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Abstract. Radiative transfer is the main phenomenon in the basis of several relevant problems of scientific and technologi-
cal interest. Examples of application of the mathematical and computational modelling of such phenomenon can be found
in astronomy, environmental sciences, engineering and medicine among many different areas. The integro-differential
equation known as Boltzmann equation describes mathematically the interaction of the radiation with the participating
medium, i.e. a medium which may absorb, scatter and emit radiation. Several methods have been developed for the
solution of the Bolztmann equation. In the present work we present a comparison of the solutions obtained for the one-
dimensional problem with four different methods: (i) Monte Carlo (MC) method; (ii) Discrete Ordinates method (SN )
combined with a finite difference approximation; (iii) Analytical Discrete Ordinates method (ASN ); and (iv) Laplace
Transform Discrete Ordinates method (LTSN ). Our final objective is to solve the inverse radiative transfer problem and
for that purpose we want to investigate methods that may provide accurate and fast solutions for the direct problem.

Keywords: : Radiative transfer, Boltzmann equation, Monte Carlo method, Discrete Ordinates Method, Laplace Trans-
form Discrete Ordinates Method.

1. INTRODUCTION

The formulation and solution of direct and inverse radiative transfer problems are directly related to several relevant
applications in a large number of areas of scientific and technological interest such as tomography (Kim and Charette,
2007, Carita Montero et al., 2004), remote sensing and environmental sciences (Spurr et al., 2007, Verhoef and Bach,
2003, Hanan, 2001, Fause et al., 2001), and radiative properties estimation (Sousa et al., 2007, Silva Neto et al., 2007,
Zhou et al., 2002), among many others.

Many approaches have been developed for the solution of such problems. Hansen and Travis (1974) and Lenoble
(1977) provided excellent reviews on the methods for the solution of the direct radiative transfer problem, and McCormick
(1992) did the same with respect to the inverse problem.

In recent years it has been observed a growing interest towards the stochastic Monte Carlo method for the solution
of the direct problem (Maurente et al., 2007, Chen and Liou, 2006, Battaglia and Mantovani, 2005, Postylyakov, 2004,
2004a), as well as towards variations of the Discrete Ordinates Method (Çayan and Selçuk, 2007, Chalhoub, 2003, 2005)
which was originally proposed by Wick (1943) and Chandrasekhar (1944, 1950). Moreover, some researchers have
performed comparisons of different solution strategies in order to identify accurate and fast methods to be used both in
the direct and inverse radiative transfer problems (Jensen et al., 2007, Bulgaretti and Doyle, 2004, Chalhoub et al., 2003).

In the present work we present a comparison of the solutions obtained for the direct radiative transfer problem in
one-dimensional homogeneous and gray participating media with isotropic scattering using four different methods: (i)
a Monte Carlo (MC) method; (ii) the Discrete Ordinates Method combined with a finite difference approximation, here
denominated SMDO (Single Mesh Discrete Ordinates); (iii) the Analytical Discrete Ordinates method (SNA); and (iv)
the Laplace Transform Discrete Ordinates Method (LTSN).

Our main objective is to investigate methods that can provide accurate and fast solutions for the direct problem in
order to be used in the solution of the inverse radiative transfer problem.
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2. THE TEST PROBLEM

In this work we consider a one-dimensional gray homogeneous, participating medium of optical thickness τ0, with
transparent boundary surfaces which are subjected to external radiation. It is assumed that the emission of radiation by
the medium due to its temperature is negligible in comparison to the intensity of the external incoming radiation. Also the
effects of possible differences on the refractive indices of the participating medium and surrounding environment are not
taken into account. Our equation of transfer for such problem considering azymuthal symmetry and isotropic scattering
within the medium is then given by (Özişik, 1973, Silva Neto and Moura Neto, 2005)

µ
∂

∂τ
I(τ, µ) + I(τ, µ) =

$

2

∫ 1

−1

I(τ, µ′)dµ′, τ ∈ (0, τ0), µ ∈ [−1, 1], $ ∈ [0, 1] (1)

subject to the boundary conditions

I(0, µ) = f1(µ), µ > 0, and I(τ0, µ) = f2(µ), µ < 0, (2)

where I(τ, µ) denotes the intensity (radiance) of the radiation field, τ the optical variable, µ the cosine of the polar angle,
$ the albedo for single scattering, and f1 and f2 the intensity of the isotropic external sources of radiation incident at
τ = 0 and τ = τ0, respectively.

In order to solve the direct problem described by Eqs. 1 and 2, we use a Monte Carlo (MC) method and three variations
of the Discrete Ordinates Method, originally proposed by Wick (1943) and Chandrasekhar (1944, 1950): SMDO - Single
Mesh Discrete Ordinates; ASN - Analytical Discrete Ordinates; and LTSN - Laplace Transform Discrete Ordinates.
These four methods, whose corresponding computational codes are referred to as MCPP, SMDO, PEESNA and LTSN,
respectively, are described in the following sections.

3. THE MC METHOD

We present a summary of a Monte Carlo method that was based on the works of Cashwell and Everett (1959) and of
Carter and Cashwell (1975). In this method, we adopted a physical approach that describes the transfer of radiation by
following the history of many individual photons that are generated to represent a light source, until they are absorbed or
escape the scattering medium. Quantities describing the photon initial position, the photon trajectories (such as direction
of original emission, direction following scattering, and path length between interactions), and quantities describing
interaction types (absorption or scattering) may be considered as random variables, each being characterized by some
probability density function. In the following paragraphs, we show how to sample each one of the above mentioned
quantities in order to track a photon as it penetrates into the considered medium.

The first required quantities are the position and direction of original emission (point sources), given in terms of the
Cartesian coordinates x0, y0 and z0 and the polar coordinates θ0 and φ0, with which we can calculate the first set of
direction cosines

Ωx0 = sin θ0 cosϕ0, Ωy0 = sin θ0 sinϕ0, and Ωz0 = cos θ0, (3)

that are needed to determine the photon position at first collision.
The sampling of the photon paths length, performed by calculating the probability of a collision between the distances

l and l+dl along its line of flight, is given by

p(l)dl = e−σtlσtdl, (4)

where p(l) denotes the probability density function and σt the attenuation coefficient of the medium, which is interpreted
as the probability per unit length of a collision. After setting

Rτ =
∫ l

0

e−σtsσtds = 1− e−σtl, (5)

where R is the probability distribution function, we obtain the equation for the distance to collision, in optical length τ , as

l = − 1
σt

ln(1−Rτ ) = − 1
σt

lnRτ , =⇒ τ = lσt = − lnRτ . (6)

The new position can now be calculated by

x2 = x1 + τΩx1 , y2 = y1 + τΩy1, and z2 = z1 + τΩz1, (7)
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where the subscripts 1 and 2 refer to the photon positions at subsequent collisions. With these new positions at hand, we
are able to determine whether the particle is still within the system or escaped from it, in which case the sampling process
is terminated.

In sampling the interaction types we define the probabilities

p1 = $ =
σs
σt

and p2 =
σa
σt
, with σt = σs + σa, (8)

where $ denotes the single scattering albedo (or the probability of photon survival), σs the scattering coefficient and σa
the absorption coefficient, and by drawing a random number R$ we are able to determine the interaction type. So we let
the interaction be an absorption event, considering the particle eliminated from the system and consequently the sampling
process is terminated, when

R$ ≥ $, (9)

otherwise the interaction results in scattering.
The sampling of the scattering direction permits the estimation of the scattering angle through the use of the phase

function β̃(θ, φ). Here we consider that the phase function is only dependent on the scattering angle θ and that the
azimuthal angle φ is uniformly distributed on the interval from 0 to 2π. Thus θ and φ become independent random
variables that can be sampled separately. We also consider isotropic scattering, thus β̃(θ) = 1/4. So by setting

Rµ = 2π
∫ µ

−1

β̃(θ)dµ′, (µ = cos θ), and Rφ =
1

2π

∫ φ

0

dφ′, (10)

we obtain

cos θ = 2Rµ − 1 and φ = 2πRφ. (11)

The new sets of direction cosines can now be calculated by the equations

Ωx2 = sin θ cosφ, Ωy2 = sin θ sinφ, and Ωz2 = cos θ, (12)

The above sampling processes are repeated until the photon is absorbed or escapes the system under investigation.
Radiometric quantities are computed by a suitable counting of photons through simulated detectors (counters) that are
placed on the boundaries and layer interfaces. So by counting photons I±c (τ,∆µ) traveling at a given location τ and
within a given polar angle interval ∆µ, we are able to estimate the average radiance

I(τ,±µ) =
S

H

I±c (τ,∆µ)
2π|µ||∆µ|

, (13)

where S denotes the total source rates and H the number of photon histories, for µ ∈ [−1, 0) and (0, 1], with µ averaged
within the interval ∆µ.

4. THE SMDO METHOD

This method consists on a combination of the Discrete Ordinates Method with the finite difference method. First the
angular domain is discretized as shown in Fig. 1, and the spatial domain is discretized as shown in Fig. 2.

Figure 1. Angular domain discretization.
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Figure 2. Spatial domain discretization.

The radiation intensities in the angular and spatial discretized domain are represented by

Iim = I(τi, µm), with τi = (i− 1)∆τ, i = 1, 2, . . . , N and m = 1, 2, . . . ,M, ∆τ =
τ0

N − 1
. (14)

The integral term on the right hand side of Eq. (1) is replaced by a Gauss-Legendre quadrature,

qi =
$

2

∫ 1

−1

I(τ, µ′)dµ′ ≈ $

2

Nq∑
n=1

anI
i
n (15)

where an, n = 1, 2, . . . , Nq , are the weights of the quadrature. The values of µm,m = 1, 2, . . . ,M (M = Nq), used in
the angular domain discretization shown in Fig. 1, are the corresponding collocation points of the quadrature used.

Considering a forward and a backward finite difference discretizations of the first term on the left hand side of Eq. (1)
given, respectively, by

∂I(τ, µ)
∂τ

∣∣∣
(τi,µm)

=
Ii+1
m − Iim

∆τ
and

∂I(τ, µ)
∂τ

∣∣∣
(τi,µm)

=
Iim − Ii−1

m

∆τ
, (16)

and from Eqs. (1) and (14)–(15) we obtain

Ii+1
m =

(
1− ∆τ

µm

)
Iim +

∆τ
µm

qi and Ii−1
m =

(
1 +

∆τ
µm

)
Iim −

∆τ
µm

qi. (17)

We performed forward (up to node N ) and backward (back to node 1) sweeps, using the discrete boundary conditions
expressed as

I1
m = f1(µm), m = 1, 2, . . . ,

M

2
and INm = f2(µm), m =

M

2
+ 1,

M

2
+ 2, . . . ,M, (18)

considering the following stopping criterion∣∣∣(Iim)k+1 − (Iim)k
∣∣∣ < ε, with i = 1, 2, . . . , N and m = 1, 2, . . . ,M, (19)

where ε is a prescribed tolerance and k is the iteration index.

5. THE ASN METHOD

In this section, we present a summary of an improved version of the analytical discrete-ordinates method that has
been the subject of some recent works (Barichello and Siewert, 1999; Barichello et al., 2000; Chalhoub and Garcia,
2000; Siewert, 2000). In particular, the method incorporates some recently developed techniques for finding particular
solutions (Barichello et al., 2000; Siewert, 2000) and dummy-node inclusion (Chalhoub and Garcia, 2000) as its angular
interpolation technique. Note that we only present here a simplified version for treating the type of problems described in
section 2..

To define our discrete-ordinates version of the problem posed by Eqs. (1) and (2), we begin by introducing a quadrature
of order Nq with nodes {µj} and weights {aj} to approximate the integral in Eq. (1). The selected quadrature scheme
is the double quadrature of order Nq = 2n obtained by applying a standard Gauss-Legendre scheme of order n to each
of the half-intervals [0, 1] and [−1, 0]. Then we set µ = µj , j = 1, 2, . . . , Nq , in the resulting equations to find the
discrete-ordinates equations

µj
d
dτ
I(τ, µj) + I(τ, µj) =

$

2

Nq∑
i=1

aiI(τ, µi), j = 1, 2, . . . , Nq, (20)
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and the boundary conditions

I(0, µj) = f1(µj), j = 1, 2, . . . , n, and I(τ0, µj) = f2(µj), j = n+ 1, n+ 2, . . . , Nq. (21)

Note that the nodes of the quadrature scheme are ordered in such a way that the first n nodes are positive and the remaining
n are negative.

Making use of the elementary solutions of the discrete-ordinates equations and their orthogonality property developed
in Barichello et al. 2000), we can write the general discrete-ordinates solution of order Nq to the problem formulated by
Eqs. (20) and (21) as

I(τ, µj) =
n∑
k=1

AkΦ(νk, µj)e−τ/νk +
Nq∑

k=n+1

BkΦ(−νk, µj)e−(τ0−τ)/νk (22)

for j = 1, 2 . . . , Nq . The elementary solutions Φ(νk, µj) and Φ(−νk, µj) in Eq. (22) are, respectively, the jth components
of the eigenvectors Φ(νk) and Φ(−νk), associated, respectively, with the eigenvalues 1/νk and −1/νk. Finally the
coefficients {Ak} and {Bk} are the solutions to the linear system of Nq algebraic equations obtained by imposing that
the general solution expressed by Eq. (22) satisfies the boundary conditions expressed by Eqs. (21)

n∑
k=1

AkΦ(νk, µj) +
Nq∑

k=n+1

BkΦ(−νk, µj)e−τ0/νk = I(0, µj), (23a)

for j = 1, 2, . . . , n, and

n∑
k=1

AkΦ(νk, µj)e−τ0/νk +
Nq∑

k=n+1

BkΦ(−νk, µj) = I(τ0, µj), (23b)

for j = n + 1, n + 2, . . . , Nq . We conclude this summary by pointing out that once the linear system formulated by
Eqs. (23) is solved for {Ak} and {Bk}, we can evaluate Eq. (22) for any τ ∈ [0, τ0].

6. THE LTSN METHOD

The LTSN scheme appeared in the early nineties in the neutron transport context [1], and was then extended to
radiative transfer problems [30]. Its convergence was established using the C0-semi group theory [30]. This method
applies the Laplace transform on the radiative transfer discrete ordinates equation, Eq. (20). This yields a system of
algebraic equations on s:

sI
m

(s) +
1
µj
I
m

(s) =
$

2µj

N∑
i=1

aiI
m

(s) + Imj (0) (24)

here: I
m

(s) ≡
∫∞
0
Im(τ)e−sτ dτ . The matrix form of equation (24) becomes

M
m

N (s) I
m

(s) = Im(0) , being : M
m

N (s) = sI +Am (25)

where the N -order matrix M
m

N (s) is called the LTSN matrix, and I is the N -order identity matrix. The entries of the Am

matrix are given by

Am(i, j) =


1
µj
− $aj

2µj
, if i = j,

−$ai
2µj

, if i 6= j.
(26)

In order to solve the matrix equation (25), it must be multiplied by the inverse matrix of M
m

N (s), as follows

I
m

(s) =
[
M

m
(s)
]−1

Im(0) ⇔ I
m

(s) = B
m

(s) Im(0) , (27)

applying the Laplace inverse transform yields

I m(τ) = B m(τ)Im(0) , with : Bm(τ) ≡ L−1
[
B
m

(s)
]
. (28)
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Matrix inversion is usually expensive. The diagonalization method (see [31]) takes advantage of the fact that the LTSN
matrix, Equation (28), is non-degenerate, i.e. all eigenvalues are distinct, and therefore Am can be diagonalized

Am = Xm Dm (Xm)−1 (29)

where Dm is a diagonal matrix containing the eigenvalues of Am, and Xm is the corresponding eigenvectors matrix.
Therefore, the matrix B can be expressed as

Bm(τ) = L−1
[
(sI +Am)−1

]
= XmL−1

[
(sI +Dm)−1

]
(Xm)−1 = Xm eD

mτ (Xm)−1 , (30)

substituting Eq. (30) into Eq. (28), yields

I m(τ) = XmeD
mτ (Xm)−1Im(0) = Xm

[
ed

+τ 0
0 ed

−τ

]m
(Xm)−1Im(0) (31)

where d+ e d− are positive and negative eigenvalues, respectively.
The method, as described in Eqs. (28) does not work, due to the numerical overflow for large slab thicknesses and/or

large values of N . This feature can be avoided by changing the variables [18]. Equation (31) can be writen as follows

I m(τ) = Xm

[
ed

+(τ−τ0) 0
0 ed

−τ

]m [
ed

+τ0 0
0 1

]m
(Xm)−1Im(0) = Bm(τ)ξm(0) (32)

where:

Bm(τ) = Xm

[
ed

+(τ−τ0) 0
0 ed

−τ

]m
; and : ξm(0) =

[
ed

+τ0 0
0 1

]m
(Xm)−1Im(0). (33)

Equation (32) can also be represented by block matrices:[
I1(τ)
I2(τ)

]m
=
[
B11(τ) B12(τ)
B21(τ) B22(τ)

]m [
ξ1(0)
ξ2(0)

]m
(34)

with indexes 1 and 2 pointing to either right and left directions of radiances, respectively. This equation can be applied at
the position τ = τ0, allowing to compute the unknown values [I1(0)]m for completing the LTSN solution.

7. NUMERICAL RESULTS

Due to the good performance of the ASN method in the comparisons of radiances generated by selected methods that
was performed in a previous work (Chalhoub et al., 2003), we decided to use its generated results as reference values for
the comparisons to be performed in this work.

Four problems, whose parameters are shown in Tab. 1, were chosen to perform the required comparisons. Besides
these parameters we considered a quadrature order Nq = 20 for the SMDO, PEESNA and LTSN codes. In Table 2, we
show the reference values which are the radiances I(0, µ) and I(τ0, µ) at selected values of µ (M = 20), generated by
the PEESNA code for the chosen problems.

Table 1. Parameters used to define the problems.

Parameter Meaning
Problem

1 2 3 4
$ single scattering albedo 0.1 0.1 0.9 0.9
τ0 optical thickness of the layer 0.5 5.0 0.5 5.0
f1 intensity of external source at τ = 0 1.0 1.0 1.0 1.0
f2 intensity of external source at τ = τ0 0.0 0.0 0.0 0.0

We note that a critical parameter in MCPP and SMDO codes had to be adjusted before performing the comparisons.
For MCPP the critical parameter is the number of photon histories H and for SMDO it is the number of points in the
spatial grid N . The greater the value of these parameters the more precise are the resulting radiances when compared to
the reference values. Table (3) shows for MCPP the number of photon histories H , where, for example, 1K= 103 and
1M= 106 histories, and for SMDO the grid points N , used to reach the established precision. This table only shows the
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Table 2. Radiation intensity I(0, µ) and I(τ0, µ) generated by PEESNA for the chosen problems.

µ Problem 1 Problem 2 Problem 3 Problem 4
0 τ0 0 τ0 0 τ0 0 τ0

−.9983 1.2023E−2 0.0 1.6460E−2 0.0 1.6997E−1 0.0 4.1359E−1 0.0
−.9830 1.2317E−2 0.0 1.6764E−2 0.0 1.7406E−1 0.0 4.1812E−1 0.0
−.9426 1.2873E−2 0.0 1.7333E−2 0.0 1.8180E−1 0.0 4.2639E−1 0.0
−.8765 1.3750E−2 0.0 1.8208E−2 0.0 1.9397E−1 0.0 4.3865E−1 0.0
−.7864 1.5047E−2 0.0 1.9460E−2 0.0 2.1190E−1 0.0 4.5529E−1 0.0
−.6750 1.6937E−2 0.0 2.1206E−2 0.0 2.3786E−1 0.0 4.7683E−1 0.0
−.5451 1.9725E−2 0.0 2.3639E−2 0.0 2.7578E−1 0.0 5.0408E−1 0.0
−.4003 2.3970E−2 0.0 2.7110E−2 0.0 3.3240E−1 0.0 5.3823E−1 0.0
−.2446 3.0686E−2 0.0 3.2347E−2 0.0 4.1782E−1 0.0 5.8140E−1 0.0
−.0823 4.1229E−2 0.0 4.1435E−2 0.0 5.2819E−1 0.0 6.3885E−1 0.0

.0823 1.0 2.1375E−2 1.0 6.6726E−5 1.0 3.1047E−1 1.0 2.3734E−2

.2446 1.0 1.3295E−1 1.0 8.3119E−5 1.0 4.3493E−1 1.0 2.9994E−2

.4003 1.0 2.8155E−1 1.0 1.1019E−4 1.0 5.4492E−1 1.0 3.6249E−2

.5451 1.0 3.9250E−1 1.0 2.0825E−4 1.0 6.2029E−1 1.0 4.2794E−2

.6750 1.0 4.7044E−1 1.0 6.0521E−4 1.0 6.7145E−1 1.0 4.9672E−2

.7864 1.0 5.2516E−1 1.0 1.5370E−3 1.0 7.0675E−1 1.0 5.6675E−2

.8765 1.0 5.6350E−1 1.0 2.9783E−3 1.0 7.3123E−1 1.0 6.3347E−2

.9426 1.0 5.8977E−1 1.0 4.6397E−3 1.0 7.4788E−1 1.0 6.9123E−2

.9830 1.0 6.0657E−1 1.0 6.1245E−3 1.0 7.5849E−1 1.0 7.3484E−2

.9983 1.0 6.1547E−1 1.0 7.0790E−3 1.0 7.6410E−1 1.0 7.6038E−2

Table 3. Critical parameters and CPU times (s).

Problem
MCPP SMDO

H CPU (s) N

1 1M 1.5 50
2 100M 266.0 1000
3 10M 1.5 10
4 1M 53.0 200

CPU times for the MC method, as for the other methods the CPU times are less than 0.1 seconds. Note that the codes
were executed on an IBM compatible personal computer equipped with a Pentium M 1.7GHz processor.

To illustrate how the critical prameters were chosen, Fig. 3 shows results obtained by running problem-3 with MCPP
and SMDO codes using four different values of H and N , respectively. The E values, shown in this figure, represent a
global percent deviation that were calculated by a modified version of the Euclidean metric equation

E =
100
M

√√√√ M∑
i=1

(
pi − qi
qi

)2

, (35)

where pi, i = 1, 2, . . . ,M , denote the radiances generated with a given critical value and qi, i = 1, 2, . . . ,M , those
generated with a higher critical value. We also note that for the performed comparisons we chose the critical values that
generated results with E ≤ 1%.

In Figs. 4–5 we show the radiances generated by the four codes, as well as the E values that represent the global
percent deviation in the radiances generated by each one of the codes from the reference values generated by the PEESNA
code.

8. CONCLUSIONS

From the comparisons of the radiance generated by MCPP, SMDO, PEESNA, and LTSN codes, we conclude the
following:

• As expected, the Monte Carlo method is the most expensive numerical procedure when compared with deterministc
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techniques.

• The SMDO code requires some analyses to find out the ideal critical parameter, needing a preprocessing scheme.

• ASN and LTSN are semi-analytical methods and their solutions are exact for the space variable, as there are no
intrinsic truncated errors.

The inverse radiative transfer problems can be formulated as an optimization problem, where implicit procedure can be
used. Such strategy requires the solution of the forward problem many times up to convergence, therefore one important
feature is to identify the most accurate and fast solutions for the direct problem. The results shown here allow us to say
that any one of the used codes: SMDO, PEESNA, and LTSN, is a good choice for these requirements, considering an
isotropic and homogenous medium, and without a source term. However, if someone is interested in testing some inverse
procedures, one can use the Monte Carlo method output to represent the experimental measurements of minimizing the
inverse crime.

Figure 3. Radiance generated by MCPP and SMDO with $ = 0.9 and τ0 = 0.5.

Figure 4. Radiance generated by the four codes with $ = 0.1 and τ0 = 0.5 and 5.0.
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Figure 5. Radiance generated by the four codes with $ = 0.9 and τ0 = 0.5 and 5.0.
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