according to Eq. �5� by three different forms:
�1� A and B were found by keeping m equal to the body
shape, m=n; �2� A, B and m were found in order to obtain
the best fit; finally �3� A and B were found by keeping m
=2 /3, the exponent that it is expected that the shock wave
would grow, according to the theory �Lees and Kubota4�.
Moreover, the fitting process is performed over the coordi-

TABLE III. Dimensionless shock-wave standoff distance � /� for the
power-law leading edges.

n 1 /2 3 /5 2 /3 7 /10 3 /4 4 /5

� /� 0.678 0.459 0.343 0.305 0.231 0.165

TABLE IV. Dimensionless shock-wave thickness � /� for the power-law
leading edges.

n 1 /2 3 /5 2 /3 7 /10 3 /4 4 /5

� /� 1.586 1.110 0.887 0.790 0.642 0.524
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nate points located far from the stagnation region �say
X�3.0�, where it is expected that the blunt nose effects are
no more important.

Referring to Figs. 8�a� and 8�b�, the curves defined by
m=0.670 and 0.764 represent the second form of the curve

fit solutions mentioned above. It is apparent from this set of
figures that the curve-fit solutions present a good agreement,
by visual inspection, with those solutions provided by the
DSMC simulation. Nevertheless, as the maximum absolute
error between the DSMC solutions and the curve fit solutions
are calculated for coordinate points located at X�3.0, it is
found that the curve fit obtained by the second form of the
fitting process presents a slightly better fit, i.e., when A, B,
and m were found in order to yield the best solution. The
error is less then 1.0% for the curves shown in Figs. 8�a� and
8�b�.

According to Fig. 8�a�, it is clearly seen that the curve-fit
solution given by m=n=1 /2 do not match the shock-wave
shape obtained by the DSMC simulation, as predicted by the
hypersonic small-disturbance theory. In contrast, the two
other curve-fit solutions, m=2 /3 and m=0.670 present an
excellent agreement with those solutions provided by the
DSMC simulation. Once again, the curve-fitted solution de-
viates from the DSMC solution close to the nose of the lead-
ing edge, as would be expected.

Curve-fit solutions for shock-wave shape over power-
law leading edges given by n of 3 /4 and 4 /5 are displayed in
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Figs. 9�a� and 9�b�. For comparison purpose, two forms of
the curve fit were considered in defining the shock shape: �1�
A, B, and m were found to provide the best curve-fit solu-
tions, and �2� A and B were found by keeping m=n for
n�2 /3 cases, where again n and m account for body and
shock-wave power-law exponents, respectively. It is apparent
from this set of diagrams that the curve-fit solutions present
a good agreement, by visual inspection, with those solutions
provided by the DSMC simulation.

In general, as indeed is clear from the DSMC results, the
solutions are in good qualitative agreement with the Lees and
Kubota4 findings in the sense that the shock-wave shape fol-
lows the shape of the body for body power-law exponent
n�2 /3. It should be emphasized that the curve-fit exponents
are very sensitive to the number of coordinate points, which
define the shock wave shape, used in the fitting process.

At this point it is worth taking a closer look at the shock-
wave shape at the vicinity of the leading-edge nose. In this
region, the shock-wave shape is not correctly predicted by
the theoretical solutions, since the hypersonic slender body
approximations are violated close to or at the nose of the
leading edges, as explained earlier.

Before proceeding with the analysis, it is desirable to

point out some interesting features, presented in the litera-
ture, related to the shock-wave shape at the vicinity of
the leading-edge nose for blunt body in the continuum flow
regime.

It is usually accepted without question that curved shock
wave supported by a blunt-nosed body introduces vorticity in
the flowfield between the body and the shock wave. In this
context, by investigating two-dimensional, inviscid, and per-
fect gas assumptions power-law leading edges, therefore in
the continuum regime, O’Brien43 observed that vorticity im-
mediately behind a power-law shock wave approaches minus
infinity for power-law exponents m�2 /3. Consequently, if
power-law body ��xn� produces power-law shock wave
��xm� at the vicinity of the leading-edge nose, then for the
body exponent range of n�2 /3, the shock-wave exponent
should be m�2 /3 in order to avoid infinity vorticity behind
the shock wave.

According to Mason and Lee,3 the radius of curvature
for power-law shapes, obtained from the general formula for
the longitudinal radius of curvature, goes to infinity at the
nose �x→0� for values of 0�n�1 /2, approaches zero for
values of 1 /2�n�1, and is finite for n=1 /2. For the
n=1 /2 case, the radius of curvature is equal to a2 /2, where a
is the body power-law constant defined in Eq. �2�.

From Schlieren photographs obtained for flat plates in
hypersonic flow, Vas et al.44 found that a power-law shock
wave with exponent of 0.49 offered the best fit on a flat plate
with a square leading edge, and a power-law shock wave
with exponent of 0.50 provided the best fit for a flat plate
with a round leading edge. McCarthy et al.45 reported an
experimental study of wakes behind a circular cylinder in
supersonic flow and also found a power-law shock-wave
with exponent of 0.516. Zapata et al.46 studied high Mach
number and low Reynolds number flow over a two-
dimensional circular cylinder experimentally, and identified
best fits power-law shock-waves with exponents of 0.517
and 0.494 for an uncooled and cooled model, respectively.
These experiments represent flows at conditions and geom-
etries that are very different from those chosen here, but they
indicated a tendency towards parabolic shock waves. This
supports the conclusion that the exponent of 1 /2 is preferred
for the shock-wave shape near the stagnation streamline for
blunt bodies in the continuum flow regime.

Selected in order to elucidate the requirements posed on
the shock-wave shape at the vicinity of the leading-edge
nose, these discussed features suggest that, at least at first
sight, the shock-wave shape for power-law blunt body in the
present account might be a power-law shape that grows with
m=0.5 close to the stagnation streamline. In this sense, vor-
ticity might be satisfied and the radius of curvature would be
finite.

With this perspective in mind, a fitting process is per-
formed over the coordinate points yielded by DSMC simu-
lations in order to approximate the shock-wave shapes, at the
vicinity of the leading-edge nose, according to Eq. �5� with
m=0.5. Figures 10�a�–10�c� illustrate the curve-fit solutions
for n of 1 /2, 2 /3, and 3 /4, respectively.

Referring to Figs. 10�a�–10�c�, it is clearly noticed that
the curve-fit solutions present an excellent agreement with
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those solutions provided by the DSMC simulation. As a re-
sult, the shock-wave shape at the vicinity of the leading-edge
nose is described by a power-law form with exponent
m=0.5. Therefore, the qualitative findings regarding shock-
wave shape in the continuum flow regime seem to hold for
the simulation results investigated here in the transitional
flow regime.

It should also be mentioned in this context that no
unique power-law exponent has been found that describes
the shock-wave shape in the total length of the leading edges
investigated. The results indicate that the shock-wave shape
is best represented by at least two power-law exponents m.
One of them is applied to the region near the nose of the
leading edge, where the effects of the blunt nose are impor-
tant. The other one represents the region where the bluntness
effects are no longer important, as predicted by the classical
analytical solution.

VIII. CONCLUDING REMARKS

This study applies the direct simulation Monte Carlo
�DSMC� method to assess the impact on the shock-wave
structure due to variations on the shape of power-law leading
edges. The calculations provided information concerning the
nature of the shock-wave shape, shock-wave thickness, and
shock-wave detachment distance resulting from variations on
the body shape for the idealized situation of two-dimensional
hypersonic rarefied flow.

The computational results indicated that the shock-wave
shape grows like xm for power-law leading edges. It was
found that, at the vicinity of the nose, the shock-wave power-
law exponent is 1 /2. In addition, the shock-wave shape con-
firmed the finding predicted by the hypersonic small distur-
bance theory in that the shape of the shock wave follows the
shape of the body far from the nose of the leading edge,
provided the body power-law exponent is larger than 2 /3.
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