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Abstract

We used two hyperspectral sensors at two different scales to test their potential to estimate biophysical properties of grazed pastures in
Rondônia in the Brazilian Amazon. Using a field spectrometer, ten remotely sensed measurements (i.e., two vegetation indices, four fractions of
spectral mixture analysis, and four spectral absorption features) were generated for two grass species, Brachiaria brizantha and Brachiaria
decumbens. These measures were compared to above ground biomass, live and senesced biomass, and grass canopy water content. The sample
size was 69 samples for field grass biophysical data and grass canopy reflectance. Water absorption measures between 1100 and 1250 nm had the
highest correlations with above ground biomass, live biomass and canopy water content, while ligno-cellulose absorption measures between 2045
and 2218 nm were the best for estimating senesced biomass. These results suggest possible improvements on estimating grass measures using
spectral absorption features derived from hyperspectral sensors. However, relationships were highly influenced by grass species architecture. B.
decumbens, a more homogeneous, low growing species, had higher correlations between remotely sensed measures and biomass than B.
brizantha, a more heterogeneous, vertically oriented species. The potential of using the Earth Observing-1 Hyperion data for pasture
characterization was assessed and validated using field spectrometer and CCD camera data. Hyperion-derived NPV fraction provided better
estimates of grass surface fraction compared to fractions generated from convolved ETM+/Landsat 7 data and minimized the problem of spectral
ambiguity between NPV and Soil. The results suggest possible improvement of the quality of land-cover maps compared to maps made using
multispectral sensors for the Amazon region.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The spectral properties of vegetation are strongly determined
by their biophysical and chemical attributes such as leaf area
index (LAI), the amount of live biomass and senesced biomass,
moisture content, pigments (e.g., chlorophyll) and spatial
arrangement of structures (Asner, 1998; Hill, 2004). Deriving
meaningful and accurate measures to quantitatively characterize
vegetation still remains a challenge in remote sensing. In part,
the accuracy of the retrieval of vegetation properties using

remote sensing depends upon sensor spectral and spatial
resolutions. Although broad-band remote sensing has been
widely used, this system has limited capability for accurate
estimation of vegetation because its coarse spectral resolution
leads to ambiguous differentiation between senesced vegetation
and soil backgrounds (Roberts et al., 1993; van Leeuwen &
Huete, 1996). Hyperspectral remote sensing has the potential of
overcoming some of these problems.

Hyperspectral sensors provide a contiguous spectrum defined
by a large number of spectral bands, typically measured across
the optical wavelengths (350–2500 nm). Improved spectral
dimensionality enhances quantification of chemical and physical
attributes of vegetation and allows for the development of highly
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specific spectral indices. For example, spectral absorption
features (i.e., absorption depth and area) derived from hyper-
spectral sensors have been used successfully to estimate foliar
biochemistry such as nitrogen, phosphorus, lignin, cellulose, and
protein (Curran et al., 2001; Kokaly & Clark, 1999; Mutanga
et al., 2004; Pu et al., 2003).

Vegetation spectra in the NIR region have been used to
estimate canopy water content and leaf area index (Roberts
et al., 1997; Serrano et al., 2000; Sims & Gamon, 2003; Ustin
et al., 1998). Such features cannot be measured with multi-
spectral sensors like ETM+/Landsat 7.

Remote sensing of vegetation usually utilizes greenness
indices that are sensitive to LAI. For instance, an increase in
LAI increases the spectral contrast between the near-infrared and
red values of the spectrum, which is the basis for measures such as
the Normalized Difference Vegetation Index (NDVI). However,
some studies have observed that variation in LAI is more highly
correlated to the liquid water content measured by water
absorption depth than it is withNDVI (Roberts et al., 1997, 2004).

Unlike LAI, dry plant materials have their greatest effect in
the short wavelength infrared (SWIR) region between 2000 and
2400 nm (Asner, 1998; Elvidge, 1990; Roberts et al., 1993),

mainly related to the concentration of ligno-cellulose in dry plant
residue (Curran, 1989; Curran et al., 2001; Nagler et al., 2000).
The amount of dry or senesced biomass in vegetation plays an
important role in estimation of carbon storage and plant stress
(Asner et al., 1999). Therefore, accurate vegetation biomass
measurement requires the full spectrum including the SWIR so
that both live and senesced biomass can be estimated (Ustin
et al., 2004). Estimates of live and senesced biomass by
hyperspectral data would improve our ability to monitor grazed
pastures in the Amazon. The addition of the SWIR region
provided by hyperspectral data should also improve land-cover
characterization. One of the main limitations of multispectral
sensors such as ETM+/Landsat 7 for Amazonian land-cover
characterization is that non-photosynthetic vegetation (NPV)
such as litter and senesced leaves are not spectrally separable
from soil in the visible and near-infrared wavelength region.
With hyperspectral data, however, these materials can be
differentiated based on ligno-cellulose bands in the SWIR
(Asner & Lobell, 2000; Nagler et al., 2000; Roberts et al., 1993).

Currently, there are a variety of hyperspectral sensors
available from laboratory to field and satellite scales. These
sensors should enhance the characterization and quantification

Fig. 1. Study area showing study sites distributed from Porto Velho to Presidente Médici.
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of multicomponent pastures and other land-use types in the
Amazon. In this study, we investigated the potential for
hyperspectral data to improve grazed pasture characterization.
There were two specific goals. The first part of this study
focuses on evaluating hyperspectrally derived data for estima-
tion of pasture biomass (live, senesced and total biomass) and
canopy water content for two grass species at canopy scales
using a field spectrometer. The second part addresses the use of
the spaceborne hyperspectral sensor, Hyperion, to retrieve
pasture composition (i.e., NPV, green vegetation and soil) by

comparison to convolved ETM+/Landsat 7 data, at the local
scale, discussing the potential gains from using hyperspectral
data relative to a conventional multispectral system.

2. Methodology

2.1. Study site

The state of Rondônia is located in the southwestern
Brazilian Amazon, occupying an area between 8°40′ and 15°

Fig. 2. Grass structures. a) B. brizantha, b) B. decumbens, c) Canopy of B. brizantha, d) overview of B. brizantha, e) canopy of B. decumbens, and f) overview of B.
decumbens.
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40′S and 60° 22′ to 65° 50′W (Fig. 1). Eight ranches were used
for this study, distributed in the cities of Porto Velho,
Ariquemes, Ouro Preto, Ji-Paraná and Presidente Médici.
These ranches are beef and dairy pastures. Soil types are
related to geology and topography of this region. Oxisols and
Ultisols, both dystrophic soils, are found mostly over the
Precambrian granitoid and meta-supracrustal rocks with
predominantly flat topography in the north of the state, while
Alfisols are distributed mainly in central of Rondônia to the
south, where they coincide with the presence of intrusive basic
and ultrabasic rocks with gently rolling topography (CPRM,
1997; EMBRAPA, 1983; Holmes et al., 2004).

2.2. Part 1: Estimation of pasture biomass and canopy water
content with field spectrometer data

Pasture biophysical, i.e., biomass, water content and canopy
height, and spectral measurements were obtained from the eight
cattle ranches mentioned before. Within each study site, these
measures were taken from 100 m transects placed on areas. In
total, fourteen transects were used for grass measurements in
this study, out of which nine transects consisted of Brachiaria
brizantha, mostly used for beef pasture, and the rest was of
Brachiaria decumbens, primarily utilized for dairy pasture
(Fig. 2).

2.2.1. Field spectral measurements
An Analytical Spectral Device (ASD) – full range

spectrometer (350 to 2500 nm, Boulder, CO), on loan from
the Jet Propulsion Laboratory (JPL), was used for field optical
measurements over transects. The ASD measurements were
conducted for all transects. The ASD spectra were collected
with a 22° field of view (FOV) with a 1 m sensor height above
grass canopies. The spectra were collected at 5 m intervals along
each transect initially, however for comparative analysis with
grass biophysical data, we used only those spectra collected at
the same plots, i.e., at every 20 m intervals along the transects,
used for grass biomass sampling. All spectral measurements
were collected within 2 h of local solar noon under clear-sky
conditions. Five measurements were taken for each grass
canopy. These spectra were standardized to spectralon (Lab-
sphere, Inc, North Sutton, NH) measured at approximately
10 minute intervals, and converted into reflectance. Averaged
reflectance out of five replicate for each grass canopy was used
for the analysis. In total, 69 reflectance spectra, which coincided
with grass biophysical samples, were used for comparison with
the field grass data. The reflectance data were smoothed by a
3 nm window using mean smoothing filter.

2.2.2. Biophysical measurements
After collecting grass spectra, standing biomass and litter on

the soil surface were collected using a 50 cm×50 cm quadrat at
20 m intervals along each 100 m transect gathering six biomass
samples per transect, and the standing biomass was separated
into live and senesced biomass. To avoid mismatch between
ASD FOV and 50 cm×50 cm quadrat of grass biomass
measurements, a reference stack was placed at the center of each

measurement plot for biomass clipping after ASD measure-
ments. All grass materials, live, senesced, and litter were
weighed soon after clqipping and then dried at 70 °C for 36 h.
Dried grass materials were weighed again in order to calculate
grass water content. During this process, some grass materials
were damaged or lost and in total 69 grass samples were
remained for the analysis.

2.2.3. Data analysis
To analyze which spectral bands and regions of the spectrum

are correlated with grass measurements, the first derivative
reflectance (FDR) was calculated. FDR indicates the rate of
spectral change or slope over an interval of two narrow spectral
bands and also normalizes the brightness differences between
spectra. FDR was derived from the following equation (Dawson
& Curran, 1998)

FDRkðiÞ ¼ ðRkðjþ1Þ � RkðjÞÞ=Dk ð1Þ

where FDR is the first derivative reflectance at a wavelength i
midpoint between wavebands j and j+1. Rλ(j) is the reflectance
at waveband j, Rλ(j) is the reflectance at waveband j+1, and Δλ
is the difference in wavelengths between j and j+1.

A number of spectral indices were calculated and compared
with pasture biomass and grass canopy water content (Table 1).
The main spectral approach for this study involved the use of
spectral absorption features that can be calculated only from
hyperspectral data. Two absorption regions in vegetation
reflectance were used: 1) water absorption in the range between
1100 and 1250 nm; and 2) lignin and cellulose absorptions in
the range between 2045 and 2218 nm for two grass species
(Fig. 3). The depth of the spectral absorption around 1200 nm is
related to the vegetation water content as well as LAI (Kumar
et al., 2001; Roberts et al., 2004; Sims & Gamon, 2003),
whereas the depth around 2100 nm is a function of ligno-
cellulose concentrations in dry vegetation tissue (Curran, 1989),
which may correlate to dry biomass. The depth and the area of
these absorption features were calculated using the techniques

Table 1
Spectral indices used in this study for pasture biomass and canopy water content
estimation

Spectral indices/features Method Reference

Absorption depth
1100 and 1250 nm Continuum removal

method
Clark and Roush
(1984)2105 and 2230 nm

Absorption area
1100 and 1250 nm Continuum removal

method
Pu et al. (2003)

2105 and 2230 nm Depth×width
of absorption

Normalized Difference Vegetation
Index (NDVI)

(R800−R680) /
(R800+R680)

Rouse et al. (1973)

Normalized Difference Water
Index (NDWI)

(R864−R1245) /
(R864+R1245)

Gao (1996)

Fractions from linear
Spectral Mixture Model (SMA)

Gram Schmidt
orthogonalization

Adams et al. (1993)
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developed by Clark and Roush (1984), Kokaly and Clark
(1999) and Pu et al. (2003). These techniques were based on the
continuum removal method (Clark & Roush, 1984) that
normalizes the spectral curves of the absorption features by
establishing a common baseline between the edges of the
absorption region (Fig. 3). The absorption depth is a normalized
depth of the absorption feature from the common baseline. We
used the largest normalized depths in the spectral absorption
ranges in this study. The absorption area is the product of
absorption depth and the width of absorption which is full
wavelength width at half absorption depth.

In addition to the above measures, two vegetation indices,
NDVI and Normalized Difference Water Index (NDWI), and
fractions from spectral mixture analysis (SMA) were calculated
(Table 1). NDVI is sensitive to variation of chlorophyll content
and leaf area index (LAI), whereas NDWI is a spectral index
sensitive to vegetation water content, and LAI (Gao, 1996). For
SMA, a four-endmembermodel composed of non-photosynthetic

vegetation (NPV), green vegetation (GV), Soil and photometric
shade was applied for those plots with exposed soil, and the
remaining spectra were unmixed with a three-endmember model,
excluding the Soil endmember. Endmembers for these compo-
nents were selected from a spectral library built from the ASD
spectra, which included grasses with different phenological status
(e.g., senesced to green leaves), exposed soils, and some green
leaves from different vegetation species. Endmembers for these
components were selected based on a subset of spectra that
produced physically reasonable fractions between 0 and 100% for
all components and produced the lowest root mean square error
(Roberts et al., 1998). Using this approach, one candidate was
selected for each component.

Simple and multiple regressions were used for evaluating
pasture biomass and canopy water content estimation from
spectral indices. For multiple regression analysis, only two
variables were considered. These statistical analyses were
accomplished by the R program.

Fig. 3. Illustration of a normalized spectral absorption curve.
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2.3. Part 2: Characterization of pasture composition with
Hyperion and convolved ETM+/Landsat 7 data

2.3.1. Hyperion and data processing
Hyperion is a spaceborne imaging spectrometer consisting of

242 bands ranging from 356 to 2577 nm that acquired data at
approximately 10 nm intervals (Pearlman et al., 2003; Ungar
et al., 2003). However, only 198 bands were radiomet-
rically calibrated (Datt et al., 2003). The image was acquired
on 08/01/2003, which coincided with the field work period. The
image has a nominal cross-track swath width of 7.65 km and a
downtrack image length of 94 km. The sensor has a nominal
ground instantaneous field of view (GIFOV) of 30 m and 12-bit
radiometric quantization (Pearlman et al., 2003). The Hyperion
image was geometrically registered to our Landsat TM
reference data. The Hyperion radiance values from the 198
bands were converted into surface reflectance values, using the
Atmospheric Correction Now (ACORN) software which is
based on the MODTRAN 4 code. A tropical model was used to
minimize scattering and absorption effects of several atmo-
spheric constituents (e.g., water vapor, carbon dioxide, ozone,
and oxygen), and visibility, time of day, and the position (lat/
long) of scene center were also provided for atmospheric
corrections of the image. A column water vapor was fixed at
30 mm while atmosphere visibility was set at 40 km. A mini-
mum noise fraction (MNF) transformation was applied to the
surface reflectance image to separate noise from the data (Apan
et al., 2004; Datt et al., 2003; Green et al., 1988). The
Environment for Visualizing Images — ENVI 4.0 software
(ENVI; Research Systems, Boulder, CO) was used for this
transformation. There are two steps in this process: forward
MNF and inverse MNF. In the first step, a forward MNF
estimates noise statistics from the original Hyperion reflectance
data and based on the noise statistics, decorrelates and rescales
the noise in the data. These results in the MNF transformed data
(bands). Next, good bands with less or no noise were selected
from the MNF bands. In the final step, the selected MNF bands
were transformed back to the original spectral space minimizing
noise in the original data.

There is only one study site with three 100m transects covered
byHyperion data (Lat=9° 51′ 25ʺ, Lon=62° 40′ 00ʺ). This site is
a beef pasture ranch with B. brizantha. Oxisols are the dominant
soil order at this site. To evaluate the potential of Hyperion for
pasture characterization, we compared horizontal fractions of
NPV, GV and Soil calculated from different sensors (ASD,
Hyperion, simulated ETM+/Landsat 7 and the CCD). ASD
reflectance measurements and CCD data were collected at 5 m
interval along each 100 m transect. In total, 63 measurements for
each one of data types, i.e., ASD and CCD were collected from
three transects of the study site. Hyperion reflectance data were
extracted from three transects (n=12 pixels). ETM+/Landsat 7
convolved reflectance were generated from the Hyperion
reflectance using the Landsat spectral response function. SMA
was performed for all three datasets, i.e., ASD, Hyperion and
ETM+convolved reflectance spectra, in order to compare them.

CCD data were decomposed into GV, Shadow and NPV+
Soil. An example of a CCD image decomposed into three

components is shown in Fig. 4. The CCD Shadow was defined
by threshold values ranging between 0 and 75 in the red band,
while the CCD GV corresponded to non-shadow pixels with a
ratio of green to red bands between 1.01 and 5.0. These
thresholds were determined empirically. The remaining pixels
other than Shadow and GV were defined as NPV+Soil. To
separate these two fractions, the CCD Soil amount was visually
estimated from the CCD NPV+Soil fraction by using the region
of interest (ROI) for soil fraction. Then, from the numbers of
pixels of the soil ROIs and other remained pixels in NPV+Soil
fractions, we calculated the fractions (percentages) of Soil and
NPV, respectively.

Endmembers for NPV, GV and Soil were selected from an
ASD field spectral library. CCD fraction data were used as
the reference data for ASD, Hyperion and ETM+ con-
volved spectra. Since the fractions derived from three sensors
and the CCD camera are affected by the different illumination
effects due to spatial scales, the fractions NPV, GV and Soil

Fig. 4. Illustration of CCD classification of pasture site. Shadow, GV, and NPV
fractions were calculated. Soil was virtually interpreted and calculated, when
this fraction was in CCD.
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were shade normalized (shadow in the case of CCD data) to
minimize illumination problems (Adams et al., 1993).

S:N:Fraction ¼ Fraction
100� Shade

ð2Þ

3. Results and discussion

3.1. Pasture biomass and canopy water content estimation
using the field spectrometer

Table 2 shows the biophysical measurements for the two
grass species. B. brizantha had higher biomass (above ground,
live and senesced), water content and canopy height relative to
B. decumbens, whereas B. decumbens had a higher ratio of live
to senesced biomass and had a higher proportion of water
content in the total biomass (not shown). Both species had
similar spectral characteristics (Fig. 5a), but B. decumbens
spectra had a slightly higher NIR to red contrast. Spectral
variability for both species tends to increase from the visible to
SWIR (Fig. 5b). B. brizantha had greater spectral variability in
the visible, NIR, and SWIR1 (1460 to 1730 nm) compared to
B. decumbens, both showing similar variability in the SWIR2
(2000 to 2400 nm).

Correlograms show the correlations between FDR and grass
biomass and water content as a function of wavelengths (Fig. 6).
Overall, B. decumbens showed higher correlation coefficients
than B. brizantha. In the correlograms for above ground
biomass and water content, high correlations were found at 514
and 580 nm in the visible; 700 nm at the red edge; and in water
absorption regions such as 955 nm, 1160 nm and in the SWIR1
(1540 to 1650 nm) for B. decumbens. B. decumbens has a
higher live to senesced biomass ratio and water content
(Table 2), and live biomass plays an important role in both
grass biomass and canopy reflectance of this species, whereas
the FDR of B. brizantha, which has lower LB/SB ratio, showed
lower correlations in water and chlorophyll absorption regions.
In contrast, both species showed similar levels of correlation in
the SWIR2 (2000 and 2300 nm). The highest correlations were
observed at 2153 and 2213 nm and the latter is the highest in the
SWIR for both species (r=−0.59 for B. brizantha, and r=
−0.54 for B. decumbens).

The relationships of pasture biomass and canopy water
content with remotely sensed measures for each species and for
both species combined are shown in Table 3. The results reveal
that the relationships varied strongly as a function of grass
species. Overall, B. brizantha had lower correlations compared
to B. decumbens. Since B. brizantha dominates 66% of the total
samples, the correlations of this species with field measures are
similar to the pooled data. For above ground live biomass and
water content, water absorption depth and water absorption
area between 1100 and 1250 nm had the highest r2. Water
absorption depth and water absorption area had r2 values of
0.56 and 0.57, respectively, with above ground biomass for B.
decumbens. GVand Soil, fractions derived from SMA, were the
next measures that showed good relationships with above
ground and live biomass, and water content for B. brizantha,
while B. decumbens had high correlations for NPV and GV
from SMA. NDVI and NDWI were weakly correlated across all
field measures and showed lower correlations than water
absorption depth and water absorption area (Table 3 and Fig. 7),
indicating that water absorption features derived from hyper-
spectral sensors can be better measures for estimating pasture

Table 2
Average and standard deviation (parentheses) of pasture biophysical measurements

Species AGB
(g/m2)

LB
(g/m2)

SB
(g/m2)

WC
(g/m2)

LB/SB Height
(cm)

B. brizantha
(n=46)

562 (275) 435 (240) 127 (73) 211 (115) 3.9 24 (12)

B. decumbens
(n=23)

326 (241) 270 (220) 56 (39) 138 (108) 4.9 13 (8)

The abbreviations are: AGB = above ground biomass, LB = live biomass,
SB = senesced biomass, WC = water content, LB/SB = live biomass and
senesced biomass ratio, and Height = canopy height.

Fig. 5. a) Averaged reflectance for B. brizantha and B. decumbens. b) Standard
deviation values for the two species.
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biomass compared to spectral vegetation indices such as NDWI
and NDVI.

With respect to senesced biomass, the hyperspectral-derived
absorption features, ligno-cellulose absorption depth and ligno-
cellulose absorption area had the highest r2 with senesced grass
biomass for B. decumbens (Table 3). Again, much lower
correlations of these indices were found for B. brizantha. There
is a trend of saturation of water absorption area and ligno-
cellulose absorption depth above 200 g/m2 of senesced biomass
observed in B. brizantha, and relationships can be better
expressed by non-linear trend, especially for B. brizantha.
Meanwhile, senesced grass biomass of B. decumbens that is less
than 150 g/m2 had a strong relationship with ligno-cellulose
absorption depth (Fig. 8). This suggests that ligno-cellulose
absorption depth provides a better estimate of a lower amount of
grass senesced biomass, e.g., b200 g/m2. Due to positive
relationships between above ground biomass and senesced
biomass, water absorption depth and water absorption area were
positively correlated with senesced biomass as well. NPV did
not perform well for senesced biomass and for B. decumbens,
NPV showed better relationships with above ground, live
biomass and water content, compared to senesced biomass.

Moreover the relationship for NPV is negative (i.e., high NPV
for low senesced biomass).

These contrasting results between two species may be
primarily related to spatial (horizontal and vertical) heteroge-
neity of each grass species. B. brizantha has stout erect culms
forms bunched crowns that create a tufted structure that does
not cover the soil surface evenly, resulting in a highly hetero-
geneous surface (Fig. 2a, c, and d). B. decumbens is low
growing, more decumbent and forms a dense cover, creating a
more homogeneous canopy surface (Fig. 2b, e, and f). Grass
reflectance is strongly affected by canopy structural factors

Table 3
Coefficients of determination (r2) calculated from linear regressions for the
relationships between pasture biomass and canopy water content and field
remotely sensed measures for two grass species

Remote
measures

Combined
(n=69)

B. brizantha
(n=46)

B. decumbens
(n=23)

Above ground biomass WAD 0.29 0.31 0.56
WAA 0.31 0.35 0.57
LCD 0.21 0.21 0.24
LCA 0.20 0.19 0.13
NDWI 0.13 0.14 0.32
NDVI 0.03 0.08 0.36
NPV 0.01 0.01 0.55
GV 0.15 0.21 0.50
Soil 0.08 0.21 0.01
Shade 0.00 0.01 0.01

Live biomass WAD 0.30 0.30 0.54
WAA 0.31 0.31 0.54
LCD 0.14 0.11 0.12
LCR 0.13 0.11 0.06
NDWI 0.14 0.11 0.31
NDVI 0.05 0.10 0.41
NPV 0.03 0.0 0.53
GV 0.18 0.20 0.50
Soil 0.08 0.16 0.01
Shade 0.01 0.01 0.02

Senesced biomass WAD 0.06 0.07 0.24
WAA 0.08 0.14 0.31
LCD 0.28 0.25 0.64
LCA 0.29 0.25 0.57
NDWI 0.01 0.02 0.01
NDVI 0.01 0.01 0.01
NPV 0.01 0.10 0.18
GV 0.00 0.05 0.09
Soil 0.02 0.14 0.01
Shade 0.0 0.06 0.02

Water content WAD 0.35 0.38 0.45
WAA 0.36 0.38 0.46
LCD 0.13 0.09 0.12
LCA 0.11 0.08 0.06
NDWI 0.17 0.18 0.22
NDVI 0.07 0.14 0.31
NPV 0.04 0.00 0.39
GV 0.21 0.26 0.40
Soil 0.09 0.28 0.01
Shade 0.02 0.00 0.03

WAD = water absorption depth; WAA = water absorption area; LCD = ligno-
cellulose absorption depth; LCA = ligno-cellulose absorption area; NDWI =
Normalized Difference Water Index; NDVI = Normalized Difference Vegetation
Index; NPV = non-photosynthetic vegetation; and GV = green vegetation.

Fig. 6. Correlograms of first derivative reflectance with a) above ground
biomass, and b) canopy water content.
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including leaf area, leaf orientation and angular distributions,
density of reflective or absorptive structures and the spatial
arrangement of structures. These factors can vary considerably
within and between species (Asner, 1998; Hill, 2004). The
variation in canopy structures within the field of view of the

ASD sensor contributes to spectral variability of canopy
reflectance even for those areas with the same amount of
biomass. As a result, the heterogeneous and complex canopy
structures of B. brizantha make biomass estimation more
challenging. Another possible reason for poor relationships is

Fig. 7. Scatterplots between above ground biomass and spectral measures derived from ASD, for two grass species, B. brizantha and B. decumbens. ⁎⁎⁎Pb0.001,
⁎⁎Pb0.01, ⁎Pb0.05, . Pb0.1.

9I. Numata et al. / Remote Sensing of Environment xx (2007) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: Numata, I., et al., Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon using field and imaging spectrometers,
Remote Sensing of Environment (2007), doi:10.1016/j.rse.2007.08.014

INPE ePrint: sid.inpe.br/mtc-m17@80/2007/12.07.18.06 v1 2007-12-08



because mis-registration between grass biophysical data and
spectral data. ASD FOV projected on the grass canopy and
50 cm×50 cm plot for grass biophysical measurements did not
perfectly match and many times these two data types collected
from the same site were not spatially well calibrated.

In addition to canopy structures, there are other sources of
errors or variability in canopy reflectance. Changes in substrate
reflectance beneath the grass canopy including soil and litter
altered grass reflectance and were more pronounced for areas
with low standing biomass. Depending upon the background,
i.e., soil or litter, the resulting reflectance can change dramatically.
In the case of B. decumbens, soil background yields a low
ligno-cellulose absorption depth value, while the litter
background results in a high ligno-cellulose absorption depth

value. The effects of litter background are more pronounced on
NPV of B. decumbens (Fig. 8). High ligno-cellulose absorption
depth and high NPV values, resulting from the mixture of
standing litter and litter on the soil surface, are marked by
circles in Fig. 8. The presence of litter on the surface yields
very high reflectance over the full-spectral region (400–
2500 nm). Moreover, litter has a disproportionately strong
effect on canopy reflectance in grasslands where a change in
litter biomass plays a much stronger role in driving canopy
reflectance variability than a concomitant change in LAI (or
any other structural-attributes) (Asner, 1998). NPV appears to
be more sensitive to the high reflectance resulting from the
litter covered surface compared to the amount of standing
biomass or litter.

Fig. 8. Scatterplots between senesced biomass and spectral measures derived from ASD, for two grass species, B. brizantha and B. decumbens. Plots affected by litter
background are indicated by circles. ⁎⁎⁎Pb0.001, ⁎⁎Pb0.01, ⁎Pb0.05, . Pb0.1.
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The potential of using two remotely sensed variables was
investigated through multiple linear regressions. The best
models for each field measure are shown in Table 4. The
combinations of water absorption area or water absorption depth
with NDVI resulted in the highest correlations and improved the
relationships with above ground biomass and live biomass for
B. brizantha, compared to a single variable, although the
correlations were still low. For example, for above ground
biomass, r2 improved from 0.31 to 0.38, from one to two
variables. On the other hand, little or no effects of two-variable
models were found on the relationships for B. decumbens.
This indicates that it may be necessary to include more than one
remotely sensed measure to characterize a species with more
complex canopy structures. For senesced biomass, the combina-
tions of ligno-cellulose absorption area or ligno-cellulose
absorption depth with NDWI had the highest correlations. It
was expected that the combination of water absorption indices
and ligno-cellulose indices, the best indices for live and senesced
biomass respectively, would improve the retrieval of above
ground biomass of grass. However, little improvement was seen
with the water absorption area+ ligno-cellulose absorption area
model compared to the water absorption area model alone for
B. decumbens, and no improvement for B. brizantha. In the case
of B. brizantha, for senesced biomass, NDWI is the second
explanatory variable used for the best model. Again, this
variable performed very poorly for the relationships with field
measures for a single variable model, but contributed to improve
the relationship in combination with ligno-cellulose absorption
depth or ligno-cellulose absorption area.

Hill (2004) summarizes a number of grass/managed pasture
vs. remote sensing studies, which had strong relationships
between grass biophysical measurements and remotely sensed
measures. In general, we had lower correlations and weaker
relationships compared to most studies cited in Hill (2004).
However he also points out that the relationship between grass
biomass and remotely sensed measures holds best for moderate-
to-short canopies that contain a high proportion of green,
growing material. Since our study was conducted in the dry
season, most of grass materials were senesced. This is relatively
a unique case that is absent in most grass-remote sensing

studies. In addition, our results showed that the decumbent-
short species, B. decumbens, had higher r2 compared to taller
species. Taking these points into account, our results are con-
sistent with Hill's observation that the potential of remote
sensing for grass characterization is highly influenced by the
amount of senesced materials and grass architecture. Therefore,
our study provides a unique and important case study among
numerous grass-remote sensing studies, showing how the
relationships between grass biophysical properties and remotely
sensed measures change as a function of species differences
(with different architecture) under dry conditions.

Our goal in this study was to investigate the potential of
hyperspectral measures to improve pasture characterization. We
have found statistically significant relationships between field
measurements of biomass and spectral absorption measures
derived from hyperspectral data. For example, water absorption
features (depth and area) had the best and significant correlations
with total biomass and live biomass, and the results were better
compared to other measures such as NDWI and NDVI. We
found an even stronger relationship for senesced biomass and the
depth of ligno-cellulose bands with an r2 =0.64. These two
measures are exactly the ones we might expect to perform best
based on physical relationships and neither can be derived from
broad-band data.

3.2. Characterization of pasture composition with Hyperion
and convolved ETM+/Landsat 7 data

Fig. 9 shows the averaged reflectance of grass species B.
brizantha from the ASD, Hyperion and convolved ETM+ data.
The ASD shows a smooth spectrum with some clear absorption
features such as chlorophyll (visible), water absorption (near-
infrared), and ligno-cellulose (SWIR). Hyperion has a similar
spectral shape, but a lower signal to noise compared to the ASD.
The convolved ETM+ spectrum has less spectral details
compared to the other hyperspectral spectra.

Shade normalized GV, NPVand Soil fractions, derived from
the field CCD data were used as the reference data for
comparisons between ASD, Hyperion and Landsat data. Shade
normalized fractions of different sensors are shown in Table 5.
ASD fractions were very close to the CCD fractions, although
greater spectral variability (expressed by the standard deviation)
was shown in the ASD compared to the CCD measures. The
fractional differences between the CCD and Hyperion were
greater compared to those between the CCD and ASD, except
for the Soil fraction. Despite these results, both the ASD and
Hyperion fractions were not statistically different from the CCD
(t-test at 0.95). Landsat overestimated NPVand underestimated
GV relative to CCD fractions and these differences were
significant (t-test at 0.95). The Soil fraction was not statistically
different from the CCD but it was higher in Landsat. Overall,
NPV tended to be overestimated and GVwas underestimated by
these sensors. The level of accuracy appears to be related to the
spectral resolution as well as the signal-to-noise ratio of the
sensors. The results indicate that Hyperion has potential for
improved estimates of grass properties over conventional multi-
spectral systems.

Table 4
Multiple linear regression models with two remotely sensed variables for pasture
biomass and canopy water content estimation

Model r2 P

Above ground biomass Both WAA+NDVI 0.38 b0.0001
B. brizantha WAD+NDVI 0.38 b0.0001
B. decumbens WAA+NPV 0.60 b0.0001

Live biomass Both WAA+NDVI 0.36 b0.0001
B. brizantha WAA+NDVI 0.34 b0.0001
B. decumbens WAA+NPV 0.58 b0.0001

Senesced biomass Both LCA+NDWI 0.34 b0.0001
B. brizantha LCA+NDWI 0.31 b0.0001
B. decumbens LCD+NDWI 0.70 b0.0001

Water content Both WAA+NDVI 0.38 b0.0001
B. brizantha WAD+NDVI 0.38 b0.0001
B. decumbens WAA+NDVI 0.46 b0.0001
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To evaluate potential improvement for pasture analysis by
hyperspectral sensors over a multispectral sensor, SMA
fractions from Hyperion and convolved ETM+ collected from
a wide variety of pasture conditions were compared. Thirty
three pasture spectra from the Hyperion image were randomly
collected. These spectra cover a range of different pasture status
from senesced to green. They were unmixed using the same

endmembers discussed above. The same spectra were con-
volved to ETM+/Landsat 7 and unmixed and compared to
Hyperion fractions. Fig. 10 shows the fractional differences
between Hyperion and ETM+ (Hyperion minus ETM+) for
each fraction (NPV, GV, Soil and Shade in line) along a gradient
from high to low Hyperion GV. There are gaps between the
fractions of two sensors. Differences ranged between −15 and
11% for NPV and between −8.6 and 8.6% for Soil, whereas
differences for GVand Shade fractions were low (less than 5%).
NPVand Soil are the key to understand the differences between
hyper- and multispectral sensors. Hyperion yields substantially
higher NPV fractions and lower Soil fractions compared to
ETM+ for greener pastures, whereas the opposite trend is found
for senesced pastures. A high Soil fraction in green grass is a
problem with Landsat. These results indicate that hyperspectral
data can reduce this type of error. Therefore, overestimated
NPV and lower Soil fractions may be expected for the dry
season whereas Soil is overestimated in greener pastures in the
wet season from Landsat data.

One of the major sources of errors in this study may be
strongly related to scale of field sample size relative to pixel
resolution. Our study relied on 0.5 m2 filed plots to represent a
30 m pixel. This sampling scale may be unrepresentative of
pasture properties over Landsat pixel. Hill (2004), for example,
states that a scale difference between field plots less than 1.0 m2

and satellite pixels larger than 400 m2 introduces sampling
errors into the development of biomass prediction. A higher
number of field plots should improve relationships between
remotely sensed measures and field data.

The presence of multiple wavelengths in the SWIR region in
Hyperion contributes to minimize the problem of spectral
ambiguity between NPV and Soil, which is a common problem
with broad-band systems. Asner and Heidebrecht (2003)
reported that the SWIR2 (2000–2400 nm) provided the most
distinctive spectral information for NPV, GV, and Soil for
arid regions where vegetation is very sparse. Roberts et al.
(2003) verified that Hyperion demonstrated a capability for
separating spectral signals from bare soils and senesced plants
comparable to the Airborne Visible Infrared Imaging

Table 5
Normalized fractional covers of NPV, GV and Soil for CCD, ASD, Hyperion/
EO-1 and convolved ETM+/Landsat 7 spectra from Hyperion

Measurements Mean Std. dev. P

Field measurements (CCD) NPV 0.81 0.06 –
GV 0.16 0.05 –
Soil 0.04 0.07 –

ASD field spectrometer NPV 0.80 0.17 0.8086
GV 0.13 0.13 0.3878
Soil 0.08 0.12 0.2380

Hyperion/EO-1 NPV 0.85 0.11 0.3589
GV 0.10 0.07 0.1241
Soil 0.05 0.06 0.8419

ETM+/Landsat 7 NPV 0.94⁎ 0.14 0.0078
GV 0.07⁎ 0.07 0.0095
Soil −0.01 0.09 0.1951

Statistically significant mean differences relative to CCD fraction determined
using a t-test at 0.95 level, are marked with an ⁎.

Fig. 9. Averaged reflectance from different sensors: a) ASD, b) Hyperion/EO-1,
and c) ETM+/Landsat 7 convolved from Hyperion.
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Spectrometer (AVIRIS) for Chaparral in Southern California.
The enhanced capability for the discrimination of NPV from
Soil fractions has been found to be a valuable for land
degradation analysis for semi-arid regions (Huete et al., 2003).
Furthermore, the spectral information provided from full-
spectral range Hyperion data allows us to analyze several
spectral vegetation indices for more detailed land-surface
characterization of forest phenology, LAI, vegetation species
and crops discrimination, and estimation of biochemical
properties (Galvão et al., 2005; Gong et al., 2002; Goodenough
et al., 2003; Pu et al., 2003). Spaceborne hyperspectral data
hold promise for more accurate monitoring for complex land-
surfaces in the Amazon region. Although several efforts have
been made to classify different land-cover types using Landsat
data (Adams et al., 1995; Lucas et al., 1993; Roberts et al.,
2002), crops, second growth and green pasture are not
spectrally distinct in the broad-band system. This spectral
ambiguity can be reduced using hyperspectral data. For grazed
pastures in the Amazon region, the potential of retrieving
biophysical and biochemical information can be used to study
pasture status and its degradation processes.

4. Conclusions

In this study, two hyperspectral sensors at two different spatial
scales were tested for grazed pastures in order to investigate the
potential for hyperspectral data to improve pasture characteriza-
tion and (estimates). At canopy scales, hyperspectral absorption
features were shown to be the best measures for pasture biomass,
i.e., above ground biomass, live biomass, dry biomass and canopy
water content. Water absorption features (i.e., water absorption

depth and water absorption area) had the highest correlations with
above ground biomass, live biomass, and canopy water content,
whereas ligno-cellulose absorption features (i.e., ligno-cellulose
absorption depth and ligno-cellulose absorption area) had the
highest correlations for senesced biomass. These findings indicate
possible improvement for estimating grass measures using
spectral absorption features derived from hyperspectral sensors.
On the other hand, grass canopy spectra are strongly influenced
by canopy architecture and thus pasture biomass and water
content estimation is dependent on the grass specie under
analysis. Relatively homogeneous B. decumbens provided better
relationships with spectral measures than B. brizantha, a highly
heterogeneous surface. More careful field measurements are
required to improve the results. The linear combination of spectral
variables improved some relationships.

Hyperion provided more accurate biophysical measures for
pastures compared to convolved ETM+/Landsat 7 data reducing
spectral confusion between NPV and Soil. The results suggest
the possibility for improvement of the quality of land-cover
maps that have been made by multispectral sensors for the
Amazon region. For complex land-surfaces such as grazed
pastures, better biophysical and chemical estimates are also
expected by using hyperspectral data.
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