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In the present work two recently developed stochastic methods, the epidemic
genetic algorithm and the generalized extremal optimization algorithm are used
for the solution of an inverse mass transfer problem, which is implicitly
formulated as an optimization problem, for the estimation of parameters
associated with the adsorption of biomolecules in resin beds. The estimates
obtained with both methods present good accuracy, even in the presence of noisy
data, provided that the model and experiment used are sensitive to the parameters
being estimated. With Thomas’ model for the direct mass transfer problem and
real experimental data for lisozyme in adsorption columns, it is possible to
estimate the maximum adsorption capacity in Langmuir’s adsorption isotherm.
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1. Introduction

Due to the relevant applications in the food and pharmaceutical industries, there is a
growing demand for the formulation and solution of direct and inverse mass transfer
problems [1–5]. A high demand for purification processes for increasingly complex
substances has been observed in recent years, with one of the most promising alternatives
being the simulated moving bed (SMB) chromatography. For a full understanding of the
operation and optimization [6] of SMBs, and a possible scale-up to industrial production,
an accurate knowledge of mass transfer mechanisms and their dependence on the physico-
chemical and process parameters involved is required. The first step in that direction
consists of the characterization of adsorption columns [7].

Kowalczyk et al. [8] estimated the pore-size distribution function that is used as a
quantitative characteristic of the porous structure of solid adsorbents with respect to their
heterogeneity, and Kowalczyk et al. [9] used a simple adsorption genetic algorithm (GA)
for the estimation of parameters in a equation that models the adsorption process in a
homogeneous micropore system.
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The estimation of adsorption parameters for chromatography systems is a very
important step in the column characterization used in the design of continuous separation
processes based on the adsorption phenomenon, such as in simulated moving beds. For
that purpose Forssén et al. [10] and Câmara et al. [11] used the least squares approach, the
former having calculated the Jacobian matrix with numerical differentiation with complex
variables. Vasconcellos et al. [12] used GAs. Lage et al. [13] have also used GA and a
hybridization of GA with the Levenberg-Marquardt method (GA-LM), while Lage et al.
[14] applied artificial neural networks (ANNs) developed for the solution of the inverse
mass transfer problem, and Lage et al. [15] used a hybridization of ANNs with
the Levenberg-Marquardt method (LM).

Yu et al. [16] and Ziyang et al. [17] have estimated adsorption equilibrium constants
and kinetic parameters using GA. James et al. [18] estimated adsorption isotherms
coefficients with the conjugate gradient method, and Zhang et al. [19] used a variation of
GA for the same purpose.

In the present work, two stochastic methods are applied for the estimation of
adsorption isotherm coefficients: (i) the generalized extremal optimization (GEO) [20];
and (ii) the epidemic genetic algorithm (EGA) [21].

For the solution of the direct problem Thomas’ model is used, which provides accurate
results when the effects of axial dispersion are negligible in comparison with other mass
transfer mechanisms [7,22,23].

2. Mathematical formulation and solution of the direct problem

A mobile liquid phase composed by a diluted solution of the adsorbate of interest, for
example a biomolecule, percolates through a resin bed, the solid fixed phase. The
adsorbate is transferred from the bulk of the solution to the vicinity of the resin particles,
i.e. a mass transfer mechanism through the liquid film, and then it diffuses to the interior
of the particle pores being then adsorbed by the solid matrix.

The mathematical model for the separation chromatographic process is based on the
mass balance for the two phases; one for the mobile phase that flows through the
macroscale porous fixed resin bed, and the other for the resin particles involving
the microscale porous solid matrix [24].

For the particular case in which the axial dispersion may be neglected, and the
adsorbate inflow to the column of resins is constant, with concentration C0, the adsorption
problem described here has an analytical solution [25–27], which was first derived by
Thomas [28]. According to this solution, the adsorbate concentration in the mobile liquid
phase at the exit of the adsorption column, C, as a function of time, t, i.e. the
breakthrough curve, is given by

C

C0
¼

Jð�=�, �T Þ

Jð�=�, �T Þ þ f½1� Jð�=�, �T Þ� exp½ð1� ��1Þð�� �T Þ�g
ð1Þ

where

� ¼ 1þ C0=kd ð2Þ

� ¼ qmk1hAc=Q ð3Þ

T ¼ Qtðkd þ C0Þ=Acqmh ð4Þ
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Q is the volumetric flow rate, h is the total length of the adsorption column, Ac is the cross
section of the column, kd is the dissociation rate constant defined as

kd ¼
k2
k1

ð5Þ

k1 is the adsorption rate constant, k2 is the desorption rate constant and qm is the
maximum adsorbate concentration that the adsorbent may adsorb (maximum adsorption
capacity), according to the Langmuir adsorption isotherm,

q ¼
qmC

kd þ C
: ð6Þ

The function J in Equation (1) corresponds to

Jða, bÞ ¼ 1� e�b
Z a

0

e��I0ð2
ffiffiffiffiffi
b�

p
Þd� ð7Þ

where I0 is the modified Bessel function of the first kind and order zero, which may be
approximated by an asymptotic series whose two first terms are given by

Jða, bÞ �
1

2
1� erf

ffiffiffi
a
p
�

ffiffiffi
b
p� �h i

þ
exp 1�

ffiffiffi
a
p
�

ffiffiffi
b
p� �2h i

2�1=2 abð Þ1=4þb1=2
� � : ð8Þ

When the geometry, initial condition, boundary conditions, physico-chemical and process
parameters are known, we are able to calculate the concentration of the adsorbate at
the exit of the column, i.e. Cðh, tÞ. This is the direct problem, i.e. the determination of the
breakthrough curve.

3. Mathematical formulation and solution of the inverse problem

Here, we are interested in the estimation of the coefficients in the adsorption isotherm
given by Equation (6) using measured values of the adsorbate concentration at the exit
of the column, i.e. Cmeasi ¼ CmeasðtiÞ with i ¼ 1, 2, . . . ,Nd, where Nd represents the total
number of experimental data available.

According to the sensitivity analysis performed by Folly et al. [7] we may try to
estimate the vector of unknowns

Z1
	!
¼ kd, qm

 �

ð9Þ

but difficulties may arise due to low values of the sensitivity coefficients related to
the parameter kd, and that behaviour was in fact observed by Lage et al. [15].

In the present work besides the estimation of Z
!

1 we will also look into the
estimation of

Z2
	!
¼ fqmg ð10Þ

fixing the value of kd, and also into the estimation of

Z3
	!
¼ fkdg ð11Þ

fixing the value of qm.
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As the number of experimental data available, Nd, will be much larger than the number

of unknowns considered, Nu ¼ 1 or 2, we formulate the inverse problem implicitly as an

optimization problem in which we seek to minimize the cost function given by the

summation of the squared residues between the calculated and measured adsorbate

concentrations at the exit of the adsorption column, i.e. Ccalci and Cmeasi , respectively, with

i ¼ 1, 2, . . . ,Nd,

SðZ
!
Þ ¼

XNd

i¼1

CcalciðZ
!
Þ� Cmeasi

h i 2
: ð12Þ

In order to find the value of Z
*�

for which S is minimum, we have used two recently

proposed stochastic methods: (i) GEO [20]; and (ii) EGA [21]. Both the methods will be

described next.

4. The generalized extremal optimization algorithm

GEO has been proposed and implemented recently [20], and was devised to be applied in

complex optimization problems. Based on the Back-Sneppen simplified model of evolution

[29], it has been applied successfully to design optimization problems [30,31] as well as to

an inverse radiative transfer problem [32].
GEO makes no use of derivatives requiring only the solution of the direct problem

given by Equations (1)–(4). The main steps of the canonical GEO algorithm are shown in

Figure 1.
A very attractive feature of GEO is that it has only one free parameter to adjust, �,

which may be considered an advantage when compared to other stochastic methods that

have a larger number of parameters to be set.
In GEO, a string of L bits, which encodes the Nu unknowns, is considered a population

of species, i.e. each bit represents a species. Each bit is associated to a fitness number that

is proportional to the gain, or loss, the cost function value has in flipping that particular

bit. All bits are then ranked from k ¼ 1, for the least adapted bit, to k ¼ L for the best

adapted. A bit is then mutated according to the probability distribution Pk / k��, where k

is the rank of a selected bit candidate to mutate. Making �! 0 all bits have the same

probability to mutate, whereas for �!1 only the worst adapted bit will mutate.
In practice, it has been observed that the best value of �, i.e. the one that yields the best

performance of the algorithm for a given application, usually lies in the range ð0:75, 3:0Þ.
A detailed description of GEO can be found in Sousa et al. [20].

5. The epidemic genetic algorithm

Simple GAs operate on a fixed-sized population of fixed-length individuals, and in general

the individuals are represented by a binary string that encodes the variables of the problem

that the algorithm is trying to minimize.
In the present work, each individual is composed by the unknowns of the inverse

problem, which are given by Equations (9)–(11), and in fact is represented by a real-valued

string.
Simple GAs use basically three operators: selection, crossover and mutation. The

selection operator identifies the fittest individuals of a given population to serve as parents

292 A.P.C. Cuco et al.



of the next generation. The fitness value of each individual is related to the value of the
cost function given by Equation (12). The selection operator ensures that the best fit
individuals have a higher probability to be selected to reproduce and form a new
generation.

The crossover operator randomly chooses a pair of individuals among those previously
selected to breed and exchanges information between them.

The mutation operator is usually considered a secondary operator. Its main function is
to restore diversity that may be lost from the repeated application of the selection and
crossover operators. This operator simply takes one string from the population and
randomly alters some value within it. Following the example of nature, the probability of
applying the mutation operator is very low compared to the probability of applying the
crossover operator.

In the present work, a fourth operator is applied, the epidemical strategy [21], leading
to EGA. This operator is activated when a prescribed number of generations are reached
without improvement of the best individual. Then, all the population is affected by a
plague, and only those that have the best fit, say the top 10% individuals better fitted,
survive. The remaining individuals die and are replaced by new individuals with new
genetic variability, such as immigrants arriving in order to evolve the population.

Figure 1. The canonical GEO algorithm.
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Two parameters need to be chosen: one determines when the strategy will be activated, i.e.
the number of generations without improvement of the fitness value of the best individual,
Ne, and the other determines the fraction of the population that will survive the plague, fe.

Slow convergence is a particular problem for the stochastic optimization schemes,
the same observation is valid to the GA. Alternative GA techniques have been designed to
improve the convergence performance. Another challenge is to design a GA for dealing
with multimodal function optimization. For attending to such features some genetic
operators were proposed such as: micro-GA [33] and niching [34]. A niche is a particular
sub-domain of the entire search space, where each niche has different nuances on each
other. This is a natural feature to maintain the genotype diversity in a population [35–37],
under insulation these niches are a mechanism for the speciation. Goldberg and
Richardson [34] have introduced the method of sharing functions – now the method is
known as sharing, and it is directly applicable to the multimodal function optimization
[36]. Sharing is a natural algorithm to implement niching [38].

Another procedure to preserve the diversity in the GA population is the
re-initialization. Mahfoud [36] has reported that Goldberg [39] has investigated such
ideas, but re-initialization is not treated as a new GA operator. Micro-genetic algorithms
are GAs with small populations with re-initialization. Krishnakumar’s [33] micro-GA
approach uses a population with five individuals, driven by elitism. He compared his
micro-GA with standard GA (SGA), resulting in a faster and better solution to a
engineering control problem. Other applications of micro-GA have been presented by
Liu and Han [37]. We pointed out that Chakraborti et al. [40] addressed a solution, an
important and difficult real-world problem, where it was shown to be of little additional
advantage over the simple GA, when the objective function is stationary. Micro-GA deals
with selection and crossover GA operators, while mutation is usually omitted [36,37]. On
the other hand, EGA employs all standard GA operators, and also the typical population
size of the SGA, but it introduces the epidemic strategy.

An interesting issue would be a comparison among the diversity preservation strategies
(niching, micro-GA, EGA, for example). This will be the focus of a future work. Here, the
goal is just the performance comparison between GEO and EGA.

6. Results and discussion

Because of the availability of real experimental data, we have chosen the system
investigated by Chase [26] for the substance lisozyme as our test case. Table 1 presents
the process and physico-chemical parameters used.

Table 1. Process and physico-chemical parameters for Chase’s experiment
with lisozyme [26].

Parameter Value

H – column height (cm) 10.4
Ac – column cross-section (cm2) 0.785
Q – volumetric flow rate (mLmin�1) 1.0
C0 – adsorbate concentration at the column inlet (mgmL�1) 0.1
qm – maximum adsorption capacity (mgmL�1) 14
kd – dissociation rate constant (mgmL�1) 0.025
k1 – adsorption rate constant (mLmg �min�1) 0.20

294 A.P.C. Cuco et al.



The values of k1, kd and qm shown in Table 1 were obtained using a batch experiment

and considering a Langmuir adsorption isotherm.
From the sensitivity analysis performed by Folly et al. [7] one concludes that using

Thomas’ model and the experimental data obtained by Chase [26] for lisozyme it is not

possible to estimate k1. Therefore, in all computations, the results of which will be

presented next, a fixed value for this parameter has been considered, i.e. the one shown in
Table 1.

Tables 2 and 3 show the estimates obtained for the vector of unknowns Z
*

1, see

Equation (9), for lisozyme, using GEO and EGA, respectively, and Chase’s experimental

Table 3. Estimates for kd and qm for lisozyme using EGA with an initial population of
100 individuals, Chase’s experimental data [26] and ne¼ 3 and fe¼ 0.1. d¼ 0.047396
(Equation (13)).

Run kd (mgmL�1) qm (mgmL�1)
S Equation (12)
(mgmL�1)2

1 0.0372 14.0389 0.0240
2 0.0455 14.1111 0.0369
3 0.0475 14.2639 0.0270
4 0.0448 14.1780 0.0210
5 0.0446 14.1892 0.0205
6 0.0444 14.1681 0.0205
7 0.0406 14.0509 0.0208
8 0.0397 14.0909 0.0221
9 0.0374 13.9978 0.0241
10 0.0395 14.0770 0.0215

Average � 0.0421 14.1166
Standard deviation � 0.0037 0.0817
�

�
� 100% 8.74 0.58

Table 2. Estimates for kd and qm for lisozyme using GEO with �¼ 1.25 and Chase’s
experimental data [26]. d¼ 0.11514 (Equation (13)).

Run kd (mgmL�1) qm (mgmL�1)
S Equation (12)
(mgmL�1)2

1 0.0272 11.2862 0.0251
2 0.0335 11.8862 0.0243
3 0.0350 14.3182 0.0233
4 0.0287 14.0856 0.0327
5 0.0258 13.2334 0.0278
6 0.0325 12.0309 0.0231
7 0.0321 12.7347 0.0254
8 0.0215 12.7701 0.0236
9 0.0325 13.9952 0.0234
10 0.0316 11.0701 0.0235

Average � 0.0300 12.7411
Standard deviation � 0.0042 1.1669
�

�
� 100% 13.82 9.16
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data [26]. Each table shows the results obtained for 10 different runs of each algorithm,

as well as the average and the standard deviation for each unknown. It also shows the

value of a measure of the dispersion of the estimates given by

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �qm= �qm

� �� �2
þ 1þ �kd=

�kd
� �� �2

2

s
� 1: ð13Þ

Figures 2 and 3 show graphically the dispersion of the results obtained with

the stochastic methods GEO and EGA, respectively. Observe that the scales used in the

two figures are different.
Figure 4 shows Chase’s experimental data [26] and the breakthrough curves calculated

using the average values obtained for qm and kd, shown in Tables 2 and 3, using GEO and

EGA, respectively.
From the results presented we conclude that the low sensitivity to the parameter kd

may be affecting negatively the estimation of qm when the two parameters are estimated

simultaneously.
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Figure 3. Dispersion of the results obtained with EGA.
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Figure 2. Dispersion of the results obtained with GEO.
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We may also conclude that with the control parameters chosen for GEO and EGA the

latter presents a lower dispersion of the estimates. This fact is confirmed by the value of

the measure d, given by Equation (13), shown in Tables 2 and 3.
We have then fixed the value of qm as 14mgmL�1 and have estimated kd using both

GEO and EGA. The results obtained after 10 runs of both algorithms are shown in

Table 4.
Even though the dispersion of the estimates is smaller with EGA we observe from

Tables 1 and 4 that the estimated average value for kd obtained with GEO is closer to the

experimental value shown in Table 1. Nonetheless, as mentioned before, due to the low

value of the sensitivity coefficient related to this parameter the estimates may not be

accurate.
Figure 5 shows Chase’s experimental data and the breakthrough curves calculated

using the values for qm and kd shown in Table 4.
Finally, we have varied the value of kd in the range from 0.015mgmL�1 up to

0.035mgmL�1, and for each fixed value of kd we have estimated qm using both GEO and

EGA. The results obtained after 10 runs of both algorithms are shown in Tables 5 and 6.
Figures 6 and 7 show Chase’s experimental data [26] and the calculated breakthrough

curves for lisozyme with the fixed value of kd and the estimated values of qm with GEO and

EGA, respectively.
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Figure 4. Chase’s experimental data [26] and calculated breakthrough curves using the average of
the estimated values for qm and kd with GEO and EGA (Tables 2 and 3).

Table 4. Estimated values for kd, being qm fixed at 14mgmL�1, after 10
runs of GEO and EGA.

GEO EGA

�kd (mgmL�1) 0.0261 0.0381
�kd (mgmL�1) 0.0009 4.438�10�5

�kd
�kd
� 100% 3.34 0.12
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From the results shown in Tables 5 and 6 we observe a good agreement with the
experimental value of qm shown in Table 1, and again it seems that the dispersion of the
estimates is smaller with EGA.

From Figures 6 and 7 it is observed that kd, as expected, seems to have a negligible
effect on the breakthrough curves.

All results shown for GEO were obtained using 5000 evaluations of the cost function.
The dispersion of the estimates may become smaller if a larger number of function
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Figure 5. Chase’s experimental data [26] and calculated breakthrough curves using the average
estimated values for kd with GEO and EGA being qm fixed at 14mgmL�1 (Table 4).

Table 5. Estimated values for qm, being kd fixed, after 10 runs of GEO.

kd (mgmL�1) �qm (mgmL�1) �qm (mgmL�1)
�qm
�qm
� 100%

0.015 14.92 0.148 0.99

0.020 14.52 0.137 0.94
0.025 14.10 0.184 1.31
0.030 14.01 0.153 1.09
0.035 13.99 0.139 1.00

Table 6. Estimated values for qm, being kd fixed, after 10 runs of EGA.

kd (mgmL�1) �qm (mgmL�1) �qm (mgmL�1)
�qm
�qm
� 100%

0.015 15.0 0 0

0.020 14.507 0.0035 0.02
0.025 14.201 0.0014 0.01
0.030 14.046 0.0006 0.005
0.035 14.007 0.0004 0.003
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evaluations is considered. Of course a higher amount of CPU time will be required. This
subject must be further investigated.

Due to the simplicity of the solution obtained for the direct problem with Thomas’
model, only 10 generations were required to obtain the results presented before using
EGA. Tests were performed with a total of 100 or 1000 generations, nonetheless no
improvement was observed in the value of the cost function.

Concerning the accuracy of the solutions found by GEO and EGA when compared
to the experimental data, for the results with fixed kd, both algorithms presented similar
average results, with the EGA ones presenting a lower dispersion. On the other hand,
when estimating kd and qm simultaneously, the EGA had clearly a better performance than
GEO.

 Experimental data [xx]

 kd = 0.015 mgml−1
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 kd = 0.025 mgml−1
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 kd = 0.035 mgml−1
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Figure 6. Chase’s experimental data [26] and calculated breakthrough curves using the fixed value of
kd and the average estimated values for qm with GEO (Table 5).
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Figure 7. Chase’s experimental data [26] and calculated breakthrough curves using the fixed value of
kd and the average estimated values for qm with EGA (Table 6).
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7. Conclusions

The application of two stochastic methods, EGA and GEO yielded good estimates for the

maximum adsorption capacity, one parameter in Langmuir’s adsorption isotherm, for a

system with lisozyme in a diluted solution being adsorbed in resin beds.
It was observed that EGA tends to provide estimates with a smaller dispersion when

compared to GEO. Nonetheless this conclusion cannot yet be generalized. A small number

of function evaluations was considered for GEO. With a larger number of functions

evaluations a reduction in the dispersion may occur.
The results obtained so far are very encouraging and the application of the recently

developed stochastic methods in the solution of inverse mass transfer problems deserves

further investigation.
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