1.Classificação <i>INPE-COL</i> C.D.U.: 621.396.67	M.1/TPT	2.Periodo junho de 1976	4.Critério de Distri- buição:	
3.Palavras Chave (selecionadas pelo autor)			interna 🗌	
OTIMIZAÇÃO ANTENA YA	externa X			
5.Relatório nº INPE-920-TPT/034	Programment Living Energy Section Sect			
8.Título e Sub-Título			9.Autorizado por -	
OTIMIZAÇÃO DAS ALTURAS E ESPAÇAMENTOS DOS ELEMENTOS DE UMA ANTENA YAGI-UDA			Nelson de Jesus Parada Diretor	
10.Setor DAT	20	Codigo 500	11.Nº de copias - <i>10</i>	
12.Autoria Satoshi Koshima			14.Nº de páginas - 122	
13.Assinatura Responsave	15.Preço 76,00			

16. Sumario/Notas

Um método para maximizar a diretividade de uma antena Yagi -Uda é apresentado. A análise da distribuição de corrente em cada elemen to da antena é baseada na expansão de três termos de King-Middleton. O máximo da diretividade é obtido aplicando-se o método da perturbação aos espaçamentos e alturas dos elementos da antena. Utilizando-se o programa de computação desenvolvido para a otimização da antena Yagi, foi observa da uma dependência sensível da diretividade em relação aos raios dos elementos. Uma série de medidas experimentais é apresentada comparando-se com os resultados teoricamente previstos.

17. Observações Tese de Mestrado em Eletrônica e Telecomunicações, aprovada em 9 de junho de 1976.

Aprovada pela Banca Examinadora em cumprimento aos requisitos exigidos para a obtenção do Título de Hestre em Eletrônica e Telecomunicações

Dr.Plinio Tissi	Phinis Inimi
Dr.Clovis Solano Pereira	Presidente da Banca
br.clovis solano rereira	Orientador
Dr.Antonio Roberto Panicali	Membro da Banéa Convidado"
Dr.Pawel Rozenfeld	Fractione de Bança
Dr.Ivan Jelinek Kantor	Law law
Dr.Ralf Gielow	Respila
	"ex-officio"

Satoshi Koshima

Candidato

INDICE

i
i
X
X
1
3
3
4
6
1
1
23
5
5
0
1

CAPÍTULO VI - Método da Perturbação Aplicado às Alturas dos Elementos	35
6.1 - Dedução dos novos coeficientes de distribuição de correntes	35
6.2 - Modificação do campo distante	39
6.3 - Incremento da diretividade	40
CAPITULO VII - Comentarios sobre o Programa Desenvolvido para a Otim <u>i</u>	
zação	43
7.1 - Problemas numéricos	45
7.2 - Algumas aplicações do programa desenvolvido	47
7.3 - Escolha da configuração inicial	49
CAPITULO VIII - Comprovação Experimental	51
CAPÍTULO IX - Conclusões	59
and the second s	
BIBLIOGRAFIA	65
*	
APÊNDICE A - Expressões de $\frac{\partial \phi}{\partial d_k}$ e $\frac{\partial \psi}{\partial d_k}$	A.1
^{∂d} k ^{∂d} k	
APÊNDICE B - Expressões $[P_U]$ e $[P_D]$ (Otimização dos Espaçamentos)	B.1
h h	
APÊNDICE C - Expressões de $\frac{\partial \phi}{\partial h_i}$, $\frac{\partial \psi}{\partial h_i}$, $\frac{\partial \phi}{\partial h_i}$, $\frac{\partial \psi}{\partial h_i}$ $\frac{\partial \psi}{\partial h_i}$	C.1
APÊNDICE D - Expressões de $[P_U]$ e $[P_D]$ (Otimização das Alturas)	D. 1
APÊNDICE E - Listagem do Programa Desenvolvido para a Otimização da	
Antena Yagi	E.1

	ENDICE F - Tabelas da Diretividade e RFC de Antenas Yagi com Alturas e Espaçamentos dos Diretores Uniformes	a 1
	e Espaçamentos dos Directores univolnies	
	ÊNDICE G - Alguns Valores Relativos a Configurações Otimizadas de	2 1
	Antenas Yagi de 3 até 10 Elementos G.	
7.	PNDICE II. Computation where December Julium to Taking Estimate	
	ÊNDICE H - Comentários sobre Desenvolvimento Teórico Efetuado por	a :
	King (1968) H.	I

ABSTRACT

A method to maximize the directivity of a Yagi-Uda array is presented. The analysis of the current distribution is each element of the array is based upon the three-term expansion given by King-Middleton. The maximum of the directivity is obtained by applying the perturbation method to the heights and spacings of the antenna elements. Using the computer program for the optimization, the directivity showed to be strongly dependent upon the radii of the antenna elements. Several experimental data are presented and a comparison with the theoretical results is made.

LISTA DE SIMBOLOS

```
\overline{A}(\overline{r})
           - potencial vetorial
           - raio dos elementos da antena
a
b<sub>ki</sub>
           - distância entre os elementos k e i
D(\Theta_{o},\phi_{o}) - diretividade da antena na direção (\Theta_{o},\phi_{o})
           - coordenada do k-esimo elemento
d_k
E
           - campo elétrico vetorial
G(\overline{r}|\overline{r}')
           - função de Green no espaço livre
H
           - campo magnético vetorial
           - altura do k-esimo elemento
h_k
          - corrente no i-esimo elemento
Ii(z_i^!)
\overline{J}(\overline{r})
           - densidade volumetrica de corrente
\overline{J}s(\overline{r})
           - densidade superficial de corrente
           - numero de elementos da antena Yagi
N
V<sub>02</sub>
           - tensão de excitação
           - número de onda no meio
β
           - permitividade eletrica do meio
           - impedância característica do meio
           - comprimento de onda no meio
λ
           - permeabilidade magnética do meio
           - potencial escalar
           - frequência da onda eletromagnética, em radianos por segundo
```

LISTA DE FIGURAS

Figura	1.1	-	Antena Yagi convencional	1
Figura	11.1	-	Sistema real de alimentação de uma antena	5
Figura	11.2	-	Distância R _{ki} e R _θ	9
Figura	17.1	=	Coordenadas polares para antena Yagi de 4 elementos	21
Figura	VII.1	-	Diagrama esquemático do programa desenvolvido pa	
			ra otimização da antena Yagi-Uda	44
Figura	VII.2	-	Integração pelo método citado por Kajfez	46
Figura	VII.3	-	Variação da diretividade com o raio dos elementos.	47
Figura	VII.4		Resposta em frequência de uma antena Yagi enco <u>n</u>	
			trado por Kajfez	48
Figura	VIII.	-	Diagrama de irradiação no plano E de uma antena	
			de 8 elementos com espaçamentos e alturas dos $d\underline{i}$	
			retores uniformes	53
Figura	VIII.2	-	Diagrama de irradiação no plano H de uma antena	
			de 8 elementos com espaçamentos e alturas dos $d\underline{i}$	
			retores uniformes	54
Figura	VIII.3	-	Diagrama de irradiação no plano E de uma antena	
			otimizada de 8 elementos	55
Figura	VIII.4	_	Diagrama de irradiação no plano H de uma antena	
			otimizada de 8 elementos	56

CAPITULO I

INTRODUÇÃO

As antenas Yagi-Uda são bastante usadas na prática devido à simplicidade de fabricação e ao ganho relativamente alto, apesar da sua fai xa estreita de operação (Jasik, 1961). Uma antena Yagi convencional, con forme Figura I.1, consiste de N elementos cilindricos dispostos paralelamen te dos quais apenas o segundo é excitado por uma tensão externa e por essa razão denominado elemento excitador. Os demais elementos são parasitas sen do que o primeiro é chamado de elemento refletor enquanto os outros são sim plesmente elementos diretores.

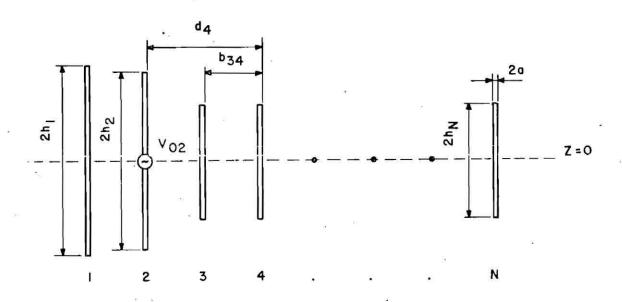


Fig. I.1 - Antena Yagi-Uda Convencional

Até recentemente, as dificuldades existentes na solução ana lítica de sistemas de equações integrais impediam um estudo teórico relativamente preciso de uma antena deste tipo. Assim sendo, para qualquer proje to da mesma havia necessidade de recorrer-se a dados experimentais. É facil imaginar a ineficiência ou mesmo as dificuldades existentes na determinação empírica de um configuração adequada de uma Yagi, por exemplo, de 8 elementos. Neste caso, mesmo excluídas as variações dos diâmetros dos elementos, restam ainda 15 variáveis (8 alturas e 7 espaçamentos entre os elementos).

Com o aperfeiçoamento dos computadores modernos, atualmente estes sistemas de equações integrais podem ser resolvidos numericamente. Existem varios metodos de resolução numerica de equações integrais encon tradas no estudo de antenas Yagi, mas neste trabalho é utilizada a teoria desenvolvida por King e seus associados, onde a distribuição de corrente num elemento da antena é aproximada por três termos trigonometricos.

Duas partes distintas são identificaveis no presente estudo: a primeira refere-se à determinação da distribuição de correntes nos ele mentos da antena através da solução de um sistema linear de equações, en quanto a segunda consiste na utilização do método da perturbação idealiza do por Chen e Cheng, para a obtenção das alturas e espaçamentos que maximizam a diretividade.

CAPITULO II

DERIVAÇÃO DE UM SISTEMA DE EQUAÇÕES INTEGRAIS

Considerando propagação num meio homogêneo e assumindo tam bém uma dependência harmônica no tempo da forma $e^{\mathbf{j}\omega t}$ resultam das equações de Maxwell as seguintes expressões para o campo elétrico \overline{E} e o campo magnético \overline{H} (veja V. Bladel, 1964):

$$\overline{H} = \frac{1}{\mu} \nabla \times \overline{A}$$
 (II.1)

$$\overline{\mathbf{E}} = -\nabla \phi - \mathbf{j} \omega \overline{\mathbf{A}} \tag{II.2}$$

sendo

 μ = permeabilidade magnética do meio

 ϕ = potencial escalar

 \overline{A} = potencial vetorial

Os potenciais são dados por:

$$\overline{A}(\overline{r}) = \mu \iiint \overline{J}(\overline{r}') G(\overline{r}|\overline{r}') dV'$$
 (II.3)

$$\phi(\overline{r}) = -\frac{\nabla . \overline{A} (\overline{r})}{i\omega \, \mu \, \epsilon} \quad \text{(condição de Lorentz)}$$
 (II.4)

onde $\overline{J}(\overline{r})$ representa a densidade volumetrica de correntes, ε é a permitivi dade do meio e $G(\overline{r}|\overline{r}')$ é a função de Green no espaço livre, ou seja $G(\overline{r}|\overline{r}') = \exp(-j\beta|\overline{r}-\overline{r}'|)/4\pi|\overline{r}-\overline{r}'|$

Das expressões acima pode-se notar que os campos eletromag néticos são determinados uma vez que se conheça a distribuição de correntes $\overline{J(r')}$.

Numa antena Yagi, as correntes se distribuem apenas nos N condutores cilíndricos dispostos paralelamente e, ao se admitir que tais condutores sejam de perdas desprezíveis (implicando no fluxo de correntes pelas N superfícies metalicas), conclui-se que:

$$\overline{A}(\overline{r}) = \mu \sum_{i=1}^{N} \left\{ J_{si}(\overline{r}')G(\overline{r}|\overline{r}') ds' \right\}$$
(II.5)

sendo \overline{J}_{si} a densidade superficial de corrente no elemento i da antena.

Devido às dificuldades matemáticas, certas simplificações são necessárias para que se torne possível a determinação da distribuição de correntes nos elementos da antena e uma destas aproximações está relacionada com a excitação da mesma.

Normalmente entre a antena e o gerador sempre existe uma $1\underline{i}$ nha de transmissão como na Figura II.1.

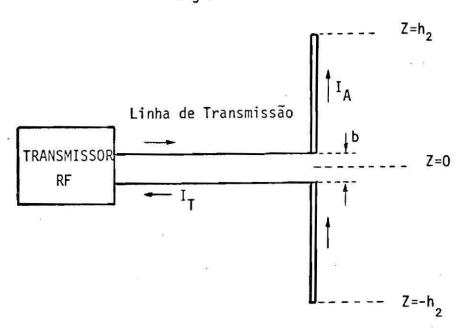


Fig. II.1 - Sistema Real de Alimentação de uma Antena

No entanto devido à complexidade da condição de contorno, há necessidade de se recorrer ao modelo teórico de excitação que substitua com boa precisão o sistema composto por gerador e linha de transmis são. Um modelo bastante usado por sua simplicidade é o gerador de função delta e um estudo detalhado desse modelo é encontrado em King (1956). Se gundo King, vários resultados teóricos obtidos a partir do modelo propos to podem ser reproduzidos experimentalmente se o afastamento de alimentação ("gap") do elemento excitador for bem pequeno comparado com o comprimento de onda ou seja, b << \lambda.

Segundo o modelo do gerador delta, o campo elétrico tangen

cial na superficie externa do cilindro excitador e nulo exceto na região de alimentação, onde a direção do campo elétrico e axial, ou seja:

$$E_z = -V_{02} \delta(z_2)$$
 (II.6)

onde V_{02} e a tensão de alimentação e $\delta(z_2)$ e a função delta representando o afastamento entre condutores no elemento excitador ("gap").

Outra simplificação utilizada em antenas Yagi convencionais resulta do fato das dimensões transversais dos elementos serem desprezīveis em relação à distância entre os mesmos. Nestas circunstâncias, pode-se assumir que as correntes \overline{J}_{si} estejam com fluxo axial sem nenhuma dependência angular (King, 1956; Richmond, 1965), isto \overline{e}

$$\overline{J}_{si}(\overline{r}') = J_{i}(z') \hat{z}$$
 (II.7)

Com essa distribuição de corrente, resulta para o potencial vetorial:

$$\overline{A}(\overline{r}) = A_{z} \hat{z} = \mu \hat{z} \sum_{i=1}^{N} \begin{pmatrix} h_{i} \\ -h_{i} \end{pmatrix} C_{i}$$

$$J_{i}(z')G(z,c;z',c')dc'dz' \qquad (II.8)$$

onde a integral $\oint_C dc'$ \bar{e} considerada no contorno C_i do i- \bar{e} simo elemento e $G(z,c;z',c') = G(\bar{r}|\bar{r}')$.

Das considerações acima para as correntes e para o potencial vetorial resulta, das Equações (2) e (4),a seguinte equação diferencial:

$$\frac{\partial^2 A_z}{\partial z^2} + \beta^2 A_z = -\frac{\beta^2}{j\omega} E_z$$
 (II.9)

onde β \bar{e} o número de onda no meio ou seja $\beta^2 = \omega^2 \mu \epsilon$

Sendo as alturas dos elementos bem maiores que seus diâme tros, os efeitos das bordas são desprezados, resultando das Equações II.6 e II.9 a seguinte equação para o potencial vetorial num ponto qualquer do elemento excitador:

$$\frac{d^{2}A_{z}}{dz^{2}} + \beta^{2}A_{z} = \frac{\beta^{2}}{j\omega} \quad V_{02} \quad \delta(z_{2})$$
 (II.10)

A solução analítica dessa equação diferencial (Hildebrand, 1962) é dada por:

$$A_z = K_1 \cos \beta z_2 + K_2 \sin \beta z_2 - \frac{j_\mu V_{02}}{2\zeta} = \sin \beta |z_2|$$
 (II.11)

onde ς é a impedância característica do meio, ς = $\sqrt{\frac{\mu}{\epsilon}}$ $\stackrel{2}{=}$ 120 π ohms

A antena Yagi possui estrutura simetrica segundo o eixo z=0 conforme Figura I.l. Desta simetria geometrica do modelo de excitação idea lizado resulta a paridade do potencial vetorial com relação a z, isto \tilde{E} $K_2 = 0$, ou:

$$A_z = K_1 \cos \beta z_2 - \frac{j_\mu V_{02}}{2c} \cdot \sin \beta |z_2|$$
 (II.12)

Das Equações (8) e (12) resulta a primeira equação integral da forma:

$$\sum_{i=1}^{N} \int_{-h_{i}}^{h_{i}} \oint_{C_{i}} J_{i}(z_{i}') G(z_{2},c_{2};z_{i}',c_{i}') dc_{i}' dz_{i}' =$$

$$= -\frac{j}{\zeta} (C_2 \cos \beta z_2 + \frac{1}{2} V_{02} \sin \beta |z_2|)$$
 (II.13)

Considerando as condições de contorno para (N-1) superfícies cilíndricas dos elementos parasitas, pode-se encontrar as (N-1) equações in tegrais adicionais que possuem forma análoga à Equação II.13. Sucintamente podemos escrever este conjunto de N equações na forma geral:

$$\sum_{i=1}^{N} \int_{-h_i}^{h_i} \oint_{C_i} J_i(z_i') G(z_k, c_k; z_i', c_i') dc_i' dz_i' =$$

=
$$-\frac{j}{\zeta}$$
 ($C_k \cos \beta z_k + \frac{1}{2} V_{ok} \sin \beta |z_k|$) (II.14)

$$K = 1, 2, ..., N$$

Devido \bar{a} existência da excitação apenas no elemento 2, $V_{ok}=0$ para K \neq 2. Como os afastamentos entre os elementos são bem maiores que os diâmetros dos mesmos, a equação integral acima tomara a forma:

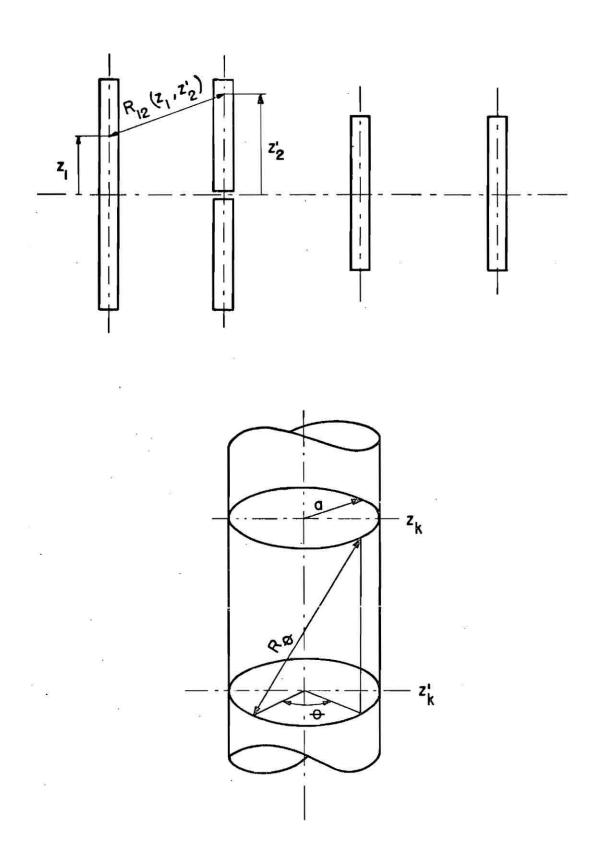


Fig. II.2 - Distâncias R_{ki} e R_{θ} .

$$\sum_{i=1}^{N} \int_{-h_{i}}^{h_{i}} I_{i}(z_{i}') K_{ki}(z_{k},z_{i}')dz_{i}' = -\frac{j4\pi}{\zeta} (C_{k} \cos\beta z_{k} + \frac{1}{2} V_{ok} \sin\beta |z_{k}|)$$
(II.15)

sendo:

$$I_{i}(z_{i}') = 2\pi a J_{i}(z_{i}')$$
 (II.16)

$$K_{ki}(z_k,z_i') = \frac{e^{-j\beta R}ki}{R_{ki}} \qquad i \neq K$$
 (II.17)

$$R_{kj} = \sqrt{(z_k - z_j^i)^2 + b_{kj}^2} \quad i \neq K$$
 (II.18)

$$K_{kk}(z_k, z_k') = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-j\beta R_{\Theta}}}{R_{\Theta}} d\Theta$$
 (II.19)

$$R_{\Theta} = \sqrt{(z_k - z_k^{\dagger})^2 + (2a \text{ sen } \frac{\Theta}{2})^2}$$
 (II.20)

Uma aproximação utilizada para antenas filiformes (King,1956; Mei, 1965) implica em:

$$K_{kk}(z_k,z_k') = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-j\beta R_{\Theta}}}{R_{\Theta}} d\Theta \simeq \frac{e^{-j\beta R_{kk}}}{R_{kk}}$$
 (II.21)

onde:

$$R_{kk} = \sqrt{(z_k - z_k')^2 + a^2}$$
 (II.22)

Esta aproximação seria exata se tôda a corrente nos condutores cilíndricos estivesse concentrada nos seus eixos. Como nos casos reais isto não ocorre, a aproximação so \tilde{e} valida para elementos com diâmetros bem menores que o comprimento de onda λ .

A constante C_k pode ser eliminada, originando o conjunto de N equações integrais equivalente a II.15:

$$\sum_{i=1}^{N} \int_{-h_{i}}^{h_{i}} I_{i}(z_{i}^{i}) K_{kid}(z_{k}, z_{i}^{i}) dz_{i}^{i} = \frac{j4\pi}{\zeta \cos \beta h_{k}} \left(\frac{1}{2} V_{ok} M_{ozk} + U_{k} F_{ozk}\right)$$
(II.23)

onde:

$$M_{ozk} = sen\beta(h_k - |z_k|)$$
 (II.24)

$$F_{ozk} = cos\beta z_k - cos\beta h_k$$
 (II.25)

$$K_{kid}(z_k, z_i') = K_{ki}(z_k, z_i') - K_{ki}(h_k, z_i')$$
 (II.26)

$$K_{ki}(z_k, z_i') = \frac{e^{-j\beta R_{ki}(z_k)}}{R_{ki}(z_k)}$$
 (II.27)

$$R_{ki}(z_k) = \sqrt{(z_k - z_i^1)^2 + b_{ki}^2}$$
 (II.28)

$$U_{k} = -\frac{j\zeta}{4\pi} \sum_{i=1}^{N} \int_{-h_{k}}^{h_{k}} I_{i}(z_{i}^{i}) K_{ki}(h_{k}, z_{i}^{i}) dz_{i}^{i}$$
 (II.29)

Observação: Quando i=k, toma-se b_{kk}= a na Expressão II.28.

CAPÍTULO III

DISTRIBUIÇÃO DE CORRENTES NOS ELEMENTOS DA ANTENA YAGI

A resolução de sistemas de equações integrais dadas por II.23 số é possível mediante uso de algum método aproximado. Dentre esses métodos, o de King-Middleton é o mais adequado devido a sua simplicidade.

Segundo a teoria de três termos de King, (King et al.,1968) a distribuição de corrente num elemento da antena pode ser representada pela soma de três termos trigonométricos, ou seja:

$$I_{k}(z_{k}) = \delta_{k_{2}}A_{k}M_{ozk} + B_{k}F_{ozk} + D_{k}H_{ozk}$$
 (III.1)

onde:

$$\delta_{ki} = \begin{cases} 1 \text{ se } k = i \\ 0 \text{ se } k \neq i \end{cases}$$
 (III.2)

$$M_{ozk} = sen\beta(h_k - |z_k|)$$
 (III.3)

$$F_{ozk} = \cos\beta z_k - \cos\beta h_k$$
 (III.4)

$$H_{ozk} = \cos \frac{1}{2} \beta z_k - \cos \frac{1}{2} \beta h_k \qquad (III.5)$$

As funções M_{ozk} , F_{ozk} e H_{ozk} são chamadas de funções de distribuição de corrente enquanto A_k , B_k e D_k são os coeficientes de distribuição de corrente no K-ésimo elemento.

3.1 - APROXIMAÇÃO DAS INTEGRAIS

Conforme King (1968), quando as alturas dos elementos forem tais que $\beta h \lesssim 5\pi/4$, as características especiais dos cemes das equações integrais K_{kid} possibilitam a efetuação de certas aproximações:

$$W_{kkV}(z_k) = \begin{cases} h_k & M_{oz'k} & K_{kkd}(z_k, z')dz' \approx \Psi_{kkdV}^{m} & M_{ozk} + \Psi_{kkdV}^{h} & H_{ozk} \end{cases}$$
(III.6)

$$W_{kiD}(z_k) = \begin{cases} h_i & H_{oz'i}K_{kid}(z_k,z')dz' \approx \Psi_{kidD}^f F_{ozk} + \Psi_{kidD}^h H_{ozk} \\ -h_i & \end{cases}$$
(III.8)

$$W_{kiV}(z_k) = \int_{-h_i}^{h_i} M_{oz'i}K_{kid}(z_k,z')dz' \approx \Psi_{kidV}^f F_{ozk} + \Psi_{kidV}^h H_{ozk}$$

$$i \neq k \qquad (III.9)$$

As constantes Ψ podem ser determinadas pelo metodo de sol \underline{u}

ção em pontos discretos ("point matching method"). Em particular, tomando-se os pontos $z_k = 0$ e $z_k = h_k/2$ resulta:

$$\begin{split} \Psi_{kkdV}^{m} &= \Delta_{1}^{-1} \quad \left\{ W_{kkV}(0) \; \left(\cos \frac{1}{4} \; \beta h_{k} - \cos \frac{1}{2} \; \beta h_{k} \right) - \right. \\ &\left. - W_{kkV}(\frac{h_{k}}{2}) \; \left(1 - \cos \frac{1}{2} \; \beta h_{k} \right) \right\} \qquad \qquad (III.10) \\ \Psi_{kkdV}^{h} &= \Delta_{1}^{-1} \quad \left\{ W_{kkV}(\frac{h_{k}}{2}) \; \operatorname{sen}\beta h_{k} - W_{kkV}(0) \; \operatorname{sen} \frac{1}{2} \; \beta h_{k} \right\} \; (III.11) \\ \Psi_{kidx}^{f} &= \Delta_{2}^{-1} \quad \left\{ W_{kix}(0) \; \left(\cos \frac{1}{4} \; \beta h_{k} - \cos \frac{1}{2} \; \beta h_{k} \right) - \right. \\ &\left. - W_{kix}(\frac{h_{k}}{2}) \; \left(1 - \cos \frac{1}{2} \; \beta h_{k} \right) \right\} \qquad \qquad (III.12) \\ \Psi_{kidx}^{h} &= \Delta_{2}^{-1} \quad \left\{ W_{kix}(\frac{h_{k}}{2}) \; \left(1 - \cos \beta h_{k} \right) - W_{kix}(0) \; \left(\cos \frac{1}{2} \; \beta h_{k} - \cos \beta h_{k} \right) \right\} \end{split}$$

onde:

 $-\cos \beta h_k$

$$x = \begin{cases} \text{U, D ou V para i,k quaisquer em III.12} \\ \text{U ou D para i,k quaisquer, ou V para i} \neq \text{k em III.13} \end{cases}$$

$$\Delta_1 = \text{sen } \beta h_k \quad (\cos \frac{1}{4} - \beta h_k - \cos \frac{1}{2} - \beta h_k) - \text{sen} \frac{1}{2} - \beta h_k (1 - \cos \frac{1}{2} - \beta h_k) \qquad (\text{III.14})$$

(III.13)

$$\Delta_{2} = (1 - \cos \beta h_{k})(\cos \frac{1}{4} \beta h_{k} - \cos \frac{1}{2} \beta h_{k}) - (\cos \frac{1}{2} \beta h_{k} - \cos \beta h_{k})(1 - \cos \frac{1}{2} \beta h_{k})$$

$$- \cos \beta h_{k})(1 - \cos \frac{1}{2} \beta h_{k})$$
(III.15)

3.2 - DETERMINAÇÃO DOS COEFICIENTES DE DISTRÍBUIÇÃO DE CORRENTES

Substituindo as expressões de correntes III.l nas equações integrais II.23, encontraremos equações que, apos a identificação dos termos, darão origem a um sistema de equações lineares cuja solução resulta nos coeficientes de distribuição de correntes.

$$A_{2} \int_{-h_{2}}^{h_{2}} M_{oz'2} K_{k2d} (z_{k},z')dz' + \sum_{i=1}^{N} \left[B_{i} \int_{-h_{i}}^{h_{i}} F_{oz'i} K_{kid}(z_{k},z')dz' + \sum_{i=1}^{N} \left[B_{i} \int_{-h_{i}}^{h_{i}} F_$$

onde $V_{ok} = 0$ para $k \neq 2$

Aplicando-se as aproximações III.6 - III.9 à Expressão III.16

tem-se:

$$A_{2}(\Psi_{22dV}^{m}M_{oz2} + \Psi_{22dV}^{h}H_{oz2}) + \sum_{i=1}^{N} \left[B_{i}(\Psi_{2idu}^{f}F_{oz2} + \Psi_{2idu}^{h}H_{oz2}) + D_{i}(\Psi_{2idD}^{f}F_{oz2} + \Psi_{2idD}^{h}H_{oz2}) \right] = \frac{j4\pi}{\varsigma cos\beta h_{k}} \left(\frac{1}{2} V_{o2}M_{oz2} + U_{2}F_{oz2} \right)$$
(III.17)

$$A_{2}(\Psi_{k2dV}^{f} F_{ozk} + \Psi_{k2dV}^{h} H_{ozk}) + \sum_{i=1}^{N} \left[B_{i}(\Psi_{kidU}^{f} F_{ozk} + \Psi_{kidU}^{h} H_{ozk}) + D_{i}(\Psi_{kidD}^{f} F_{ozk} + \Psi_{kidD}^{h} H_{ozk}) \right] = \frac{j4\pi}{\varsigma \cos\beta h_{k}} U_{k} F_{ozk}$$

$$k = 1,3,4,...,N$$
(III.18)

Identificando-se cada um dos termos da expansão da distribuição de correntes vem:

$$A_2 = \frac{j 2\pi V_{02}}{\varsigma \cos \beta h_2 \Psi_{22dv}^m}$$
 (III.19)

$$\left[A_{2}(1-\delta_{k2})\Psi_{k2dV}^{f} + \sum_{i=1}^{N} (B_{i}\Psi_{kidU}^{f} + D_{i}\Psi_{kidD}^{f})\right] cos\betah_{k} - \frac{j4\pi}{\zeta}U_{k}=0$$
(III.20)

$$A_2 \Psi_{k2dV}^{h} + \sum_{i=1}^{N} (B_i \Psi_{kidU}^{h} + D_i \Psi_{kidD}^{h}) = 0$$
 (III.21)

A expressão de U $_{\mathbf{k}}$ resulta da substituição de III.l em $\,$ II.29 ou seja:

$$U_{k} = -\frac{j\zeta}{4\pi} \left\{ A_{2} \Psi_{k_{2}V}(h_{k}) + \sum_{i=1}^{N} \left[B_{i}\Psi_{kiU}(h_{k}) + D_{i}\Psi_{kiD}(h_{k}) \right] \right\} (III.22)$$

nde:

$$\Psi_{kiV}(h_k) = \begin{cases} h_i & M_{oz'i} K_{ki}(h_k,z')dz' \\ -h_i & \end{cases}$$
 (III.23)

$$\Psi_{kiU}(h_k) = \int_{-h_i}^{h_i} F_{oz'i} K_{ki} (h_k,z')dz'$$
 (III.24)

$$\Psi_{kiD}(h_k) = \int_{-h_i}^{h_i} H_{oz'i} K_{ki}(h_k,z')dz' \qquad (III.25)$$

De III.22 e III.20 vem portanto:

$$A_{2} \left[\Psi_{k_{2}V}(h_{k}) - (1 - \delta_{k_{2}}) \Psi_{k_{2}dV}^{f} \cosh_{k} \right] + \sum_{i=1}^{N} \left\{ B_{i} \left[\Psi_{k_{1}U}(h_{k}) - \Psi_{k_{1}U}^{f} \cosh_{k} \right] + D_{i} \left[\Psi_{k_{1}D}(h_{k}) - \Psi_{k_{1}dD}^{f} \cosh_{k} \right] \right\} = 0$$
(III.26)

Introduzindo-se a notação:

$$\phi_{k2V} = \Psi_{k2V}(h_k) - (1 - \delta_{k2}) \Psi_{k2dV}^{f} \cos \beta h_k$$
 (III.27)

$$\phi_{kiU} = \Psi_{kiU}(h_k) - \Psi_{kidU}^f \cos\beta h_k \qquad (III.28)$$

$$\phi_{kiD} = \Psi_{kiD}(h_k) - \Psi_{kidD}^f \cos \beta h_k$$
 (III.29)

resulta das Expressões III.21 e III.26 o seguinte sistema de equações:

$$\sum_{i=1}^{N} (\phi_{kiU}B_i + \phi_{kiD}D_i) = -\phi_{k2V}A_2 \quad k=1,2,...,N$$
 (III.30)

$$\sum_{i=1}^{N} (\Psi_{kidU}^{h} B_{i} + \Psi_{kidD}^{h} D_{i}) = -\Psi_{k2dV}^{h} A_{2} \quad k=1,2,...,N$$
 (III.31)

cuja forma matricial é dada por:

$$[\phi_U]$$
 {B} + $[\phi_D]$ {D} = - { ϕ_{2V} } A₂ (III.32)

A solução deste sistema fornece os coeficientes de distribu \underline{i} ção B_k e D_k . Estes coeficientes juntamente com a Expressão III.19 para o coeficiente A_2 , substituídos na Equação III.1, determinam as correntes em cada um dos elementos da antena.

CAPITULO IV

CAMPO DISTANTE E DIRETIVIDADE DA ANTENA YAGI

4.1 - EXPRESSÃO PARA O CAMPO DISTANTE

Conhecendo-se as correntes nos elementos da antena Yagi, o campo distante pode ser expresso por:

$$E_{\Theta} (R_{2},\Theta,\phi) = \frac{j\beta\zeta}{4\pi} \operatorname{sen}\Theta \sum_{i=1}^{N} \frac{e^{-j\beta R}i}{R_{i}} \int_{-h_{i}}^{h_{i}} I_{zi}(z') e^{j\beta z'\cos\Theta} dz'$$

(IV.1)

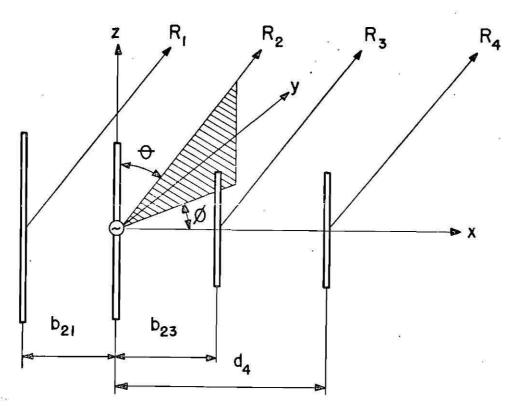


Fig. IV.1 - Coordenadas polares para antena Yagi de 4 elementos

Introduzindo-se a distribuição de correntes representada por III.l obtém-se:

$$E_{\Theta} (R_{2},\Theta,\phi) = \frac{j\zeta}{2\pi} \left\{ A_{2} \frac{e^{-j\beta R_{2}}}{R_{2}} F_{m} (\Theta,\beta h_{2}) + \sum_{i=1}^{N} \frac{e^{-j\beta R_{i}}}{R_{i}} \left[B_{i} G_{m} (\Theta,\beta h_{i}) + D_{i}D_{m} (\Theta,\beta h_{i}) \right] \right\}$$

$$(IV.2)$$

onde:

$$F_{m}(\Theta,\beta h) = \frac{\beta}{2} \operatorname{sen}\Theta \int_{-h}^{h} M_{OZ2} e^{j\beta z'\cos\Theta} dz' = \frac{\cos(\beta h \cos\Theta) - \cos\beta h}{\sin\Theta}$$
(IV.3)

$$G_{m}(\Theta,\beta h) = \frac{\beta}{2} \quad \text{sen}\Theta \int_{-h}^{h} F_{\text{ozi}} e^{j\beta z'\cos\Theta} dz' =$$

$$= \frac{\text{sen}\beta h \cos(\beta h \cos\Theta) \cos\Theta - \cos\beta h \sin(\beta h \cos\Theta)}{\text{sen}\Theta \cos\Theta}$$
(IV.4)

$$D_{m}(\Theta,\beta h) = \frac{\beta}{2} \quad \text{sen } \Theta \quad \begin{cases} h \\ -h \end{cases} \quad H_{OZi} \quad e^{j\beta z'\cos\Theta} \quad dz' =$$

$$= \left[\frac{2 \cos(\beta h \cos\Theta) \, \sin\frac{1}{2} \, \beta h - 4 \, \sin(\beta h \cos\Theta) \, \cos\Theta\cos\frac{1}{2} \, \beta h}{1 - 4 \, \cos^{2}\Theta} \right]$$

$$-\frac{\operatorname{sen}(\beta h \cos \Theta) \cos \frac{1}{2} \beta h}{\cos \Theta} \int \sin \Theta$$
 (IV.5)

De IV.2 vem:

$$E_{\Theta} (R_{2},\Theta,\phi) = \frac{j\varsigma}{2\pi} \frac{e^{-j\beta R_{2}}}{R_{2}} \left\{ A_{2} F_{m}(\Theta,\beta h_{2}) + \sum_{i=1}^{N} e^{j\beta(R_{i} - R_{2})} \left[B_{i}G_{m}(\Theta,\beta h_{i}) + D_{i}D_{m}(\Theta,\beta h_{i}) \right] \right\}$$

$$(IV.6)$$

sendo:

$$R_i - R_2 = (d_2 - d_i) \text{ sen}\Theta \cos \phi = b_{2i} \text{ sen}\Theta \cos \phi$$
 (IV.7)

4.2 - DIRETIVIDADE DA ANTENA YAGI

O vetor de Poynting num ponto distante da antena é dado por:

$$|S_{R}(R,\Theta,\phi)| = \frac{|E_{\Theta}(R,\Theta,\phi)|^{2}}{2\varsigma}$$
 (IV.8)

A diretividade de uma antena na direção $(0_0,\phi_0)$ é representa da por:

$$D(\Theta_0, \Phi_0) = \frac{4\pi R^2 |S_R(R, \Theta_0, \Phi_0)|}{P_I}$$
 (IV.9)

Sendo desprezadas as perdas ôhmicas nos elementos, a potên cia irradiada pela antena \tilde{e} exatamente igual \tilde{a} potência fornecida pelo gera dor em z=0, ou seja:

$$P_{I} = \frac{1}{2} R_{e} \left[V_{02} I_{22}^{*} (0) \right]$$
 (IV.10)

Como $E_{_{\mbox{\scriptsize }\Theta}}$ (R,0,4) é inversamente proporcional a R, resulta para a diretividade:

$$D(\Theta_{O}, \phi_{O}) = \frac{|E_{\Theta}(\Theta_{O}, \phi_{O})|^{2}}{60 P_{I}}$$
 (IV.11)

Onde $|E_{\Theta}(\Theta_0, \phi_0)|$ e obtido de IV.6, isto e:

$$|E_{\Theta}(\Theta_{O}, \Phi_{O})| = 60 \left| A_{2}F_{m}(\Theta_{O}, \beta h_{2}) + \sum_{i=1}^{N} e^{-j\beta(R_{i}-R_{2})} \left[B_{i}G_{m}(\Theta_{O}, \beta h_{i}) + D_{i}D_{m}(\Theta_{O}, \beta h_{i}) \right] \right|$$

$$(IV.12)$$

Um parametro muito importante no projeto de antenas \tilde{e} a rela \tilde{c} \tilde{c} frente-costas("front-to-back ratio"). No caso de antenas Yagi \tilde{e} dado por:

RFC = 20 Log
$$\frac{|E_{\Theta}(\frac{\pi}{2},0)|}{|E_{\Theta}(\frac{\pi}{2},\pi)|}$$

CAPITULO V

METODO DA PERTURBAÇÃO APLICADO AOS ESPACAMENTOS ENTRE OS ELEMENTOS

A otimização dos espaçamentos no sentido de se obter um $g_{\underline{a}}$ nho máximo pode ser conseguida pelo método de perturbação, que consiste em realizar pequenas variações nas posições dos elementos da antena representadas pelo vetor { Δd } cujos componentes são Δd_k .

Para se estudar a variação da diretividade, em relação à perturbação das coordenadas dos elementos, é preciso analisar o comportamento do campo distante bem como da potência irradiada em relação às variaveis d_k . A não ser pelo fator exp $(-j\beta(d_2-d_1) \text{ sen}\theta\cos\phi)$, como pode ser observado na Expressão IV.6, toda a variação tanto do campo distante como da potência irradiada é devida às variações dos coeficientes de distribuição de correntes.

5.1 - DEDUÇÃO DOS NOVOS COEFICIENTES DE DISTRIBUIÇÃO DE CORRENTES

As distribuições de correntes são determinadas resolvendose o sistema de equações III.32 e III.33. Tanto os coeficientes desse sis tema linear como as constantes são combinações lineares das integrais do tipo abaixo:

$$I = \int_{-h_{i}}^{h_{i}} S_{m}(h_{i},z') K_{ki} (z_{k},z') dz'$$
 (V.1)

onde:

$$S_{1}(h_{i},z') = M_{ozi} = sen \beta (h_{i} - |z'|)$$

$$S_{2}(h_{i},z') = F_{ozi} = cos \beta z' - cos \beta h_{i}$$

$$S_{3}(h_{i},z') = H_{ozi} = cos \frac{1}{2} \beta z' - cos \frac{1}{2} \beta h_{i}$$

$$K_{ki}(z_{k},z') = \frac{e^{-j\beta R}ki}{R_{ki}}$$

$$R_{ki} = \sqrt{(z_{k} - z_{i}')^{2} + b_{ki}^{2}}$$

$$b_{ki} = \begin{cases} d_{k} - d_{i} & i \neq k \\ a & i = k \end{cases}$$

Como as funções $S_m(h_i,z')$ independem de d_k , toda a variação da integral V.I \in devida a $K_{ki}(z_k,z')$. Assim a integral V.I, apos a perturbação \in dada por:

$$I^{P} = I + \Delta I = I + \frac{\partial I}{\partial d_{k}} \Delta d_{k} + \frac{\partial I}{\partial d_{i}} \Delta d_{i}$$
 (V.2)

onde:

$$\frac{\partial I}{\partial d_k} = -\frac{\partial I}{\partial d_i} = \begin{cases} h_i \\ -h_i \end{cases} S_m(h_i, z') \frac{\partial K_{ki}}{\partial d_k} dz'$$
 (V.3)

$$\frac{\partial K_{ki}}{\partial d_k} = -b_{ki}(j\beta + \frac{1}{R_{ki}}) \frac{K_{ki}}{R_{ki}}$$
 (V.4)

Logo a integral V.I apos a perturbação dos espaçamentos serã dada por:

$$I^{P} = I - b_{ki} (\Delta d_{k} - \Delta d_{i}) \int_{-h_{i}}^{h_{i}} S_{m} (h_{i}, z') (j\beta + \frac{1}{R_{ki}}) \frac{K_{ki}}{R_{ki}} dz' \qquad (V.5)$$

O termo adicional devido as perturbações \tilde{e} proporcional a $(\Delta d_k - \Delta d_i)$; desta forma, em consequência da linearidade de ϕ e Ψ em relação a integrais da forma geral V.I, tem-se

$$\left[\Delta\phi_{x}\right]_{ki} = \left(\Delta d_{k} - \Delta d_{i}\right) \frac{\partial \phi_{kix}}{\partial d_{k}} \qquad x = U,D \qquad (V.6)$$

$$\left[\Delta \Psi_{dx}^{h}\right]_{ki} = \left(\Delta d_{k} - \Delta d_{i}\right) \frac{\partial \Psi_{kidx}^{h}}{\partial d_{k}} \tag{V.7}$$

$$\{ \Delta \phi_2 \mathbf{V} \}_{\mathbf{k}} = (\Delta \mathbf{d}_{\mathbf{k}} - \Delta \mathbf{d}_2) \frac{\partial \phi_{\mathbf{k}_2} \mathbf{V}}{\partial \mathbf{d}_{\mathbf{k}}}$$
 (V.8)

$$\{ \Delta \Psi_{2dV}^{h} \}_{k} = (\Delta d_{k} - \Delta d_{2}) \frac{\partial \Psi_{k2dV}^{h}}{\partial d_{k}}$$
 (V.9)

As expressões para as derivadas em relação a d $_k$ de $^{\varphi}$ kix, $^{\Psi}$ h constam no Apêndice A.

Os novos coeficientes da matriz podem ser expressos sob a seguinte forma:

$$\left[\phi_{\mathbf{x}}\right]^{p} = \left[\phi_{\mathbf{x}}\right] + \left[\Delta\phi_{\mathbf{x}}\right] \qquad \mathbf{x} = \mathbf{U}, \mathbf{D}$$
 (V.10)

$$[\Psi_{dx}^{h}]^{p} = [\Psi_{dx}^{h}] + [\Delta \Psi_{dx}^{h}] \qquad x = U,D$$
 (V.11)

$$\{\Psi_{2dV}^{h}\}^{p} = \{\Psi_{2dV}^{h}\} + \{\Delta\Psi_{2dV}^{h}\}$$
 (V.13)

Devido \tilde{a} perturbação dos espaçamentos, os coeficientes de distribuição de correntes sofrem modificações de modo que:

$$\{B\}^{p} = \{B\} + \{\Delta B\}$$
 (V.14)

$$\{D\}^p = \{D\} + \{\Delta D\}$$
 (V.15)

Substituindo-se as expressões V.10 a V.15 no sistema de equa ções III.32 e III.33 e desprezando-se as variações de segunda ordem resulta:

Com a introdução das Expressões V.6 a V.9 em V.16 e V.17 tem -se:

onde as expressões dos elementos das matrizes $[P_U]$ e $[P_D]$ são obtidas no Apêndice B.

Os incrementos { ΔB } e { ΔD } resultam portanto da inversão da matriz, ou seja:

$$\begin{cases} \left\{ \Delta B \right\} \\ \left\{ \Delta D \right\} \end{cases} = \begin{bmatrix} \left[\phi_{U} \right] & \left[\phi_{D} \right] \\ \left[\psi_{dU}^{h} \right] & \left[\psi_{dD}^{h} \right] \end{bmatrix}^{-1} \begin{bmatrix} \left[P_{U} \right] \\ \left[P_{D} \right] \end{bmatrix} \left\{ \Delta d \right\} = \begin{bmatrix} \left[Q_{U} \right] \\ \left[Q_{D} \right] \end{bmatrix} \left\{ \Delta d \right\} \tag{V.20}$$

5.2 - CAMPO DISTANTE APÓS A PERTURBAÇÃO

Pela escolha da origem do sistema de coordenadas, $d_2=0$ e, ao se tomar o termo linear da expansão de Taylor, tem-se da expressão IV.6:

$$E_{\Theta}^{p} = E_{\Theta} + \frac{j\zeta}{2\pi} = \frac{e^{-j\beta R}}{R} \sum_{i=1}^{N} \exp(j\beta d_{i} \operatorname{sen\Theta} \cos\phi)$$

{ jß sen0 $cos\phi [B_iG_m(\Theta,\beta h_i) + D_iD_m(\Theta,\beta h_i)]\Delta d_i +$

$$[G_{m}(\Theta,\beta h_{i})\Delta B_{i} + D_{m}(\Theta,\beta h_{i})\Delta D_{i}]$$
 (V.21)

De acordo com a V.20, ΔB_i e ΔD_i são dados por:

$$\Delta B_{i} = \sum_{k=1}^{N} [Q_{U}]_{ik} \Delta d_{k}$$
 (V.22)

$$\Delta D_{i} = \sum_{k=1}^{N} [Q_{D}]_{ik} \Delta d_{k}$$
 (V.23)

Substituindo-se V.22 e V.23 em V.21 tem-se:

$$E_{\Theta}^{p} = E_{\Theta} + \{E_{\Theta}^{i}\}^{T} \{\Delta d\}$$
 (V.24)

onde:

$$\{E_{\Theta}'\}_{k} = \frac{\partial E_{\Theta}}{\partial d_{k}} = \frac{j\zeta}{2\pi} \frac{e^{-j\beta R}}{R} \{j\beta \text{ sen}\Theta \cos\phi \exp(j\beta d_{k} \text{ sen}\Theta \cos\phi).$$

$$[B_{i}G_{m}(\Theta,\beta h_{i}) + D_{i}D_{m}(\Theta,\beta h_{i})] +$$

$$+ \sum_{i=1}^{N} \exp(j\beta d_{i} \operatorname{sen}\Theta \operatorname{cos}\Phi)(G_{m}(\Theta,\beta h_{i}) [Q_{U}]_{ik} +$$

$$D_{m}(\Theta,\beta h_{i}) [Q_{D}]_{ik}) \}$$

$$(V.25)$$

5.3 - INCREMENTO DA DIRETIVIDADE

A diretividade da antena $\bar{\rm e}$ calculada pela Formula IV.9 ou se ja:

$$D(\Theta_0, \phi_0) = \frac{|E_{\Theta}(\Theta_0, \phi_0)|^2}{60 P_{I}}$$

Apos a perturbação tem-se novo valor para a diretividade

$$D^{P}(\Theta_{O}, \Phi_{O}) = \frac{|E_{\Theta}^{P}|^{2}}{60 P_{I}^{P}}$$
 (V.26)

Da Expressão V.24 tem-se:

$$|E_{\Theta}^{p}|^{2} = |E_{\Theta}|^{2} + 2 \{\Delta d\}^{T} \{E_{1}\} + \{\Delta d\}^{T} [R_{e}E_{2}] \{\Delta d\}$$
 (V.27)

sendo:

$$\{E_1\} = R_e \{E_{\Theta} \{E_{\Theta}'\}\}\$$
 (V.28)

$$\begin{bmatrix} \mathsf{E}_2 \end{bmatrix} = \{ \mathsf{E}_\Theta' \}^* \{ \mathsf{E}_\Theta' \}^\mathsf{T} \tag{V.29}$$

Por sua vez a nova potência média irradiada é dada por:

$$P_{I}^{p} = \frac{1}{2} R_{e} \left[V_{o2}^{*} I_{2}^{p}(0) \right]$$
 (V.30)

Devido à variação dos espaçamentos, a corrente no elemento excitador e dada por:

$$I_2^p(0) = I_2(0) + F_{oz_2}(0) \Delta B_2 + H_{oz_2}(0) \Delta D_2$$
 (V.31)

Substituindo V.22 e V.23 em V.31 tem-se:

$$I_{2}^{p}(0) = I_{2}(0) + \sum_{k=1}^{N} \{ [Q_{U}]_{2k} F_{oz2}(0) + [Q_{D}]_{2k} H_{oz2}(0) \} \Delta d_{k}$$
 (V.32)

Introduzindo-se essa última expressão em V.30 tem-se:

$$P_{I}^{p} = P_{I} + \{ \Delta d \}^{T} \{ P_{I}' \}$$
 (V.33)

$$\{P_{I}^{i}\}_{k} = \frac{\partial P_{I}}{\partial d_{k}} = \frac{1}{2} V_{o2} R_{e} \{ [Q_{U}]_{2k} F_{oz2}(0) + [Q_{D}]_{2k} H_{oz2}(0) \}$$

$$(V.34)$$

Substituindo V.27 e V.33 em V.26 acha-se a expressão da nova diretividade:

$$D^{p}(\Theta_{o}, \phi_{o}) = \frac{|E_{\Theta}|^{2} + 2 \{\Delta d\}^{T} \{E_{1}\} + \{\Delta d\}^{T} [R_{e}E_{2}] \{\Delta d\}}{60 [P_{I} + \{\Delta d\}^{T} \{P'_{I}\}]}$$
 (V.35)

Portanto a variação na diretividade devido à perturbação é dada por:

$$\Delta D(\Theta_0, \phi_0) = \frac{\{\Delta d\}^T \{C\} + \{\Delta d\}^T [R_e E_2] \{\Delta d\}}{60 P_I^p}$$
 (V.36)

onde:

$$\{C\} = 2\{E_1\} - 60 D(\Theta_0, \Phi_0).\{P_1'\}$$
 (V.37)

Como $[R_e^E_2]$ é uma matriz positiva definida, a forma quadrática que se apresenta no numerador é não negativa. Além disso a potência irradiada é sempre positiva e portanto para que a diretividade cresça com a perturbação dos espaçamentos basta que $\{\Delta d\}^T$ $\{C\}$ seja positivo. Essa condição será satisfeita se:

$$\{ \Delta d \} = \alpha \{ C \}$$
 (V.38)

A constante positiva α deve ser suficientemente pequena de modo que seja satisfeita a condição de pequena perturbação.

Apos certo número de perturbações obtem-se os espaçamentos para uma diretividade maximizada. O valor final da diretividade depende muito

dos espaçamentos iniciais, devido à natureza desse método de otimização que procura o máximo local.

CAPTTULO VI

METODO DA PERTURBAÇÃO APLICADO ÀS ALTURAS DOS ELEMENTOS

O método da otimização pela perturbação das alturas é seme lhante ao da perturbação dos espaçamentos ou seja, baseia-se em pequenas $v_{\underline{a}}$ riações das alturas de modo que a cada perturbação se garanta um acrescimo na diretividade da antena.

6.1 - PERTURBAÇÃO NOS COEFICIENTES DE DISTRIBUIÇÃO DAS CORRENTES

No cálculo dos coeficientes de distribuição de correntes en contram-se integrais da forma geral:

$$I = \int_{-h_{i}}^{h_{i}} S_{m}(h_{i},z') \frac{\exp(-j\beta R_{ki}(\sigma h_{k},z'))}{R_{ki}(\sigma h_{k},z')} dz'$$

$$m = 1,2,3$$

$$\sigma = 0,1/2, 1$$
(VI.I)

sendo:

$$S_1(h_i,z') = \text{sen } \beta(h_i - |z'|)$$

 $S_2(h_i,z') = \text{cos}\beta z' - \text{cos}\beta h_i$
 $S_3(h_i,z') = \text{cos} \frac{1}{2} \beta z' - \text{cos} \frac{1}{2} \beta h_i$

$$R_{ki}(\sigma h_k, z') = \sqrt{(\sigma h_k - z')^2 + b_{ki}^2}$$

Com a perturbação das alturas as integrais VI.1 tomam a forma:

$$I^{p} = I + \frac{\partial I}{\partial h_{i}} \Delta h_{i} + \frac{\partial I}{\partial h_{k}} \Delta h_{k}$$
 (VI.2)

Aplicando-se a regra de Leibnitz para diferenciação das $\,$ integrals, tem-se:

$$\frac{\partial I}{\partial h_{i}} = \int_{-h_{i}}^{h_{i}} K_{ki} \frac{\partial S_{m}}{\partial h_{i}} dz' + \left[S_{m}(h_{i},h_{i}) + S_{m}(h_{i},-h_{i})\right] K_{ki}$$
(VI.3)

Mas $S_m(h_i, \pm h_i) = 0$, portanto:

$$\frac{\partial I}{\partial h_{i}} = \begin{cases} h_{i} & \frac{\exp(-j\beta R_{ki})}{R_{ki}} & \frac{\partial S_{m}}{\partial h_{i}} dz' \end{cases}$$
 (VI.4)

onde:

$$\frac{\partial S_1}{\partial h_i} = \beta \cos \beta (h_i - |z'|) \tag{VI.5}$$

$$\frac{\partial S_2}{\partial h_i} = \beta \operatorname{sen} \beta h_i \tag{VI.6}$$

$$\frac{\partial S_3}{\partial h_i} = \frac{\beta}{2} \operatorname{sen} \frac{1}{2} \beta h_i$$
 (VI.7)

Por outro lado:

$$\frac{\partial I}{\partial h_k} = -\int_{-h_i}^{h_i} S_m(h_i,z') - \frac{\partial}{\partial h_k} \frac{\exp(-j\beta R_{ki}(\sigma h_k,z'))}{R_{ki}(\sigma h_k,z')} dz'$$
(VI.8)

com:

$$\frac{\partial}{\partial h_{k}} \frac{\exp(-j\beta R_{ki})}{R_{ki}} = -\sigma(\sigma h_{k} - z')(j\beta + \frac{1}{R_{ki}}) \frac{\exp(-j\beta R_{ki})}{R_{ki}^{2}}$$
(VI.9)

Da introdução de VI.2 nas expressões de Φ e Ψ tem-se:

$$\left[\phi_{\mathsf{X}}\right]^{\mathsf{p}} = \left[\phi_{\mathsf{X}}\right] + \left[\Delta\phi_{\mathsf{X}}\right] \qquad \mathsf{x} = \mathsf{U},\mathsf{D}$$
 (VI.10)

$$[\Psi_{dx}]^p = [\Psi_{dx}^h] + [\Delta \Psi_{dx}^h] \qquad x = U,D$$
 (VI.11)

$$\{\phi_{2V}\}^p = \{\phi_{2V}\} + \{\Delta\phi_{2V}\}$$
 (VI.12)

$$\{\Psi_{2dV}\}^{p} = \{\Psi_{2dV}^{h}\} + \{\Delta\Psi_{2V}^{h}\}$$
 (VI.13)

Os incrementos matriciais são dados por:

$$\left[\Delta \phi_{\mathbf{x}} \right]_{\mathbf{k}\mathbf{i}} = \frac{\partial \phi_{\mathbf{k}\mathbf{i}\mathbf{x}}}{\partial h_{\mathbf{k}}} \Delta h_{\mathbf{k}} + \frac{\partial \phi_{\mathbf{k}\mathbf{i}\mathbf{x}}}{\partial h_{\mathbf{i}}} \Delta h_{\mathbf{i}} \qquad \mathbf{x} = \mathbf{U}, \mathbf{D}$$
 (VI.14)

$$\left[\Delta \Psi_{dx}^{h} \right]_{ki} = \frac{\partial \Psi_{kidx}^{h}}{\partial h_{k}} \Delta h_{k} + \frac{\partial \Psi_{kidx}^{h}}{\partial h_{i}} \Delta h_{i} \qquad x=0,D \qquad (VI.15)$$

$$\{ \Delta \phi_{2V} \}_{k} = \frac{\partial \phi_{k2V}}{\partial h_{k}} \Delta h_{k} + \frac{\partial \phi_{k2V}}{\partial h_{i}} \Delta h_{i} \qquad i=2 \qquad (VI.16)$$

$$\{ \Delta \Psi_{2dV}^{h} \}_{k} = \frac{\partial \Psi_{k2dV}^{h}}{\partial h_{k}} \Delta h_{k} + \frac{\partial \Psi_{k2dV}^{h}}{\partial h_{i}} \Delta h_{i} \qquad i=2 \qquad (VI.17)$$

As formulas das derivadas parciais de ϕ e Ψ encontram-se $\;$ no Apêndice C.

Desprezando-se as variações de segunda ordem tem-se:

As Equações VI.18 e VI.19 podem ser colocadas sob a forma:

onde as expressões dos elementos das matrizes $[P_U]$ e $[P_D]$ encontram-se no Apêndice D.

Do sistema de Equações VI.20 e VI.21 resulta que:

$${ \Delta B } { \Delta D } = \begin{bmatrix} [Q_U] \\ [Q_D] \end{bmatrix} { \Delta h }$$
(VI.22)

6.2 - CAMPO DISTANTE APÓS A PERTURBAÇÃO

Devido à perturbação das alturas encontra-se novo valor para o campo distante dado por:

$$E_{\Theta}^{p} = E_{\Theta} + j \ 60 \ \frac{e^{-j\beta R}}{R} \left\{ \left(F_{m} \frac{\partial A_{2}}{\partial h_{2}} + A_{2} \frac{\partial F_{m}}{\partial h_{2}} \right) \Delta h_{2} + \sum_{k=1}^{N} \exp \left(j\beta (d_{k} - d_{2}) \right) \right\}$$

• senocos
$$\phi$$
) ($G_m \Delta B_k + D_m \Delta D_k + B_k \Delta G_m + D_k \Delta D_m$) (VI.23)

A maximização da diretividade \tilde{e} desejada na direção θ = $\Pi/2$ e ϕ = 0; portanto de IV.3 a IV.5 tem-se:

$$\frac{\partial F_m}{\partial h} = \beta \operatorname{sen}\beta h$$
 (VI.24)

$$\frac{\partial G_{m}}{\partial h} = \beta^{2} h \operatorname{sen}\beta h \tag{VI.25}$$

$$\frac{\partial D_{m}}{\partial h} = \frac{\beta^{2}h}{2} \operatorname{sen} \frac{1}{2} \beta h \tag{VI.26}$$

Introduzindo-se VI.24 a VI.26 em VI.23 vem que:

$$E_{\Theta}^{p} = E_{\Theta} + \{E_{\Theta}'\} \{\Delta h\}$$
 (VI.27)

onde

$$\begin{aligned} \{E_{\Theta}^{i}\}_{k} &= \frac{\partial E_{\Theta}}{\partial h_{k}} = j \ 60 \ \frac{e^{-j\beta R}}{R} \ \{\delta_{k2}(F_{m} \frac{\partial A_{2}}{\partial h_{2}} + A_{2} \frac{\partial F_{m}}{\partial h_{2}}) \ + \\ & \exp \left(j\beta(d_{k} - d_{2})\right) \left[B_{k} \frac{\partial G_{m}}{\partial h_{k}} + D_{k} \frac{\partial D_{m}}{\partial h_{k}} + \right. \\ & \sum_{i=1}^{N} \exp(j\beta(d_{i} - d_{2})) \left(G_{m} \left[Q_{U}\right]_{ik} + D_{m} \left[Q_{D}\right]_{ik})\right] \} \end{aligned}$$
 (VI.28)

6.3 - INCREMENTO DA DIRETIVIDADE

Apos a perturbação das alturas temos a nova diretividade dada por:

$$D^{p}(\Theta_{0}, \Phi_{0}) = \frac{|E_{\Theta}^{p}|^{2}}{60 P_{I}^{p}}$$
 (VI.29)

Da expressão VI.27 tem-se:

$$|E^{p}|^{2} = |E_{\Theta}|^{2} + 2\{\Delta h\}^{T}\{E_{1}\} + \{\Delta h\}^{T} [R_{e}E_{2}] \{\Delta h\}$$
 (VI.30)

onde

$$\{E_1\} = R_e \{E_{\Theta} \{E_{\Theta}'\}\}\$$
 (VI.31)

$$[E_2] = \{E_{\Theta}^{\dagger}\}^* \{E_{\Theta}^{\dagger}\}^T \tag{VI.32}$$

Por outro lado a potência é então dada por:

$$P_{I}^{p} = P_{I} + \{\Delta h\}^{T} \{P_{I}^{r}\}$$
 (VI.33)

com:

$$\{P_{I}^{I}\}_{k} = \frac{\partial^{P}I}{\partial h} = \frac{1}{2} V_{02} R_{e} \{ [Q_{U}]_{2k} F_{0Z2}(o) + [Q_{D}]_{2k} H_{0Z2}(o) + \delta_{k2}(M_{0Z2}(o)) + A_{2} \frac{\partial^{A}Q_{0Z2}}{\partial h_{2}} + A_{2} \frac{\partial^{M}Q_{0Z2}}{\partial h_{2}} + B_{2} \frac{\partial^{F}Q_{0Z2}}{\partial h_{2}} + D_{2} \frac{\partial^{H}Q_{0Z2}}{\partial h_{2}}) \}$$
(VI.34)

A variação da diretividade portanto será dada por:

$$\Delta D (\Theta_{o}, \phi_{o}) = \frac{\{\Delta h\}^{T} \{C\} + \{\Delta h\}^{T} [R_{e} E_{2}] \{\Delta h\}}{60 P_{I}^{p}}$$
 (VI.35)

sendo

$$\{C\} = 2\{E_1\} - 60 D(O_O, O_O, P_I^*\}$$
 (VI.36)

Analogamente ao que foi feito com a perturbação dos espaça mentos, tomando-se $\{\Delta h\} = \alpha\{C\}$, garante-se que a nova diretividade seja maior que a inicial. Portanto as alturas devem sofrer incrementos da forma:

$$\{\Delta h\} = \alpha\{C\} \tag{VI.37}$$

A constante positiva α deve ser suficientemente pequena de modo que seja valida a condição de pequena perturbação.

CAPITULO VII

COMENTÁRIOS SOBRE O PROGRAMA DESENVOLVIDO PARA A OTIMIZAÇÃO

Visando a obtenção de uma configuração de espaçamentos e alturas de uma antena Yagi com diretividade melhorada, foi desenvolvido em linguagem FORTRAN IV, um programa baseado nas formulas contidas nos capitulos anteriores. O diagrama esquemático desse programa está apresentado na Figura VII.1.

Para facilitar o seu acesso, esse programa foi colocado na forma de subrotina. O seu uso é bastante simples, bastando fornecer a configuração geométrica inicial e o comprimento de onda transmitida (ou recebida) pela antena. O programa será então capaz de: a) fornecer apenas as características da antena; b) efetuar perturbações dos espaçamentos; c) realizar perturbações das alturas. Nesses dois últimos casos é preciso definir o número de perturbações desejadas NP.

A subrotina desenvolvida pode portanto fornecer a diretividade, o diagrama de irradiação e também os espaçamentos e alturas otimizadas de qualquer antena Yagi que obedeça às condições de aproximações realizadas na teoria. Todos os dados desejados da antena são impressos, sem que o usuário dessa subrotina necessite se preocupar com as instruções de saída.

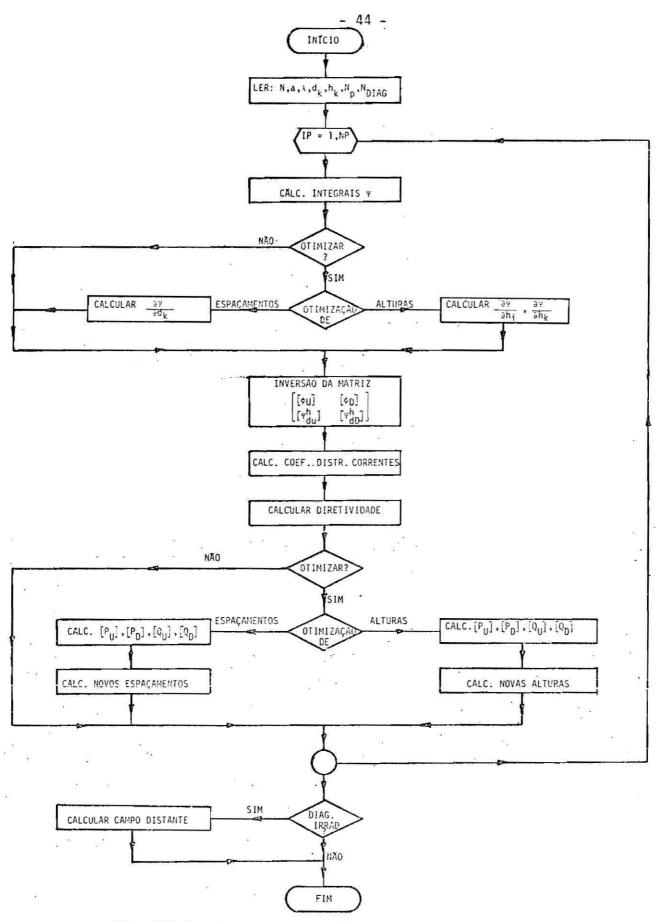


Fig. VII.l - Diagrama esquemático do programa desenvolvido para a otimização da antena Yagi-Uda.

7.1 - PROBLEMAS NUMERICOS

Os maiores problemas numéricos se concentram nos cálculos das integrais Ψ . Isso decorre do fato do cerne das equações integrais K_{ki} ter aspecto impulsivo nos casos em que k=i. Devido ao número eleva do de integrais envolvidas, e conveniente que se adote um método numéri co que ofereça uma boa precisão nos valores dessas integrais com número reduzido de intervalos de integração.

Foi utilizado neste trabalho o metodo de integração suge rido por Kajfez (1972) devido a sua simplicidade e a boa precisão. Esse metodo baseia-se na aproximação da função integranda pelo polinômio de quinto grau como no metodo de Newton-Côtes, porem se distingue deste ao utilizar a derivada nos extremos da integração para a determinação dos coeficientes de polinômio.

De acordo com esse metodo tem-se:

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{15} (f_0'h + 7f_0 + 16f_1 + 7f_2 - f_2'h)$$
 (VII.1)

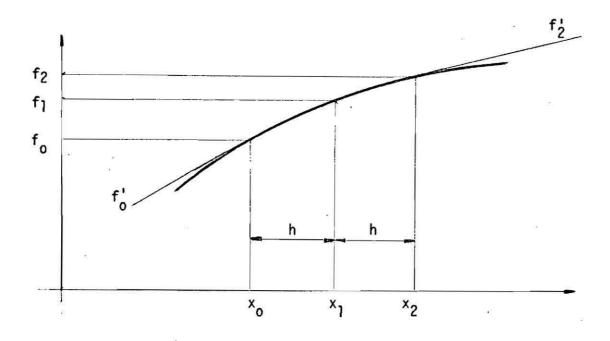


Fig. VII.2 - Integração pelo método citado por Kajfez.

Ao se tomar um dominio de integração contendo 2n intervalos a integral \tilde{e} dada aproximadamente por:

$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{15} (f_0^{\dagger}h + 7f_0 + 16f_1 + 14f_2 + 16f_3 + 14f_4 + \dots + 14f_{2n-4} + 16f_{2n-3} + 14f_{2n-2} + 16f_{2n-1} + 7f_{2n} - f_{2n}^{\dagger}h)$$
(VII.2)

A inversão da matriz é realizada pelo método de Gauss. A subrotina da inversão foi testada fornecendo resultados com a precisão desejada.

Quanto \bar{a} convergência do metodo utilizado para otimização pode-se dizer que \bar{e} boa, visto que com a escolha adequada de constante α , pode-se obter a diretividade maxima em menos de dez perturbações sucessivas tanto variando as alturas como os espaçamentos.

7.2 - ALGUMAS APLICAÇÕES DO PROGRAMA DESENVOLVIDO

Utilizando-se o programa elaborado foi constatado que a diretividade da antena Yagi varia de modo significativo com o raio dos elementos. A diretividade pode variar de mais de 2db como pode ser observado na Figura VII.3.

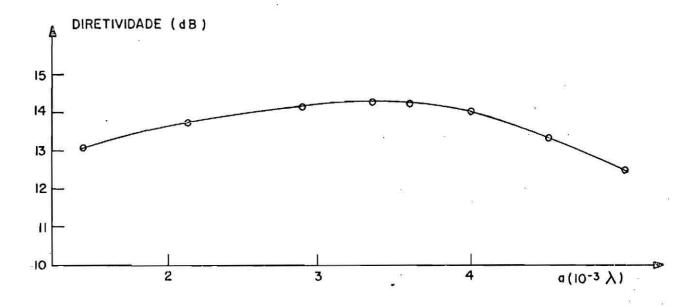


Fig. VII.3 - Variação da diretividade com o raio dos elementos.

Variando-se a comprimento de onda, que e um dos parâme tros de entrada da subrotina desenvolvida, pode-se obter a resposta em frequência de uma antena Yagi. Para exemplificar foi tomada a configura ção proposta por Kajfez (1975) e verificou-se que esta antena possui resposta em frequência como pode ser visto na Figura VII.4.

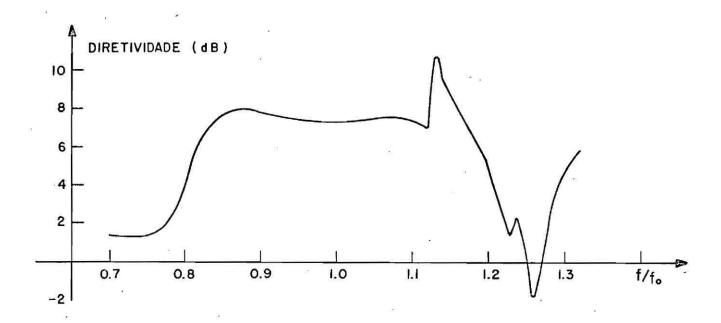


Fig.VII.4 - Resposta em frequência de uma antena Yagi, encontrado por Kajfez.

7.3 - ESCOLHA DA CONFIGURAÇÃO INICIAL

Como ocorre em qualquer problema de otimização, o valor final da diretividade depende muito da configuração inicial. Quanto a es colha dessa configuração inicial poderia ser efetuada de dois modos:

- Tomar aleatoriamente dentro dos limites permitidos, as alturas e os espaçamentos e por meio de varias tentativas procurar uma antena que possua diretividade elevada.
- 2. Toma-se por configuração inicial uma antena com diretividade razoavelmente elevada.

A eficiência do primeiro metodo e duvidosa pois o número de tentativas até se conseguir um resultado desejado poderia ser muito grande. Desta maneira com a finalidade de se obter varias configurações otimizadas de antenas Yagi com 3 até 10 elementos, foram calculadas as diretividades e a relação frente-costas para antenas com espaçamento en tre os diretores uniformes e alturas dos diretores iguais.

Essas configurações foram tabuladas e constam nas Tabelas F.l a F.8 do Apêndice F. O valor superior do quadro corresponde \bar{a} directividade da antena com espaçamento entre os directores d/λ e \bar{a} s alturas dos directores h/λ , enquanto o valor inferior refere-se \bar{a} relação frente-

costas. A altura h_1 do elemento refletor \tilde{e} 0,5] λ enquanto a do elemento ex citador h_2 \tilde{e} 0,49 λ e o espaçamento entre o refletor e o excitador \tilde{e} 0,250 λ .

A razão da escolha de uma antena com espaçamentos e alturas dos diretores uniformes como configuração inicial deve-se essencialmente à relativa rapidez com que essas configurações podem ser calculadas, possibilitando dessa maneira a a elaboração de tabelas que indicam a configuração inicial.

Baseando-se nas tabelas do Apendice F, foram determinadas algumas configurações otimizadas de antenas Yagi de 3 até 10 elementos que foram incluidas no Apendice G.

CAPÍTULO VIII

COMPROVAÇÃO EXPERIMENTAL

Os diagramas de irradiação medidos no Laboratório de Antenas do INPE indicaram uma boa aproximação com os diagramas analíticos obtidos segundo a teoria de King-Middleton. As Figuras VIII.1 e VIII.2 contém os diagramas de irradiação teóricos e experimentais no plano E e no plano H respectivamente de uma antena Yagi de oito elementos com espaçamentos e alturas dos diretores uniformes conforme a Tabela VIII.1. As Figuras VIII.3 e VIII.4 contém os diagramas de irradiação no plano E e plano H,respectivamente, de uma antena Yagi otimizada a partir da antena uniforme, sendo a sua configuração a da Tabela VIII.2. Pode-se observar dessas quatro figuras que as curvas teóricas e experimentais concordam satisfatoriamente.

TABELA VIII.1

CONFIGURAÇÃO DE UMA ANTENA YAGI DE 8 ELEMENTOS

elemento	1	2	3	4	5	. 6	. 7	8
h _i /λ	0,255	0,245	0,215	0,215	0,215	0,215	0.215	0,215
d _i /λ	0,00	0,25	0,55	0,85	1,15	1,45	1,75	2,05

 $a = 0,003369\lambda$

Diretividade = 16.7 (12.2 dB)

TABELA VIII.2

CONFIGURAÇÃO DA ANTENA YAGI OTIMIZADA A PARTIP DA CONFIGURAÇÃO ANTERIOR

elemento	1	2	3	4	5	6	7	8
h _i /λ	0,244	0,244	0,220	0,214	0,213	0,215	0,215	0,215
d _i /λ	0,000	0,195	0,462	0,713	1,005	1,335	1,694	2,099

 $a = 0,003369\lambda$

Diretividade = 26.3 (14.2dB)

Conforme observado anteriormente, da análise do programa desenvolvido, foi verificado que os diagramas de irradiação e consequente mente a diretividade variavam sensivelmente com o raio dos elementos da antena Yagi. Essa variação conforme o caso atingia mais de 2dB mesmo que os raios envolvidos obedecessem à condição a/ λ << 1, o que em primeira instância parecia ser muito excessiva.

Desse modo foram realizadas uma serie de medidas tomando -se quatro valores para os raios dos elementos. Apesar do número relativa mente reduzido de raios tomados, pode-se concluir das medições efetuadas que a diretividade de fato varia sensivelmente com o raios dos elementos, conforme a Tabela VIII.3. A configuração das alturas e dos espaçamentos e a mesma da antena otimizada de 8 elementos segundo a Tabela VIII.2.

TABELA VIII.3

VARIAÇÃO DA DIRETIVIDADE COM O RAIO a

Raio (a/\lambda)	0,00144	0,00216	0,00288	0,00360
Diretividade Teórica (dB)	13,1	13,7	14,2	14,2
Diretividadé Medida (dB)	13,0	13,7	14,0	15,0

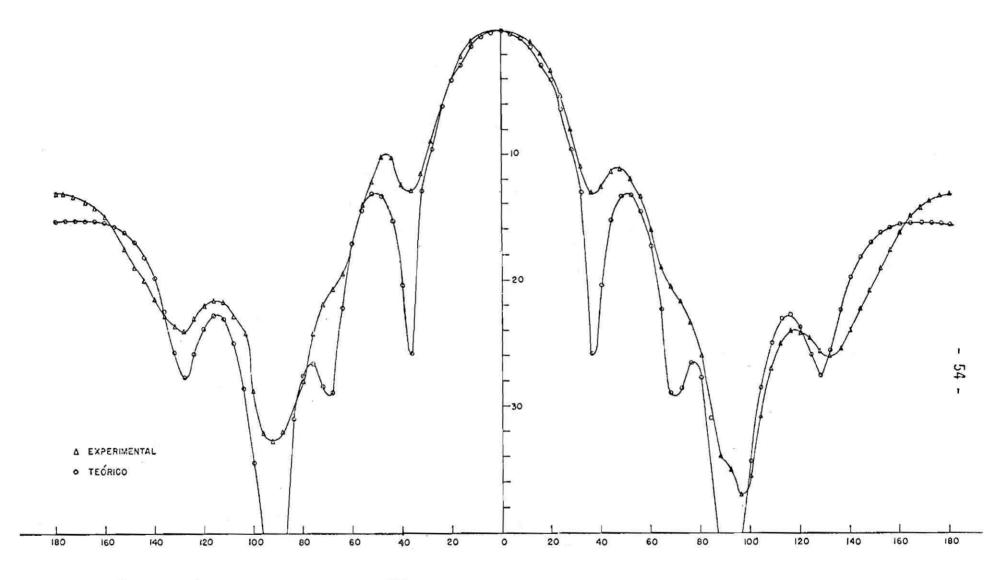


Fig. VIII.1 - Diagrama de irradiação no plano E de uma antena de 8 elementos com espaçamentos e alturas dos diretores uniformes.

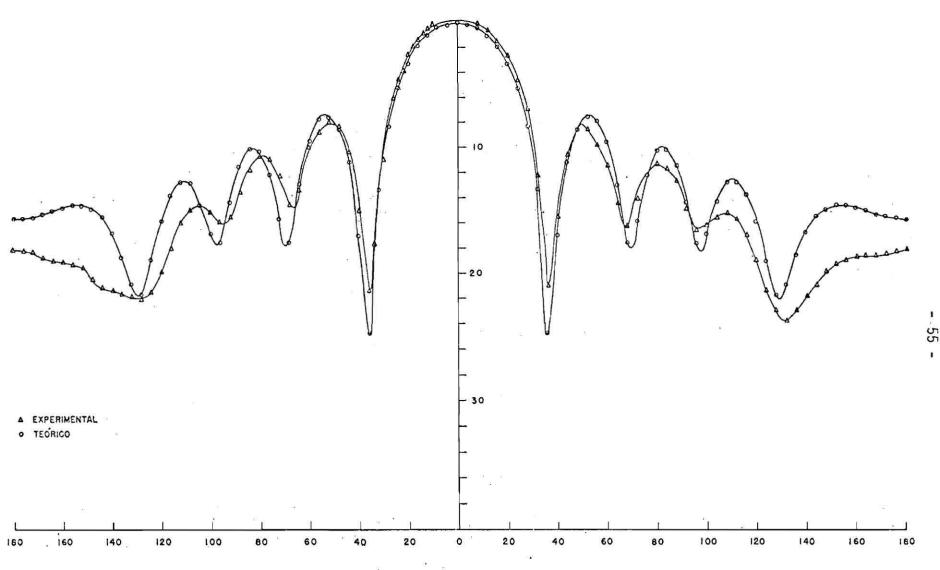


Fig. VIII.2 - Diagrama de irradiação no plano H de uma antena de 8-elementos com espaçamentos e alturas dos diretores uniformes.

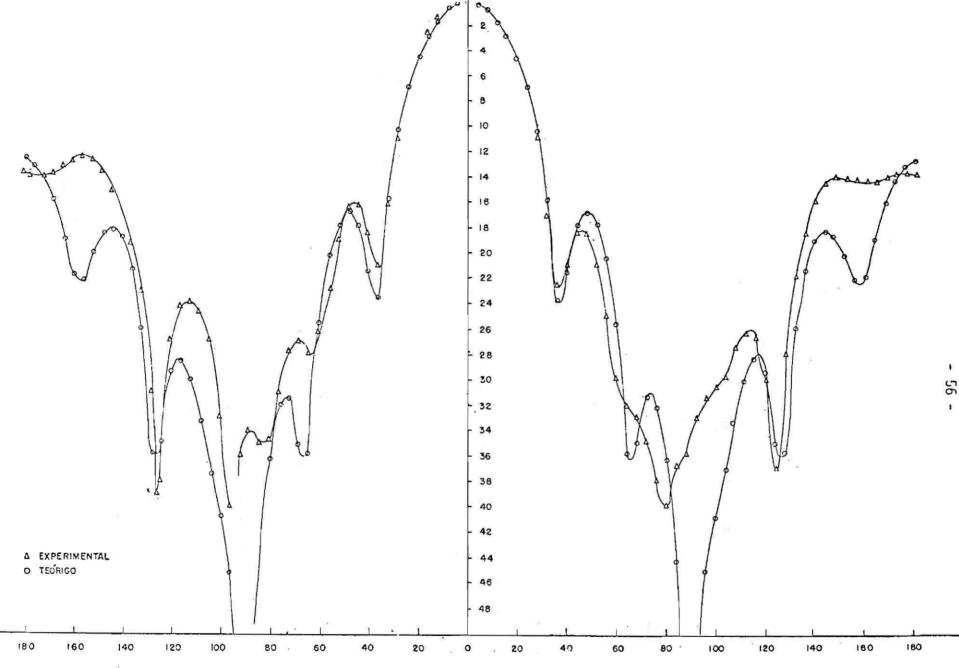


Fig. VIII.3 - Diagrama de irradiação no plano E de uma antena otimizada de 8 elementos.

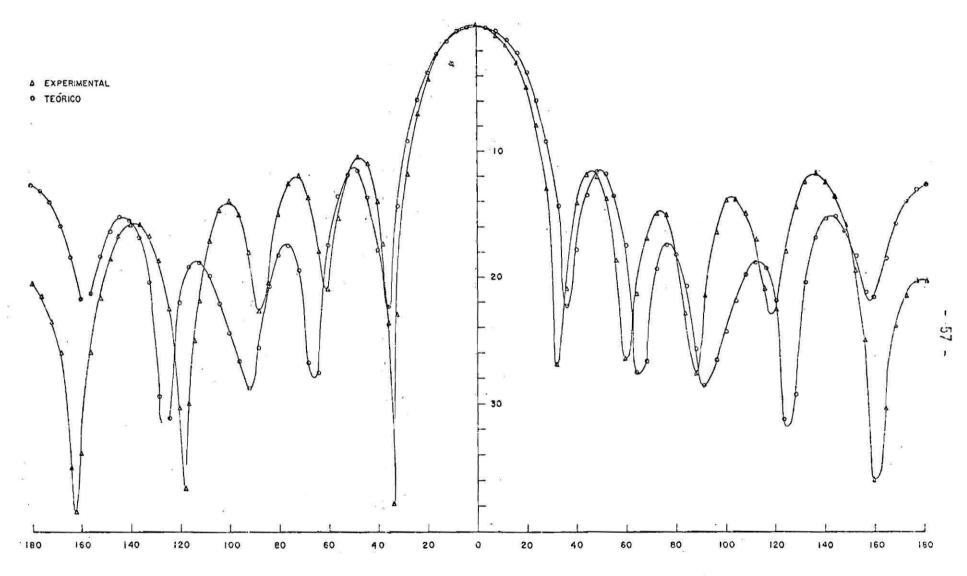


Fig. VIII.4 - Diagrama de irradiação no plano H de uma antena otimizada de 8 elementos.

CAPITULO IX

CONCLUSÕES

A formulação teórica apresentada para a determinação da distribuição de correntes nos elementos da antena Yagi não é senão um rearranjo das expressões desenvolvidas por King et al.(1968). Poderíamos ter apresentando apenas um resumo teórico, mas achamos conveniente que este trabalho contivesse todos os detalhes necessários a uma pesquisa posterior envolvendo antenas Yagi.

Quanto a otimização dos espaçamentos e alturas seguimos basicamente os trabalhos de Chen e Cheng (1973 e 1975), mas foram feitas algumas modificações tais como:

- 1. As expressões V.38 e VI.37 para o cálculo do vetor de perturba ção para os espaçamentos e alturas respectivamente são diferentes daquelas apresentadas por Chen e Cheng. Essas fórmulas modificadas são mais simples, eliminando-se a necessidade de cálculo da integração dupla e a inversão de uma matriz de ordem N x N, diminuindo portanto o tempo de computação.
- 2. As integrais da forma $\beta/2$ $\int_{h_{\dot{1}}}^{h_{\dot{1}}} S_{m}(h_{\dot{1}},z) \exp(j\beta z \cos\theta) \sin\theta dz$ possuem formas fechadas expressas por V.3, V.4 e V.5 o que não é explícito nas referências mencionadas.

3. As formulas para $\left[P_{U}\right]$ e $\left[P_{D}\right]$ para a otimização das alturas forma aqui deduzidas pois não constavam no trabalho original.

Quanto à parte experimental houve boa concordância entre os valores teóricos obtidos da teoria de King e os medidos através dos dia gramas de irradiação. Uma conclusão interessante a que chegamos, das ex periências realizadas, é que o raios dos elementos da antena Yagi influi muito nos diagramas de irradiação e na diretividade dessa antena. Pode-se conseguir variações na diretividade de mais de 2 dB mediante o ajuste do raio, desta forma não se podendo escolher arbitrariamente o diâmetro dos tubos metálicos que compõem a antena.

Utilizando-se o computador B-6700 da Burroughs Corporation, despendeu-se cerca de 3 minutos de processamento para o programa de otimização conjunta de espaçamentos e alturas de uma antena Yagi de 6 elementos, com as seguintes condições: 1. As alturas e os espaçamentos são perturbados dez vezes; 2. O método de integração utilizado é o de Kajfez sendo que as integrais da forma

$$\int_{0}^{h_{i}} S_{m}(h_{i},z_{i}^{i}) \frac{e^{-j\beta\sqrt{(z_{k}-z_{i}^{i})^{2}+a^{2}}}}{\sqrt{(z_{k}-z_{i}^{i})^{2}+a^{2}}} dz_{i}^{i}$$

são calculados tomando-se 60 intervalos enquanto as integrais

$$\int_{0}^{h_{i}} S_{m}(h_{i}, z_{i}^{i}) \frac{e^{-j\beta\sqrt{(z_{k}^{\pm z_{i}^{i}})^{2} + b_{ki}^{2}}}}{\sqrt{(z_{k}^{\pm z_{i}^{i}})^{2} + b_{ki}^{2}}} dz_{i}^{i}$$

são determinadas considerando-se apenas 6 intervalos de integração.

Acreditamos que a análise teórica contida neste texto e o programa de otimização elaborado sejam de grande interesse nos projetos da antena Yagi. Entretanto visando a um melhor desempenho dessas antenas, podem ser feitas algumas sugestões para trabalhos adicionais, como por exemplo:

- 1. Determinação da impedância da antena, um parâmetro de muita importância nos projetos.
 - 2. Introdução do cálculo das perdas nos elementos.
 - 3. Otimização da diretividade pela variação dos raios dos elementos.
- 4. Inclusão de mais elementos refletores. A análise teórica de uma antena com dois refletores coplanares aos outros elementos não seria tão complexa visto que é semelhante ao que foi realizada neste trabalho, po rém poder-se-ia colocar dois ou mais refltores simulando um plano de ter ra ortogonal ao plano dos elementos excitador e diretores. Acreditamos que com mais elementos refletores a relação frente-costa da antena seria me lhorada, talvez com maior possibilidade para o último caso.

AGRADECIMENTOS

Agradeço em particular ao Dr. Clovis Solano Pereira pelo constante incentivo e valiosa orientação.

Devo muito a Jacques Volland pelas series de medições efetuadas diligentemente no Laboratório de Antenas do INPE, e também à Srta. Maria Doroteia Cabral e à Sra. Sueli Aparecida de Godoi Guratti pelas cui dadosas transcrições datilográficas dos meus manuscritos.

Ao Instituto de Pesquisas Espaciais, agradeço pela grande oportunidade e pelo auxilio material que me foram fornecidos para a realização deste trabalho.

BIBLIOGRAFIA

- BLADEL, J. V. Electromagnetic Fields. New York, McGraw-Hill, 1974.
- CHEN, C. A.; CHENG, D. K. Optimum element spacing for Yagi-Uda array.

 IEEE Transactions on Antennas and Propagation, 21: 615-623, Sep. 1973.
- on Antennas and Propagation, 23: 8-15, Jan. 1975.
- HILDEBRAND, F. B. Advanced Calculus for Applications. Englewood Cliffs, Prentice-Hall, 1962.
- JASIK, H. Antenna Engineering Handbook. New York, McGraw-Hill, 1961.
- KAJFEZ, D. Numerical integration by deficiente splines. *Proceedings* of the IEEE (Proceedings Letters), 60: 1015-1016, Aug. 1972.
- Nonlinear otimization extends the bandwidth of Yagi antenna.

 IEEE Transactions on Atennas and Propagation (Communications), 23:

 287-289, Mar. 1975.
- KING, R. W. P. The Theorey of Linear Antennas. Cambridge, Harvard University Press, 1956.
- KING, R. W. P.; MACK, R. B.; SANDLER, S. S. Arrays of Cylindrical Dipoles.

 New York, Cambridge University Press, 1968.
- MEI, K. K. On the integral equations of thin wire antennas. *IEEE Transactions on Atennas and Propagation*, 13: 374-378, May 1965.
- RICHMOND, J. H. Digital computer solutions of the rigorous equations for scattering problems. *Proceedings of the IEEE*, 53: 796-804, Aug. 1965.

APENDICE A

EXPRESSÕES DE
$$\frac{\partial \phi_{\mathbf{X}}}{\partial \mathbf{d}_{\mathbf{k}}}$$
 e $\frac{\partial \Psi_{\mathbf{dX}}^{\mathbf{h}}}{\partial \mathbf{d}_{\mathbf{k}}}$

$$\frac{\partial \phi_{kix}}{\partial d_k} = (1 - \delta_{ki})(\frac{\partial \psi_{kix}(h_k)}{\partial d_k}) - \frac{\partial \psi_{kidx}^f}{\partial d_k} \cos \beta h_k) \qquad x = U,D$$
 (A.1)

$$\frac{\partial \phi}{\partial d_k} = (1 - \delta_{k2})(\frac{\partial \Psi}{\partial d_k}) - \frac{\partial \Psi}{\partial d_k} \cos \beta h_k)$$
 (A.2)

$$\frac{\partial \Psi_{kidx}^{f}}{\partial d_{k}} = (1 - \delta_{ki}) \Delta_{2}^{-1} \left[(\cos \frac{1}{4} \beta h_{k} - \cos \frac{1}{2} \beta h_{k}) \frac{\partial W_{kix}(0)}{\partial d_{k}} \right]$$

$$- (1 - \cos \frac{1}{2} \beta h_{k}) \frac{\partial W_{kix}(h_{k}/2)}{\partial d_{k}}$$

$$\times = U,D,V$$
(A.3)

$$\frac{\partial \Psi_{kidx}^{h}}{\partial d_{k}} = (1 - \delta_{ki}) \Delta_{2}^{-1} \left[(1 - \cos\beta h_{k}) \frac{\partial W_{kix}(h_{k}/2)}{\partial d_{k}} - (\cos\frac{1}{2}\beta h_{k} - \cos\beta h_{k}) \frac{\partial W_{kix}(0)}{\partial d_{k}} \right] \qquad x = U,D,V \qquad (A.4)$$

$$\frac{\partial W_{kix}(t)}{\partial d_k} = \frac{\partial \Psi_{kix}(t)}{\partial d_k} - \frac{\partial \Psi_{kix}(h_k)}{\partial d_k} \qquad x = U,D,V \qquad (A.5)$$

$$\frac{\partial \Psi_{kix}(t)}{\partial d_{k}} = -(1 - \delta_{ki})b_{ki} \int_{-h_{i}}^{h_{i}} (j\beta + \frac{1}{R_{ki}}) S_{m}(h_{i},z') \frac{K_{ki}}{R_{ki}} dz' \quad x = U,D,V$$
(A.6)

$$K_{ki} = \frac{e^{-R}ki}{R_{ki}}$$

$$R_{ki} = \sqrt{(t-z')^2 + b_{ki}^2}$$

$$S_1(h_i,z') = M_{OZi}(z') = sens(h_i - |z'|)$$

$$S_2(h_i,z') = F_{ozi}(z') = cos\beta z' - cos\beta h_i$$

$$S_3(h_i,z') = H_{ozi}(z') = \cos \frac{1}{2} \beta z' - \cos \frac{1}{2} \beta h_i$$

APENDICE B

EXPRESSÕES DE [PU] E [PD] (OTIMIZAÇÃO DOS ESPAÇAMENTOS)

$$[P_U]_{kk} = \left[(1 - \delta_{k2}) \frac{\partial \Psi_{k2dV}^f}{\partial d_k} \cos \beta h_k - \frac{\partial \Psi_{k2V}(h_k)}{\partial d_k} \right] A_2 +$$

$$\sum_{i=1}^{N} (1 - \delta_{ki}) \left\{ B_i \left[\frac{\partial \Psi_{kidU}^f}{\partial d_k} \cos \beta h_k - \frac{\partial \Psi_{kiU}(h_k)}{\partial d_k} \right] + \right\}$$

$$D_{i} \left[\frac{\partial \Psi_{k} i dD}{\partial d_{k}} \cos \beta h_{k} - \frac{\partial \Psi_{k} i D^{(h}_{k})}{\partial d_{k}} \right]$$
(B.1)

$$[P_U]_{ki} = B_i \left[\frac{\partial \Psi_{kiU}(h_k)}{\partial d_k} - \frac{\partial \Psi_{kidU}^f}{\partial d_k} \cos \beta h_k \right] +$$

$$D_{i} \left[\frac{\partial \Psi_{kiD}(h_{k})}{\partial d_{k}} - \frac{\partial \Psi_{kidD}}{\partial d_{k}} \cos \beta h_{k} \right] \qquad k \neq i, i \neq 2$$
 (B.2)

$$\left[P_{U}\right]_{k2} = A_{2}\left[\frac{\partial \Psi_{k2}V(h_{k})}{\partial d_{k}} - \frac{\partial \Psi_{k2}^{f}dV}{\partial d_{k}} \cos \beta h_{k}\right] +$$

$$B_{2}\left[\frac{\partial \Psi_{k_{2}U}(h_{k})}{\partial d_{k}} - \frac{\partial \Psi_{k_{1}dU}^{f}}{\partial d_{k}} \cos \beta h_{k}\right] +$$

$$D_{2} \left[\frac{\partial \Psi_{k2D}(h_{k})}{\partial d_{k}} - \frac{\partial \Psi_{k2dD}^{f}}{\partial d_{k}} \cos \beta h_{k} \right] \qquad k \neq 2$$
 (B.3)

$$[P_{D}]_{kk} = -A_{2} (1 - \delta_{k2}) \frac{\partial \Psi_{k2d}^{h} V}{\partial d_{k}} - \sum_{i=1}^{N} (1 - \delta_{ki}) (B_{i} \frac{\partial \Psi_{kidU}^{h}}{\partial d_{k}} + D_{i} \frac{\partial \Psi_{kidD}^{h}}{\partial d_{k}})$$
(B.4)

$$[P_D]_{ki} = \delta_{i2} A_2 \frac{\partial \Psi_{kidV}^{h}}{\partial d_k} + B_i \frac{\partial \Psi_{kidU}^{h}}{\partial d_k} + D_i \frac{\partial \Psi_{kidD}^{h}}{\partial d_k} \qquad k \neq i$$
 (B.5)

APÊNDICE C

EXPRESSÕES DE
$$\frac{\partial \phi_{x}}{\partial h_{i}}$$
, $\frac{\partial \psi_{dx}^{h}}{\partial h_{i}}$, $\frac{\partial \phi_{x}}{\partial h_{k}}$, $\frac{\partial \psi_{dx}^{h}}{\partial h_{k}}$

Devido à frequência com que aparecem, adotaremos os seguintes símbolos para as expressões abaixo:

$$\tau_1 = 1 - \cos \beta h_k;$$
 $\lambda_1 = \cos \frac{1}{2} \beta h_k - \cos \beta h_k;$ $\gamma_1 = \sin \beta h_k - \frac{1}{2} \beta h_k$

$$\tau_2 = 1 - \cos \frac{1}{2} \beta h_k;$$
 $\lambda_2 = \cos \frac{1}{4} \beta h_k - \cos \frac{1}{2} \beta h_k;$ $\gamma_2 = \frac{1}{2} \sin \frac{1}{2} \beta h_k - \frac{1}{4} \sin \frac{1}{4} \beta h_k$

Hã dois tipos de derivadas, uma em relação a h_i e outra relativa a h_k . Cabe ressaltar que:

$$\frac{\partial I}{\partial h_i}$$
 $\int_{i=j}^{l} \neq \frac{\partial I}{\partial h_k}$ $\int_{k=j}^{l} sendo I = \int_{h_i}^{h_i} S_m(h_i,z') K_{ki} dz'$

Aparente contradição resulta do fato de tratarmos h_i e h_k como variáveis independentes. Essa abordagem \tilde{e} conveniente pois simplifica as deduções das expressões para derivadas. De acordo com esse tratamento tem-se:

$$\frac{\partial I_{kk}}{\partial h_{j}} = \frac{\partial I_{ki}}{\partial h_{i}} \Delta h_{i} \qquad \begin{vmatrix} \partial I_{ki} \\ \partial h_{k} \end{vmatrix} \Delta h_{k} \qquad \begin{vmatrix} \partial I_{ki} \\ \partial h_{k} \end{vmatrix}$$

DERIVADAS $\frac{\partial}{\partial h_i}$

$$\frac{\partial \Psi_{kix}}{\partial h_i}(t) = \int_{-h_i}^{h_i} K_{ki} \frac{\partial S_m}{\partial h_i} dz' \qquad x = U,D,V \qquad (C.1)$$

$$\frac{\partial W_{kix}}{\partial h_{i}}(t) = \frac{\partial \Psi_{kix}}{\partial h_{i}}(t) - \frac{\partial \Psi_{kix}}{\partial h_{i}}(h_{k})$$
 (C.2)

$$\frac{\partial \Psi_{kidx}^{f}}{\partial h_{i}} = \Delta_{2}^{-1} \left\{ \lambda_{2} \frac{\partial W_{kix}(0)}{\partial h_{i}} - \tau_{2} \frac{\partial W_{kix}(h_{k}/2)}{\partial h_{i}} \right\} \quad x = U, D, V \quad (C.3)$$

$$\frac{\partial \phi_{kix}}{\partial h_i} = \frac{\partial \Psi_{kix}(h_k/2)}{\partial h_i} - \cos \beta h_k \frac{\partial \Psi_{kidx}^f}{\partial h_i} \qquad x = U,D$$
 (C.4)

$$\frac{\partial \Psi_{kidx}^{h}}{\partial h_{i}} = \Delta_{2}^{-1} \left\{ \tau_{1} \frac{\partial W_{kix}(h_{k}/2)}{\partial h_{i}} - \lambda_{1} \frac{\partial W_{kix}(0)}{\partial h_{i}} \right\} \qquad x = U, D \quad (C.5)$$

$$\frac{\partial \phi_{k2}V}{\partial h_i} = \frac{\partial \Psi_{kix}(h_k/2)}{\partial h_i} \qquad \Big|_{i=2} - (1 - \delta_{k2}) \cosh_k \frac{\partial \Psi_{kidv}^f}{\partial h_i} \Big|_{i=2}$$
 (C.6)

$$\frac{\partial \Psi_{\mathbf{k}_{2}dV}^{\mathbf{h}}}{\partial \mathbf{h}_{\mathbf{i}}} = \Delta_{2}^{-1} \left\{ \tau_{1} \frac{\partial W_{\mathbf{k}_{1}V}(\mathbf{h}_{\mathbf{k}}/2)}{\partial \mathbf{h}_{\mathbf{i}}} \Big|_{\mathbf{i}=2} - \lambda_{1} \frac{\partial W_{\mathbf{k}_{1}V}(0)}{\partial \mathbf{h}_{\mathbf{i}}} \Big|_{\mathbf{i}=2} \right\} \quad k \neq 2$$
 (C.7)

$$\frac{\partial \Psi_{22}^{h} dV}{\partial h_{i}} = \Delta_{1}^{-1} \left\{ \operatorname{sen}_{k} \frac{\partial W_{2iv}(h_{k}/2)}{\partial h_{i}} \Big|_{i=2} - \operatorname{sen} \frac{1}{2} \beta h_{k} \frac{\partial W_{2iv}(0)}{\partial h_{i}} \Big|_{i=2} \right\} \quad (C.8)$$

DERIVADAS $\frac{\partial}{\partial h_k}$

$$\frac{\partial \Psi_{kix}}{\partial h_k} (\sigma h_k) = -\sigma \int_{-h_i}^{h_i} (\sigma h_k - z') (j\beta + \frac{1}{R_{ki}}) S_m(h_i, z') \frac{K_{ki}}{R_{ki}} dz' \qquad x=U,D,V$$
(C.9)

$$\frac{\partial W_{kix}}{\partial h_{k}}(t) = \frac{\partial \Psi_{kix}}{\partial h_{k}}(t) - \frac{\partial \Psi_{kix}}{\partial h_{k}}(h_{k}) \qquad x=U,D,V$$
 (C.10)

$$\frac{\partial \Psi_{kidx}^{f}}{\partial h_{k}} = \Delta_{2}^{-1} \left\{ \beta \left[\gamma_{2} W_{kix}(0) - \frac{1}{2} \operatorname{sen} \frac{1}{2} \beta h_{k} W_{kix}(h_{k}/2) \right] - \Psi_{kidx}^{f} \frac{\partial}{\partial h_{k}} \Delta_{2} + \right\}$$

$$+ \lambda_2 \frac{\partial}{\partial h_k} W_{kix}(0) - \tau_2 \frac{\partial}{\partial h_k} W_{kix}(h_k/2)$$
 x=U,D,V (C.11)

$$\frac{\partial \phi_{kix}}{\partial h_k} = \frac{\partial \psi_{kix}(h_k)}{\partial h_k} - \cos \beta h_k \frac{\partial \psi_{kidx}^f}{\partial h_k} + \beta \operatorname{sen} \beta h_k \psi_{kidx}^f = U,D$$
 (C.12)

$$\frac{\partial \Psi_{kidx}^{h}}{\partial h_{k}} = \Delta_{2}^{-1} \left\{ \beta \left[\operatorname{sen}\beta h_{k} \cdot W_{kix}(h_{k}/2) - \gamma_{1}W_{kix}(0) \right] - \Psi_{kidx}^{h} \frac{\partial \Delta_{2}}{\partial h_{k}} + \right.$$

$$+ \tau_{1} \frac{\partial W_{kix}(h_{k}/2)}{\partial h_{k}} - \lambda_{1} \frac{\partial W_{kix}(0)}{\partial h_{k}} \right\} \qquad x=U,D \qquad (C.13)$$

$$\frac{\partial \phi_{k2V}}{\partial h_k} = \frac{\partial \Psi_{k2V}(h_k)}{\partial h_k} - (1 - \delta_{k2})(\cos\beta h_k \frac{\partial \Psi_{kidV}^f}{\partial h_k} - \beta sen\beta h_k \Psi_{k2dV}^f) \qquad (C.14)$$

$$\frac{\partial \Psi \overset{h}{k}_{2} dV}{\partial h_{k}} = \Delta_{2}^{-1} \left\{ \beta \left[\operatorname{sen}\beta h_{k} \overset{W}{W}_{k2} V (h_{k}/2) - \gamma_{1} W_{k2} V (0) \right] - \Psi^{h}_{k2} dV \frac{\partial \Delta_{2}}{\partial h_{k}} + \tau_{1} \frac{\partial W_{k2} V}{\partial h_{k}} - \lambda_{1} \frac{\partial W_{k2} V (0)}{\partial h_{k}} \right\} \qquad k \neq 2 \qquad (C.15)$$

$$\frac{\partial^{\mu}_{22} dV}{\partial h_{k}} \Big|_{k=2} = \Delta_{2}^{-1} \left\{ \beta \left[\cos \beta h_{k} W_{22V}^{(h_{k}/2)} - \frac{1}{2} \cos \frac{1}{2} \beta h_{k} W_{22V}^{(0)} \right] - \frac{1}{2} \cos \frac{1}{2} \beta h_{k} W_{22V}^{(0)} \right\} - \frac{1}{2} \cos \frac{1}{2} \beta h_{k} W_{22V}^{(0)} \Big\} - \frac{1}{2} \cos \frac{1}{2} \beta h$$

$$- \operatorname{sen} \frac{1}{2} \beta h_{k} \frac{\partial W_{k2} V^{(0)}}{\partial h_{k}} \Big|_{k=2}$$
 (C.16)

$$\frac{\partial \Psi^{\mathsf{m}}_{22\mathsf{dV}}}{\partial h_{\mathsf{k}}} = \Delta_{1}^{-1} \left\{ \beta \left[\Upsilon_{2} W_{22\mathsf{V}}(0) - \frac{1}{2} \operatorname{sen} \frac{1}{2} \beta h_{\mathsf{k}} W_{22\mathsf{V}}(h_{\mathsf{k}}/2) \right] - \Psi^{\mathsf{m}}_{22\mathsf{dV}} \frac{\partial \Delta_{1}}{\partial h_{2}} + \right\}$$

+
$$\lambda_2 \left[\frac{\partial W_{2iV}(0)}{\partial h_i} \Big|_{i=2} + \frac{\partial W_{k2V}(0)}{\partial h_k} \Big|_{k=2} \right] -$$

$$+ \tau_{2} \left[\frac{\partial W_{2iV}(h_{k}/2)}{\partial h_{i}} \right|_{i=2} + \frac{\partial W_{k2V}(h_{k}/2)}{\partial h_{k}} \right]$$
 (C.17)

$$\frac{\partial A_2}{\partial h_2} = A_2 \left\{ \beta \tanh - \frac{1}{\Psi_{22}^{m} dV} \frac{\partial}{\partial h_2} \Psi_{22}^{m} dV \right\}$$
 (C.18)

$$\frac{\partial \Delta_1}{\partial h_k} = \beta(\lambda_2 \cosh_k + \gamma_2 \operatorname{sen}\beta h_k - \frac{1}{2} \cos \frac{1}{2} \beta h_k + \frac{1}{2} \cos \beta h_k)$$
 (C.19)

$$\frac{\partial \Delta_2}{\partial h_k} = \beta (\lambda_2 \operatorname{sen}\beta h_k + \tau_1 \gamma_2 - \frac{1}{2} \lambda_1 \operatorname{sen} \frac{1}{2} \beta h_k - \tau_2 \gamma_1)$$
 (C.20)

APÊNDICE D

EXPRESSÕES DE $[P_{II}]$ E $[P_{D}]$ (OTIMIZAÇÃO DAS ALTURAS)

$$[P_{U}]_{kk} = -\left\{\sum_{\ell=1}^{N} \left(B_{\ell} \frac{\partial \phi_{k\ell U}}{\partial h_{k}} + D_{\ell} \frac{\partial \phi_{k\ell D}}{\partial h_{k}}\right) + B_{k} \frac{\partial \phi_{ki U}}{\partial h_{i}} \Big|_{i=k} + D_{k} \frac{\partial \phi_{ki D}}{\partial h_{D}} \Big|_{i=k} + A_{2} \frac{\partial \phi_{k2 V}}{\partial h_{k}} + \delta_{k_{2}} \left(A_{2} \frac{\partial \phi_{ki V}}{\partial h_{i}} \Big|_{i=2} + \Phi_{k2 V} \frac{\partial A_{2}}{\partial h_{2}}\right\}$$

$$(D.1)$$

$$[P_{U}]_{ki} = -\left\{ B_{i} \frac{\partial \phi_{kiU}}{\partial h_{i}} + D_{i} \frac{\partial \phi_{kiD}}{\partial h_{i}} + \delta_{i_{2}} (A_{2} \frac{\partial \phi_{kiV}}{\partial h_{i}} + \phi_{k_{2}V} \frac{\partial A_{2}}{\partial h_{2}}) \right\}$$
 (D.2)

$$\left[P_D \right]_{kk} = - \left\{ \sum_{\ell=1}^{N} \left(B_\ell \frac{\partial \Psi_{k\ell dU}^h}{\partial h_k} + D_\ell \frac{\partial \Psi_{k\ell dD}^h}{\partial h_k} \right) + B_k \frac{\partial \Psi_{kidU}^h}{\partial h_i} \right\}_{i=k} +$$

+
$$A_2 \frac{\partial \Psi_{k2}^h dV}{\partial h_k} + \delta_{k_2} \left(A_2 \frac{\partial \Psi_{k1}^h dV}{\partial h_1} \right) + \Psi_{k2}^h dV \frac{\partial A_2}{\partial h_2} + \Phi_{k2}^h dV$$

$$+ D_{k} = \frac{\partial \Psi_{k i dD}^{h}}{\partial h_{i}} = \frac{1}{i = k}$$
 (D.3)

$$[P_D]_{ki} = -\left\{B_i \Psi_{kidU}^h + D_i \Psi_{kidD}^h + \delta_{i_2} \left(A_2 \frac{\partial \Psi_{kidV}^h}{\partial h_i} + \Psi_{k2dV}^h \frac{\partial A_2}{\partial h_2}\right)\right\} \quad (D.4)$$

APÊNDICE E

LISTAGEM DO PROGRAMA DESENVOLVIDO PARA A OTIMIZAÇÃO DA ANTENA YAGI-UDA

```
SUBROUTINE OTIMI(N.A.B.H.LAMBCA.NP. NESP. NDIAG. MDIF)
     *******************
C * *
C
      ESTA SUBROTINA DETERMINA:
              1. A DIRETIVIDADE DA ANTENA YAGI
C
              2. OPCIONALMENTE O DIAGRAMA DE IRRADIACAD
3. OPCIONALMENTE A OTIMIZACAD DOS ESPACAMENTOS
4. OPCIONALMENTE A OTIMIZACAD DAS ALTURAS DOS ELEMENTOS
C
C
C
C * *
C *
      N... NUMERO DE ELEMENTOS DA ANTENA YAGI. NO MAXIMO 10
C
      A ... RAID DAS HASTES
C
C
      B(J) ... ABSCISSA DA J-ESIMA HASTE
      B(2) ... ABSCISSA DA HASTE EXCETADORA
C
      H(J) ... ALTURA DA J-ESIMA HASTE
C
      H(2) ... ALTURA DA HASTE EXCITACCHA
      LAMBDA ... COMPRIMENTO DE ONDA
C
CCC
      KP ... NUMERO DE PERTURBACOES
              SE NP=O. A SUMPOTINA AFENAS FORNECE AS CARACTERISTICAS DA
                  ANTENA YAGI
      NESP...SE NESP.ED.1. A SUBROTINA CTIMIZA ESPACAMENTO
C
             SE NESP.NE.1, A SUBROTINA CTIMIZA AS ALTURAS
      NDIAG ... SE NDIAG=1.4 SUBROTINA FCANECE & BIAGRAMA DE IRRADIAÇÃO
      MDIF ... NUMERO' CE INTERVALOS DE INTEGRACAD
C
C * * *
    *************************
      COMPLEX AZ, PSIM.X(20), E, EX, FVN.AX(30,60), TOIR(4), CAL, DCOSA, UCOSS,
     CCS1. KL(4), R1(4), INTER(4,4), PSIC, NCZ, WD2, PSIU, NUZ, NUZ, PSIFD, PSIFU,
     CPSIFU, FID, PSIHD, FIU, PSIV2, NVZ, NVZ, PSIFV2, PSIHV2, FIV2, BX(20), RLZ(4)
     C, CCCZA, CCCZS, R1Z(4), TDTRZ(4), INTEGZ(4,4), FIDZ(10,10), WDZZ, WDZZ, WD
     CZZ, NU2Z, PS(HDJ(10.10), PS(HUJ(10.10), PS(HDZ(10.10), PS(HUZ(10.10), F
     CIUZ(10,10), PSHV2P(10)
                                .WV2Z,PSFV2J(10),PSHV2Z(10);PSIHDX(10),PS
     CIHUX(10), FIDX(10), FIUX(10), FIV2X, FSFV2X, P2(20, 10), P2K, P3K, G2(10, 10
     C), Q3(10,10), DKK, DI(10), DK(10), DCEN, GCON, HVZZ, ZVN
      COMPLEX PSIDJ, PSIUJ, WD2J, WUZJ, WUZJ, WUZJ, WVZJ, WVZJ, PSIFUJ, PŠIFDJ,
     CPSFV2J.PS[MJ.FIV2J(10),FIDJ(10,10),FIUJ(10,10),WDZJ
     COMPLEX PSIDZ, PSIUZ, PSIV2Z, PSIFUZ, PSIFOZ, PSFV2Z, PSIMZ, FIV2Z(10)
      COMPLEX XAPA1, XAPA2, XAPA3, XAPA4, ZAFA1, ZAPA2, ZAPA3, ZAPA4, DPSIM, DA2,
     CFIV2P(10)
     COMPLEX ACOZ, SCOZ, ACZ(3), ASZ(3), ACON(3), SCON(3), DSS(3), DAS(3)
      COMPLEX WW. WS. WA. CAZ
      COMPLEX AW, SW, WP
      REAL LAMBDA, MO. LGA, LGS
      DIMENSION 'H( 1).H( 1).FM(4).ZK(3).CNL1(10).CNL2(10).SNL1(10).SNL2(
     C10).BETAL(10).GMLZ(10).DMLZ(10).CAL4(10).GAAHU(20).BB(10).ALFX(10)
     C.ALFZ(10), AGX(10), AGZ(10), DALTAZ(10), DL(10), DB(10), BD(10), SNL4(10)
      DIMENSION CAMPL(2,91), PT(20,2), YLIMS(-10,2)
      DIMENSION DFM(4), RRA(3), ZA1(3), RRS(3), ZS1(3)
      COMPON AX
      B1 = B(1)
      DC 813 KM=1.N
      B(KM) = B(KM) - B1
  813 CONTINUE
      WRITE (6,25) A. LAMBDA, N
   25 FORMAT(//, > A = >.F10.7.5x.2 LAMBCA = >.F10.7.5x.2 N =. >.14)
      *RITE(6,26)(H(J),J=1,N)
   26 FURMAT( /, > ALTURAS >, 10F7.4)
      WRITE(6,27)(B(J),J=1,N)
   27 FORMAT( /, E ESPACAMENTO 2, 10F7.3)
      IF(NESP.EO.1)ALVO = .16
      IF (NESP. NE. 1) ALVO = .02
      N2 = 2+K
```

```
0000
       FIG... NUMERO DE INTERVALOS DE INTEGRACAD PARA J=K
       MDIF ... NUMERO DE INTERVALOS DE INTEGRACAD PARA J. NE. K
       MIG = 10 + MDIF
Ç
       VO2 = 1.
       PI = 3.14159265
BETA = 2.*PI/LAMBDA
       NITER = NP
       IF (NP.EQ.O)NITER=1
       ILOP = 1
       GANAN = 0.
    3 CONTINUE
       DO 11 K=1.N
       P= BETA+F(K)
       BETAL(K) = P
       CNL4(K) = COS(P/4.)
       CNL2(K) = 2*CNL4(K)*CNL4(K)*1
       CNL1(K) = 2*CNL2(K)*CNL2(K)*1
       IF(K.EG.2)COSH2 = CNL1(2)
       SNL4(K) = SIN(P/4)
       SNL2(K) = 2*SNL4(K)*CNL4(K)
      SNL1(K) = 2.+SNL2(K)+CNL2(K)
       ALFX(K) = CNL4(K) - CNL2(K)
ALFZ(K) = 1. - CNL2(K)
AGX(K) = 1. - CNL1(K)
       AGZ(K) = CNL2(K) - CNL1(K)
       DALJA2(K) = AGX(K) + ALFX(K) - AGZ(K) + ALFZ(K)
       GMLZ(K) = SNL1(K) - BETAL(K) +CAL1(K)
    11 DMLZ(K) = 2. + SNL2(K) - BETAL(K) + CNL2(K)
       BJH2 = BETAL(2)
       SENH2 = SNL1(2)
       COSF2 = CNL1(2)
       FX = 1. - COSH2
C
       INICIO DA MALHA K; DETERMINACAC DOS ELEMENTOS DA MATRIZ FI.PSIHO
C
C
   51 DO 12 K=1.N
       P = BETAL(K)
       ACOSP = CNL1(K)
       ACOSP2 = CNL2(K)
ACOSP4 = CNL4(K)
       ASENP = SNL1(K)
       ASERP2 = SNL2(K)
       ALFK = ALFX(K)
       ALFS = ALFZ(K)
       LGA = AGX(K)
       LGS = AGZ(K)
       DELTA2 = DALTA2(K)
      IF(NESP.NE.1)GAMA1 = ASENP - ASENF2/2
       IF(NESP. NE. 1) GAMAR = ASENP2/2 - SNL4(K)/4
IF(NESP. NE. 1) DDL2 = ASENP * ALFK + LGA * GAMAR - ASENP2 * LGS/2 - ALFS * GAMAR
       ZK(1) = 0.0
       ZK(2) = P/2.0
       ZK(3) = P
C
      INICIO DA MALHA J; CALCULUS DES ELEMENTOS DA MATRIZ FI, PSIHU
C ....
       DO 32 J=1. T
      BETJ = BETAL (J)
```

```
BETJ2 = BETJ/2.
     · COSA1 = CNL1(J)
      COSA2 = CNL2(J)
       SENA1 = SNL1(J)
       IF (K-J)14,15,14
    14 BE = BETA+(B(K)-B(J))
       M = MDIF
       GO TG 16
    15 BE = BETA+A
       M = MIG
    16 DYZE = BETJ/M
       BE2 = BE+BE
       MX = M + 1.
C
       CALCULO DOS INTEGRAIS FIMS E PSIMS
       OS INTEGRATS SAD CALCULADOS POR SIMPSON ** POLINOMIU DE
            SEXTO GRAU
      MAVA ... PESO CORRESPONDENTE A APROXIMACAO POR SIMPSON
       IF (NESP. NE. 1. OR. J. NE. K) GO TO 65
       IF (ILOP.NE.1)60 TO 71
    65 IQ = 1
    DO 74 JK=1.3
DO 74 JW=1.4
       INTEG(JW.JK) = (0..0.)
    74 INTEGZ(JW, JK) = (0.,0.)
       DO. 36 L=1, MX
. C
CC
       ASSINALAÇÃO DOS PESOS DE SIMPSEM DE SEXTO GRAU
     VC = 1
       IF(L.EQ.PX)VC==1.
       IF(IG.EQ.1)VAVA = 14
       IF ( IQ . EQ . 2 ) VAV 4 = 16
       IF (L.EG. ()VAVA=7
       IF(L.EG.MX)VAVA=7
       IQ = IQ + 1
       IE(IC.GT.2)IG=1
C
       ZYL = (L-1)+DYZE
       DO 17 JK=1.3
       ZKA1 = ZYL +ZK(JK)
       CRA1 = BE2 + ZKA1 + ZKA1
       RA1 = SGRT(GRA1)
      CA1 = COS(RA1) + (0.,-1.)*SIN(RA1)
       DCOSA = CA1/RA1
       IF(JK.Eq.1)G0 TO 99
       ZKS1 = ZYL * ZK(JK)
       QRS1 = BE2 + ZKS1 + ZKS1
       RS1 = SCRT(QRS1)
       CS1 = COS(RS1) + (0.,-1.)*SIN(RS1)
       DCDSS' = CS1/RS1
       GO TO 100
    99 ZKS1 = ZKA1
       RS1 = RA1
       GRS1 = GRA1
      DCOSS = DCOSA
  100 CONTINUE
      IF (K.EQ. J. AND. NESP. EQ. 1. AND. L. NE. 1. AND. L. NE. MX) GC. TO 17
       IF(NP.EG.O.AND.L.NE.1.AND.L.NE.MX)GC TO 17
      IF (JK.EG.1.AND.NESP.NE.1.AND.L.NE.1.AND.L.NE.MX)GO TO 17
```

```
GCON = DCOSA/RA1
     DIA = 1./RA1
     ACUZ = D[A + (0.,1.)]
     DCDZA = QCON*ACOZ
     IF(NESP.NE.1)DCDZA = DCOZA*ZKA1
     DCON = DCOSS/RS1
     DIS = 1./RS1
    SCO2 = DIS + (0..1.)
  DCOZS = DCUN+SCOZ
    IF (NESP.NE.1)DCOZS = "DCOZS*ZKS1
     IF(L.NE.1.AND.L.NE.MX)GO TO 90
     RRA(JK) = RA1
  RRS(JK) = RS1
     ZAI(JK) = 7KAI
    ZS1(JK) = ZKS1
ACZ(JK) = ACOZ
ASZ(JK) = SCOZ
   "DAS(JK) = DCOSA
     DSS(JK) = DCOSS
     ACON (JK) -= OCON
   . 500h(JK) = DCON
 .90 CONTINUE
     RLZ(JK) = DCDZA + DCDZS
17 RL(JK) = DCRSA + DCDSS
     CDZ2 = COS(ZYL/2)
     COZ1 = 2 + COZ2 + COZ2-1
     FM(1) = CDZ1
     FM(2) = C072
     FK(3) = 1.
     AF(J_*EG.2)FM(A) = SIN(7YL)
     IF (L.NE.1. AND.L.NE.HX)GO TO 50
   -DFM(2) = -SIN(7YL/2)/2
     DFM(1) = 4*0FX(2)*0072
     DFM(3) = 0.
     DEM(4) = COZS
  50 CONTINUE
     DO 36 JK=1.3
     DC 36 JW=1.4.
     E = FM(JW)*RL(JK)
     INTEG(JW.JK) = INTEG(JW.JK) + E*VAVA
     IF (AP.EG.O)GC TU 36
     EX = FMGJW)*RLZ(JK)
     INTEGZ(JW.JK) = INTEGZ(JW.JK) + EX*VAVA
     IF(L.Eg.1. DR.L.Eg.MX)INTEG(JW.JK)=INTEG(JW.JK)+VC+DYZE*(DFM(JW)+(D
    CAS(JK)+DSS(JK))-FM(JW)+(ZA1(JK)+ACZ(JK)+ACBN(JK)+Z51(JK)+ASZ(JK)+S
    CCON(JK)))
     IF (L.NE.1.AND.L.NE.MX)GD TO 36
     AR = ACCN(JK) * ACZ(JK)
     SW = SCCh(JK) + ASZ(JK)
     WH = AW + SW
   = ACGN(JK) + ZAI(JK) + (-1+3+ACZ(JK)/RRA(JK))/RRA(JK)
    WS = SCCA(JK)*ZS1(JK)*(=1+3*ASZ(JK)/RRS(JK))/RRS(JK)
    WP = DFM(JW)+WW - FM(JW)+(WA+WS)
    IF (NESP.NE.1)GO TO 70
     INTEGZ(JW.JK) = INTEGZ(JW.JK)+VC+CYZE*WP
    60 10 36
 70 INTEGZ(JW,JK) = INTEGZ(JW,JK)+VC+CYZE+(FM(JW)+(AW-SW)+ZK(JK)+WP+ZY
    CL*(CFM(JH)*(AW-SW)-FM(JW)*(WA-KS)))
  36 CONTINUE _
     HE = BETA+(H(K)-H(J))
DO 37 JK=1.3
```

```
IF (NESP. NE. 1) HE = (JK-1)/2.
   DO 37 JW=1,4
   INTEG(JW.JK) = INTEG(JW.JK)+DYZE/15
   INTEGZ(JH, JK) = "INTEGZ(JW. JK) * BETA * HE * DYZE/15
37 CONTINUE
   IF(NP.EQ.0)GC. TO 47
   IF (NESP. EQ. 1) GC TO 47
   BSL2 = BETA+SNL2(J)/2
   BSL1 = BETA+SNL1(J)
   BCL1 = BETA + CNL1(J)
   PSIDJ = BSL2 * INTEG(3,3)
   PSIUJ = BSL1 + INTEG(3,3)
   WDZJ = BSL2 + INTEG(3,1) - PSIDJ
   WD2J = BSL2*INTEG(3,2) - PSIDJ
   WUZJ = BSL1*INTEG(3.1) * PSIUJ
   WUZJ = B5L1*INTEG(3,2) - PSIUJ
   IF (J.NE.2) GO TO 47
   PSIV2J = BCL1 + INTEG(1,3) + BSL1 + INTEG(4,3)
   WV2J = BCL1*INTEG(1,2) + BSL1*INTEG(4,2) - PSIV2J
   WVZJ = BCL1+INTEG(1,1) + BSL1+INTEG(4,1) - PSIV2J
47 CO 13 JK=1.3
   XAPA1 = INTEG(1.JK)
   XAPA2 = INTEG(2.JK)
   XAPA3 = INTEG(3.JK)
   XAPA4 = INTEG(4.JK)
   INTEG(1.JK) = XAPA2 - COSA2 * XAFA3
   INTEG(2, JK) = XAPA1 - COSA1 + XAPA3
   INTEG(3, JK) = SENA1 + XAPA1 - COSA1 * XAPA4
   IF(NP.E0.0)GD TO 13
   ZAPA1 = INTEGZ(1.JK)
   ZAPA2 = INTEGZ(2,JK)
   ZAPA3 = INTEGZ(3, JK)
   ZAPA4 = INTEGZ(4,JK)
   INTEGZ(1, JK) = ZAPA2 - COSA2 * ZAPA3
   INTEGZ(2, JK) = ZAPA1 ~ COSA1 + ZAPA3
   INTEGZ(3.JK) = SENA1 + ZAPA1 - CCSA1 + ZAPA4
13 CONTINUE
   PSID = INTEG(1.3)
   WDZ = INTEG(1.1) - PSID
   WD2 = INTEG(1,2) = PSID
   PSIU = INTEG(2.3)
   WUZ = INTEG(2.1) - FSIU
   WU2 = INTEG(2,2) -PSIU
   PSIFU = (WDZ+ALFK - WD2+ALFS)/DELTA2
   PSIFU = (WUZ+ALFK - WUZ+ALFS)/CELTA2
   PSIHD = (WDZ*LGA - WDZ*LGS)/DELTAZ
   PSIHU = (WIIZ*LGA " WIIZ*LGS)/DELTA2
   FID = PSID - PSIFD * ACOSP
   FIU = PSTU - PSTFU+ACOSP
   IF(NP.EG.O)GC TO 28
   PS1CZ
              = INTEGZ(1.3)
   WD72 = IRTEGZ(1.1) - PSIDZ
   WD2Z = INTEGZ(1.2) - PSIDZ
                = INTEGZ(2.3)
   PSIUZ
   WUZZ= INTEGZ(2,1) - PSTUZ
   WUZZ = INTEGZ(2.2) - PSIUZ
   PSIFDZ.
               = (WDZZ*ALFK - WD2Z*ALFS)/DELTAZ
   PSIFUZ
                = (WUZZ*ALFK - WUZZ*ALFS)/DELTAZ
   PSIHDZ(K.J) = (MD2Z+LGA - MDZZ+LGS )/DELTA2
PSIHUZ(K.J) = (MU2Z+LGA - MUZZ+LGS )/DELTA2
   FIDZ(K.J) = PSIDZ = PSTFDZ*ACCSP
```

```
FIUZ(K.J) = PSIUZ - PSTFUZ*ACOSP
IF(NESP.NE.1)GO TO 49
   IF(J.NE.K.OR.ILOP.GT.1)GO TO 28
   PSIHDX(J) = PSIHD
   PSIHUX(J) = PSIHU
   FIDX(J) = FID
   FIUX(J) = FIU
   GO TO 28
49 PSIFDJ = (WD7J+ALFK-WD2J+ALFS)/DELTA2
   PSIFUJ = (WUZJ*ALFK - WUZJ*ALFS)/CELTA2
   PSIHUJ(K.J) = (*D2J*LGA - WDZJ*LGS)/DELTA2
   PSIHUJ(K.J) = (MU2J+LGA - WUZJ+LGS)/DELTA2
   FIDJ(K.J) = PSIDJ - PSIFDJ*ACQSP
   FIUJ(K.J) = PSIUJ - PSIFUJ*ACGSP
   PSIHDZ(K,J) = PSIHDZ(K,J) + BETA*(WC2*ASENP*WDZ*GAMA1*PSIHD*DDL2)/
  CDELTA2
   PSIHUZ(K,J) = PSIHUZ(K,J) + BETA*(WU2*ASENP*WUZ*GAMA1*PSIHU*DDL2)/
  CDFLTAZ
   FIDZ(K,J) = FIDZ(K,J)-ACGSP+BETA+(WCZ+GAMA2-ASENF2+WDZ/2-PSIFD+DDL
  C2)/CELTA2 + PETA+PSIFD+ASENP
   FIUZ(K, J) = FIUZ(K, J) - ACOSP + BETA + (WLZ + GAMA2 - ASENP2 + WUZ/2-PSIFU+DDL
  C2)/DELTA2 + RETA+PSIFU+ASENP
28 IF (J-2)19,21,19
21 PSIV2 = INTEG(3.3)
PSIV2Z = INTEGZ
             = INTEGZ(3.3)
   WVZ = INTEG(3.1) = PSIV2
WVZZ = INTEGZ(3.1) = PSIV2Z
   WV2 = INTEG(3.2) - PSIV2
   WV2Z = INTEGZ(3,2) - PSIV2Z
PSIFV2 = (WVZ+ALFK - WV2+ALFS)/DELTA2
   IF (NESP, NE. 1) PSFV2J = (WVZJ*ALFK - WVZJ*ALFS)/DELTA2
             = (WVZZ*ALFK - WVZZ*ALFS)/DELTAZ
   IF (K-2)22,23,22
23 DELTA1 = ASFNP*ALFK - ASENP2*ALFS
   PSIM = (HV7+ALFK - WV2+ALFS)/CELTA1
   A2 = (0.,-1.) + VO2/(60. + PSIM)
   A2 = - A2/COSH2
   PSIFV2 = (WV2 + ASENP-WV7 + ASENP2)/CELTA1
   DFL=1.0
   IF (NP.EQ. 0) GO TO 24
   DOL1 = ACOSP*(ALFK+0.5)+GAMA2+ASENP-ACOSP2/2
   IF (NESP. NE. 1) PSHVZJ(K) = (WVZJ + ASENF - WVZJ + ASENP2) / DELTA1
   IF (NESP, NE. 1) PSHV2Z(K) = (WV2Z+ASENP-WVZZ+ASENP2+BE1A+(ACDSP+NV2-W
  CVZ + ACOSP2/2-PSIHV2 + DDL1))/DELTA1
   IF (NESP. EQ. 1) 60 TO 24
   DPSIM = ((WVZZ+WVZJ) + ALFK = (WVZZ+KVZJ) + ALFS+BETA + (GAMAZ + WVZ = ASENP2+
  CHV2/2-PSIM*DOL1))/DELTA1
   DAZ = 42 * (BETA * SENH2/COSH2-DPSIM/FSIM)
   GC 10 24
22 DEL = ' 0 .
   PSI+V2 = (WV2+LGA-WV7+LGS)/DELTA2
   IF(NP.EG.0)60 TO 24
   PSHV2Z(K) = (WV2Z*LGA - WVZZ*LGS )/DELTA2
   IF(NESP. NE. 1) PSHV2Z(K) = PSHV2Z(K) + BETA + (WVZ + ASENP - WVZ + GAMA1 - PSIHV2 +
  CDDL2)/CELTA2
   IF(NESP.NE.1)PSHV2J(K)= (WV2J+LGA-WVZJ+LGS)/DELTA2
24 FIV2 = PSIV2 - (1.0-DEL)*PSIFV2*ACOSP
   FIV2Z(K) = PSIV2Z~(1~DFL)*PSFV2Z*ACCSP
   FIV2F(K) = FIV2
   PSHV2P(K) =PSIHV2
   IF(AP.EQ.O)GC TO 19
```

```
IF(K.NE.2.AND.NESP.NE.1)FIV2Z(K)=FIV2Z(K)-ACOSP+BETA+(WVZ+GAMA2-AS,
      CENP2+WV2/2-PSIFV2+DDL2)/DELTA2+BETA+PSIFV2+ASEAP
       IF (NESP. NE. 1) FIV2J(K) = PSIV2J - (1-LEL) * PSFV2J * ACOSP
       IF (NESP.NE.1)GO TO 19
       IE(K. NE. 2. OR. ILOP. GT. 1) GO TO 19
       FINSX = FINS
       PSHV2x = PSIHV2
C
C
C
       PONTAGEM DOS COEFICIENTES DO SISTEMA DE EQUAÇÕES
   19 AX(K, J) = FIU
       AX(K,J+N) = FID
       AX(K+N,J) = PSIHU
       AX(K+N.J+N) = PSIHD
       IF(NP.EQ.0)GD TO 32
       IF (NESP. NE. 1. OR. J. NE. K) GO TO 32
   71 AX(K,K) = FIUX(K)
       AX(K,K+h) = FIDX(K)
       AX(K+N,K) = PSIHUX(K)
      -AX(K+N_*K+N) = PSIHDX(K)
   32 CONTINUE
       TF(NP.E0.0)GD TO 142
       IF (K.NE.2. OR. NESP. NE. 1)GD TO 142
       FIV2 = FI-V2.X
       PSIHV2 = PSHV2X
  142 BX(K) = -FIV2
       BX(K+N) = -PSIHV2
   12 CONTINUE
      "DO 33 K=1.N
       BX(K) = BX(K) * AZ
   33 BX(K+N) = BX(K+N)+A2
C
       INVERSAC DA MATRIZ FI.PSIHD
C
       CALL INMACO(N2.TOL)
C
C
C
       DETERMINAÇÃO DOS-COEF. DE DISTRIB. DE CORRENTES
                X(1) A X(N)...FLEMENTOS DA MATRIZ CGLUKA ≥B≥
C
C
                X(N+1) A X(2N)...ELEMENTES DA MATRIZ COLUNA ≥0≥
       DC 94 IT=1:12
       X(IT) = (0..0.)
       DO 94 JT=1.112
       JZ = J1 + N2
   94 \times (11) = \times (11) + A\times (11,JZ) *B\times (JT)
C
C
       CALCULO DA DIRETIVIDADE
      E = (0..0.)
       CAZ = (0.,0.)
       DO 41 K=1,N
       DIK = ( B(K) - B(2) ) + RETA
      \begin{array}{lll} DI(K) = COS(DIK) + (0., 1.)*SIA(DIK) \\ E = E + DI(K)*(GMLZ(K)*X(K) + DMLZ(K)*X(K+K)) \\ CAZ = CAZ + CONJG(DI(K))*(GMLZ(K)*X(K)+DMLZ(K)*X(K+N)) \end{array}
   41 CONTINUE
       E = E + FX+A2
```

```
E = 60 * E * (0..1.)
       CAZ = CAZ + FX+A2
       CAZ = CAZ+60
       FBR = CABS(E/CAZ)
       DFBR = 20+ALOG10(FAR)
       WRITE(6,38)DFBR
    38 FORMAT(/. > FAR = 2.E10.4)
       EX = A2*SNL1(2) + X(2)*(1.-CNL1(2)) + X(N+2)*(1.-CNL2(2))
       POT = VO2+REAL(EX)/2.
       GANFO(ILOP) = (CABS(E)) + *2/(60. *PCT)
       WRITE(6,59)GANHO(ILOP)
    59 FORMAT( /,≥ GANHO = ≥.E10.4)
       GDB = 10. *ALCGIO(GANHO(ILUP))
       WRITE(6,189)GDB
   189 FORMAT( /,≥ GANHO EM OR ≥.E10.4)
 ¢
       PF(NP.EQ.0)G0 TO 111
       DO 54 K=1,N
       IF (NESP. EC. 1) GO TO 18
 ¢
 C
 C
       CALCULES DE PU=P2 E PD=P3 ( DTIMIZACAE DAS ALTURAS )
 C
       DC 54 M=1.N
       DELJ2 =0.
       IF ( P.EG. 2) DEL J2=1.
       P2(K,M) = -(FIUJ(K,M)*X(M)*FIDJ(K,M)*X(N+M)*DELJ2*(FIV2P(K)*DA2*FI
      CV2J(K)+42))
       .P.2 (K+W+M)=-(PS1HWU(K,M)*X(M)+PS1HDJ(K,M)*X(N+M)+DELJ2*(PSHV2P(K)+D
      CA2+FSHV2J(K)+A2))
       IF(K.NE.M)60 TO 54
       P2K= (0.,0.)
       P3K = (0..0.)
       00 48 IV=1.N
       P2K = P2K-FIUZ(K,IV)+X(IV)-FIDZ(K,IV)+X(N+IV)
    48 P3K = P3K - PSIHUZ(K, IV) * x(IV) - PSIHD7(K, IV) * x(N+IV)
       P2(K,K) = P2(K,K) + P2K - FIV2Z(K) + A2
       P2(K+N,K) = P2(K+N,K) + P3K - PSFV22(K)*A2
       GO TO 54
 C
 C
 C
       CALCULGS DE PU=P2 E PD=P3 ( OTIMIZACAC DOS ESPACAMENTOS )
C
    18 DO 54 J=1.N
       IF(K.EG.J)GO TO 55
       P2(K,J) = FIUZ(K,J)*X(J)*FIUZ(K,J)*X(N+J)
       P2(K+N,J) = PSIHUZ(K,J)+X(J) + PSIHCZ(K,J)+X(J+K)
       IF(J.NE.2)GD TD 54
       P2(K,2) = P2(K,2) + FIV27(K) * A2
       P2(K+N+2) = P2(K+N+2) + PSHV2Z(K)+A2
       GD TO 54
    55 P2K = (0.,0.)
       P3K = (0..0.)
       DC 57 IX=1.N
       DELKI = C.
       IF(IX.EO.K)DFLKI=1.
       P2K = P2K-(1-DELKI)*(FTUZ(K.IX)*X(IX)+FIDZ(K.IX)*X(N+IX))
    57 P3K = P3K +_(1. -DELKI)*(PSIHUZ(K.IX)*X(IX) + PSIHDZ(K.IX)*X(IX+N
      C))
       P2(K,K) = P2K-FIV2Z(K)*A2
```

```
P2(K+N,K) = -PSHV2Z(K) + (1,-DELK2) + A2 - P3K
   54 CONTINUE
C
C
C
      CALCULO DE QU=Q2 E QD=Q3
      DO 34 I=1.N
      DG 34 K=1,N
      02(K \cdot I) = (0 \cdot \cdot 0 \cdot)
      G3(K \cdot I) = (0..0.)
      00 34 LX = 1.42
      JX = LX + 112
      G2(K,I) = O2(K,I) + AX(K,JX) + P2(LX,I)
   34 \ Q3(K \cdot I) = Q3(K \cdot I) + AX(K + N \cdot JX) * P2(LX \cdot I)
C
C
C
      CALCULO DE ETETL(K) = DK(K)
C
      DO 35 K=1.N
      DELK2 = 0.
      IE(K.Eg.2)DELK2=1.
      DKK = (0.,0.)
      DO 31 I=1.8
   31 DKK = CKK + DI(1) + (GMLZ(1) + 02(1+K) + DMLZ(1) + 03(1-K))
      IF (NESP. Eq. 1) GO TO 39
      IF (K.Eg.2) DKK= DKK+DA2+FX+A2+BETA+SKL1(2)
      DK(K) = (0.,1.)*60*(BETA*BETAL(K)*DI(K)*(X(K)*SNL16K)+X(N+K)*SNL2(
     C K)/2)+DKK)
      GC TO 35
   39 DK(K) = (0..1.) +60. + ((0..1.) + DT(K) + EETA + (GMLZ(K) + X(K) + DHLZ(K) + X(
     CK+N) + FX*A2*DELK2) + DKK)
   35 CONTINUE
C
C
      DETERMINAÇÃO DAS NOVAS ALTURAS SE NESP. NE.1. DU DOS NOVOS
C
               ESPACAMENTOS SE NESP=1
C
      DIZ = GANHO(ILOP) - GANAN
      IF(GIZ.LT.0)GD TO 88-
      IF(DIZ.GT.O)GANAN = GANHO(ILOP)
      BOCA = 0.
      DC 29 K=1,N
      DCON = E*CONTC(DK(K))
      GCGN = G2(2.K)*(1.-CNL1(2)) + G3(2.K)*(1.-CNL2(2))
      IF (NESP.NE.1.AND.K.Eq.2)QCON = QCCN+BETA*(X(2)*SNL1(2)*X(N+2)*SNL2
     C(2)/2+A2+CML1(2))+DA2+SML1(2)
      B1 = REAL (DCCN)
      B2 = VC2 + REAL (QCON)/2.
      BB(K) = 2.*B1 - 60.*GANHO(ILOP)*B2
      DB(K) = B(K)
      IF(NESP.NE.1)DB(K) = H(K)
      BD(K) = DB(K)
      IF(ILOP.EQ.1)BOCA = BOCA + BB(K)*+2
   29 CONTINUE
   88 CONTINUE
      IF(CIZ,LT,0)ALFA = ALFA/2
      IF(ILOP.EQ.1)ALFA = ALVO/SGRT(ECCA)
      WRITE(6,833) ALF4
  883 FCRMATC /. > ALFA = 2,E10.4,////)
      00 192 K=1,N
      DL(K) = ALFA*BB(K)
```

```
IF(DIZ.LT.O)DB(K) = BD(K)
      DB(K) = DB(K) + DL(K)
      IF(NESP.E0.1)B(K) = DB(K)
      IF (NESP. NE. 1) H(K) = DB(K)
  192 CONTINUE
      B1 = 8(1)
      00 914 JB=1.N
B(JB) = B(JB) - B1
  914 CONTINUE
      IF(ILOP.GT.NITER)GO TO 111
      WRITE(6.884) TLCP
  884 FORMAT( /.≥ PERTURBACAD ≥.13)
      IF (NESP. EC. 1) GO TO 42
      *RITE(6,43)(H(J),J=1,N)
   43 FORMAT(/.≥ ALTURAS ≥.10F8.4)
      GC TO 44
   42 CONTINUE
      WRITE(6,52)(R(J),J=1,N)
                               2.10F8.4)
   52 FORYAT(/.≥ COORDENADS
   44 ILOP = ILOP + 1
IF(NESP.NE.1)GG TO 3
      60 10 51
  111 CONTINUE
      WRITE(6:444)
  444 FCRMAT(1H1)
      IF (NDIAG.NE.1)GO TO 45
CCC
      CBTENCAC DE DIAGRAMA DE IRRADIACAC
C
      CALL DIARD(N.B.H.A2.X, CAMPL.LAMBCA, 50)
      CALL RPLOT(2,91, YLIMS, 2., 0., CAMPL, 2, NPT, PT, 0)
   45 CONTINUE
      RETURN
      END
```

86700/87700 FORTRAN CCMPILATION MARK 2.6.000 HEDN

		FORMAT
FILE		
С	SUBROUTINE RPLOT(NCURV.NPTOS.YLIMS,FASSO,XIN,Y,JJ,NPT,PT,KK)	******
Č	NCURVNUMERO DE CURVAS QUE SE CESEJA TRACAR - NO MAXIMO 10	002
С	NPTOSNUMERO DE PONTOS EM CADA CURVA - NO MAXIMO 131	003
С	YLIMS VALORES EXTREMOS DE CACA CURVA-NECESSARIO FURNECER SE JJ=0	180 B
C	PASSODIFERENCA ENTRE AS ABSCISSAS DE DOIS PONTOS SUCESSIVOS	005
C C	XINABSCISSA INICIAL YMATRIZ DOS VALORES DAS FUNCCES	006
C	JJSE JJ=0.0 USWARIO DEVE FORNECER YLIMS**SE JJ=1 A SUBROTINA	007
č	TOMA PARA CADA CURVA VALORES ACECLACOS++SE JJ=2 A SUBROTINA TOMA	000
C	UMA UNICA ESCALA PARA TODAS AS CURVAS++SE JJ=3, A.SUBROTINA TOMA	010
C	UMA UNICA ESCALA E TRACA O EIXC DAS ABSCISSAS PASSANDO PELA ORDE-	011
C	NADA ZERO NPTNUMERO DE PONTOS QUE SE CESEJA PLOTAR - NO MÁXIMO 20	012
C C	PTMATRIZ DDS PONTOS-DAR VALCAES DE MODO QUE PT(I+1-1)>PT(I-1)	013 014
Č	E PT(1.1) MAIOR OU 1604L A XIN	015
C	KK SE KK=1 DBRIGATORIAMENTE DEVE-SE FAZER JJ=2 DU JJ=3++SF	01.6
C	KK=0 A SUBROTINA TRACA SOMENTE AS CLRVAS	017
C	**************************************	******
	DIMENSION YLIMS(10,2), Y(NCURV, RPTCS), PT(20,2) DIMENSIGN YS(6), ESC(10)	02
	DIMENSION JUSADO(10)	022
	REAL LINFA(102) NOS(10)	023
	REAL MA.MI	023
	DATA NCS/1H1,1H2,1H3,1H4,1H5,1F6,1H7,1H8,1H9,1H0/ DATA BCO/1H /,ARR/1Ha/,AST/1H*/,PLUS/1Ha/	024
	.IF(KK.E0.1) IF(JJ=2)10,30,30	025 .026
	GO TO 30	027
10	WRILE (6.20)	028
20	FORMAT(1H .44HCOM KK=1 É OBRIGATORIO O USO DE JJ=2 DU JJ=3)	029
3.0	GO TO 340	030
30	IX=0 ; CCNT=0 K=1 ; INDIC=0	031
	DO 40 I=1,102	032 033
40	LINHA(I)=BCU	034
	1F (JJ.EG.0) GO TO 100	035
	DO 50 I=1, MCURV	036
	YLIMS(I.2)=Y(I.1) YLIMS(I.1)=Y(I.1)	037
	DO 50 J=2.NPTOS	038 039
	YLIMS(1,2)=AMAX1(Y(1,1),YLIMS(1,2))	040
50	YLIPSCI.1) = APIN1(Y(I.J).YLIMS(I.1))	041
	IF(JJ.EG.1) GD TO 100	042
	MA=YLIMS(1,2) PJ=YLIMS(1,1)	043
561	DO 60 I=1,NCURV	044
	MA=AMAXI(YLIMS(I,2),MA)	049
60	KI=AKIN1(YL1KS(I,1),M[)	047
	IE(KK.VE.1) 00 LO 80	048
	DO 70 I=1,NPT	049
70	MA=AMAX1(MA.PT(I.2)) MI=4MIN1(MI.RT(I.2))	050 051
80	DO 90 I=1.HCURV	052
	YLIPS(I,2)=MA	053

```
YL I PS ( I . 1 ) = M I
90
                                                                                       054
100
     DC 140 1=1.NCURY
                                                                                       055
     ACRESC=(YLIMS(I.2)-YLIMS(I.1))/5
                                                                                       055
     Y5(1)=YLIMS(1,1)
                                                                                       057
     DO 110 J=1.5
                                                                                       058
110
     YS(J+1)=YS(J)+ACRESC
                                                                                      059
     IF(YLIMS(1.2).NE.YLIMS(1.1)) GC TC 130
                                                                                       060
     WRITE (6, 120)
                                                                                       061
     FORMAT(1H , 19x, 75HA EXECUÇÃO FOI INTERROMPIDA DEVIDU A IMPOSSIBILI
                                                                                      062
    CDADE DE SE TRACAR AS CURVAS.//.1x.113HSE JJ=1 UHA DAS CURVAS E UMA
C REIA HORIZONTAL SE JJ=2 DU JJ=3 TGDAS AS CURVAS SAO RETAS HORIZ
                                                                                      063
                                                                                      064
    CONTAIS COINCIDENTES)
                                                                                      065
     GD TD 340
                                                                                      066
130
    ESC(I)=100/(YLIMS(I.2)-YLIMS(I.1))
140
    WRITE (6.150) NOS(I).YS
                                                                                      068
150
    FORPAT(7H CURVA , A1.4H.... 6E2C.8)
                                                                                      069
     X=XIN+IX+PASSO
160
                                                                                      070
     WRITE(6.170)X
                                                                                      071
170
     FCRMAT(18x,610.3,2X,51(2H- ))
                                                                                      072
     IX=IX+1 ; CONT=CONT+1
180
                                                                                      073
     .DO '190 I=1. NCURV
                                                                                      074
     J=IFIX((Y([, [X) - YL]MS([,1)) *ESC([)+1.5)
                                                                                      075
                                                                                      076
     IF(J.GT.101) LINHA(101)=ARR
     IF(J.LT.1) LINHA(1)=ARR
                                                                                      077
     IF(J.GT.101. DR. J. LT.1) INDIC=1
                                                                                      078
                                                                                      079.
     IF(J.LE.101.AND.U.GE.1) IUSADO(I)=J
     IF(J.LE.101.AND.J.GE.1) LINHA(J)=NOS(I)
                                                                                      080
190
     CONTINUE
                                                                                      081
     IF (KK.NE.1) GO TO 200
                                                                                      082
     JR=C
                                                                                      083
     IF(IFIX((PT(K,1)-XIN)/PASSC+1.5).NE.IX) GD TO 200
                                                                                      084
     JP=!FIX((PT(K,2)=YLIMS(1,1))*ESC(1)+1.5)
                                                                                      085
     LINHA(JP)=PLUS
                                                                                      086
     K=K+1
                                                                                      087
200
     1F(JJ.NE.3) GR TR 230
                                                                                      088
                                                                                      089
     J=IFIX(-YLJMS(1.1) *ESC(1)+1.5)
     IF(J.LE.101.AND.J.GE.1) GU TO 220
                                                                                      090
     WRITE(6,210)
                                                                                      91
    FORMAT (1H .86HA EXECUCAC FOI INTERREMPIDA DEVIDO A IMPOSSIBILIDADE
                                                                                      092
    C DE SE TRACAR O EIXO DAS ABSCISSAS)
                                                                                      093
     GO TO 340
                                                                                      094
    LINHA(J)=AST
220
                                                                                      095
230
     WRITE (6,240) LINHA
                                                                                      096
240
     FORMAT(1H+,29x,102A1)
                                                                                      097
     DO 250 I=1.NCURV
                                                                                      098
250
     LINEA(IUSADO(I))=BCO
                                                                                      .09
     IF(JP.NE.O) LINHA(JP)=RCO
                                                                                      100
     IF(INDIC.NE.1) GO TO 260
                                                                                      101
     LINHA(1)=BCO
                                                                                      102
                                                                                      103
     LINFA(101)=RCO
     IF(IX.EG.KPTOS) GO TO 310
IF(CONT.EG.10) GO TO 300
                                                                                      104
                                                                                      105
     IF (IX.EQ.NPIOS-1) GO TO 280
                                                                                      106
     WRITE (6,270)
                                                                                      107
270
     FCRMAT(11x,6(19X.1H.))
                                                                                      108
     GO TO 180
                                                                                       109
280
     KBIJE(6.290)
                                                                                      110
290
     FCRMAT(1H .29X.51(2H- ))
                                                                                      111
     GO TO 180
                                                                                      112
300
     CONT = 0
                                                                                      113
                                                                                      114
     GU TO 160
```

310	IF(INDIC.NE.1) GO TO 340	115
	WRITE(5.320)	116
320	The same and the s	117
	COLOCACAO DAS CURVAS *** USE AS OFCOES JJ=1 CU JJ=2 UU JJ=3)	118
	WRITE(6,330)	119
330	FORMAT(1H ,//,30x,45HO SIMBOLO @ SIGNIFICA UM PONTO FORA DA ESCALA	1 2.0
	(C)	121
340	WRITE(6,350)	122
350	FORMAT(1H1)	123
	RETURN	124
	END	125
		FORMAT
	ar and a second an	SEG

```
SUBROUTINE DIARD(N, B, H, A2, X, CAMPL, LAMBOA, MZ)
      *****************
C
      ESTA SURROTINA CALCULA O CAMPE NE PLANO HORIZONTAL E VERTICAL DE
C
C
             UMA ANTENA YAGI. DADOS CS COEFICIENTES DE DISTRIBUICAD DE
C
             CORRENTES NOS ELEMENTOS
      *****************
¢
      N...NUMEROS DE ELEMENTOS DA RECE YAGI
Ç
      B... VETOR DAS COORDENADAS DOS ELEMENTOS
C
      H... VETOR DAS ALTURAS DOS ELEMENTOS
      A2...CCEF. DE DIST. DE CORRENTE ACICIONAL DO ELEM. EXCITADOR X...VETOR DOS COEFIC. DE DISTRIBUICAD DAS CORRENTES CAMPL(1,IFI)...CAMPO VERTICAL AO GUADRADO (PLAND H)
C
C
C
      CAMPL(2, IFI) ... CAMPO HORIZONTAL AC GUADRADO (PLANO E)
      LAMEDA...COMPRIMENTO DE ONOA
      MZ...NUMERO DE PONTOS EM TETA E FI. DE ZERO A 180 GRAUS. NO MAXIMO
C
            90: TOMAR SEMPRE UM MULTIPLO DE 6
      **************
      COMPLEX CAMPO, TV. TZ, COA, EX, FVN. X(1), A2
      DIMENSION GETAL(12), SNL1(12), SNL2(12), CNL1(12), CNL2(12), CNL4(12),
     CB( 1), CAMPL(2,91), H( 1)
      REAL LAPBUA
      FI = 3.1415926535
     BETA = 2+3.1415926535/LAMBOA
      DO 11 K=1. N
      P = BETA+H(K)
      BETAL(K) = P
      CNL4(K) = COS(P/4)
      CNL2(K) = 2 + CNL4(K) + CNL4(K) - 1
      CNL1(K) = 2*CNL2(K)*CNL2(K) - 1
      SNL2(K) = SIN(P/2)
   11 SNL1(K) = 2+SNL2(K)+CNL2(K)
      DISC = ARS(H(2)/LAMBDA = .25) = .1E=3
C
C
C
      CAMPO VERTICAL
C
      IF(CISC)75,75,76
   75 HM = 1. - PI/2
      SECBH = 1.
      60 TO 77
  76 HM = 1. - CNL1(2)
      SECBH = 1./CNL1(2)
   77 PZ1 = PZ+1
      DEFI = PI/MZ
      WRITE (6.78)
   78 FORMAT(1H1.////,8x.3HPHI.9X.>E++22.20x.4HTETA.9X.4HE++2./)
      DO 36 IFI=1.MZ1
      FI = (IFI=1) + DEFI
      COSFI = COS(FI)
      CAMPU = (0..0.)
     DO 61 I=1.N
     RI = B(2) - B(I)
      GM = SNL1(I) - BFTAL(I) * CNL1(I)
      DM =
          2. * SNL2(I) - BETAL(I) * CNL2(I)
     TV = X(I)/A2
      TZ = X(I+N)/42
     RI = RI + COSFI
     CB = BETA+R1
     EX = COS(CR) - (0.,1.)*SIN(CB)
```

```
61 CAMPO = CAMPO + (TV+GM + TZ+DY)+EX
      FVN = (HM + CAMPD) + SECRH
      FVEN = CABS(FVN)
      IF (IFI.E0.1)A9SO = FVEN
      FVNW = FVEN/ARSO
      FVNW = FVNW*FVNW
      CAMPL(1, IFI) = 10+ALOG10(FVNW)
   86 CONTINUE
C
C
      CAMPO HORIZONTAL
¢
      MZ2 = (MZ+2)/2
      DETETA = PI/MZ
      DO 87 ITET=1.MZ1
      TETA = PI/2 - (ITET-1) +DETETA
      COST = COS(TETA)
      SENT = SIN(TETA)
      IF (ITET. NE. 1) 90 TO 12
      HM = 1. -PI/2
FM = 1. - CNL1(2)
      GD TO 13
  12 CONTINUE
  14 CONTINUE
      IF (ITET. NE. MZ1)GO TO 15
      HM = PI/2 - 1.
     -FM = CNL1(2) - 1.
      GO TO 13
   15 CONTINUE
     "FFCITET.EG. AZZYGO TO TY
      FM = (COS(BETAL(2)+COST)+CNL1(2))/SENT
      IF(CISC.LT.O)HM=(COST - SIN(PI+CCST/2))/(SENT+COST)
   13 CAMPO = (0..0.)
      DO SO I=1.N
      IV = x(1)/42
      TZ = X(I+N)/A2 -
      RI = B(2) - B(I)
      BETCO = BETAL(I) +COST
      COSRT = COS(RETCO)
      SENOT = SIN(BETCO)
      IF (ITE1. NE. 1) GO TO 21
      GM = SAL-1(I) - BETAL(I) + CNL1(I)
      DM = 2. + SNL2(1) - RETAL(1)+CNL2(1)
      GO TO 22
   21 CONTINUE
      IF(ITET.NE.MZ1)GO TO 24
      GM = BETAL(I) + CNL1(I) - SNL1(I)
      DM = BETAL(1) + CNL2(1) - 2. + SNL2(1)
   24 CONTINUE
      IF (11E1.E0.MZ2)60 TO 22
      GM = (SNL1(1)+COSBT+COST - CNL1(1)+SENPT)/(SENT+COST)
      ABA = .001 + (ITET-1) + 180/MZ
      IKB = IFIX(APA)
      IF(IKB.EG.30.0R.[KB.EG.150)GO TO 33
      DM = SENT*((2*COSBT*SNL2(1)*A*SENET*CNL2(1)*COST)/(1*4*COST**2) =
     C(SEABT + CILZ(I))/COST)
   GO TO 22
33 DM = SENT+(BFTAL(I) - SNL1(I))/2.
   22.RI = RI*SENT
      CB = BETA*RI
```

```
EX = COS(C9) - (0..1.) *SIN(CB)
20 CAMPO = CAMPO +(TV+GM +TZ+DM)+EX
   IF(CISC)30,30,31
30 SECBH = 1.
   GO T-0 32
31 HM = FM
   SECRH = 1/CNL1(2)
32 FVN = (HM + CAMPO) + SECRH
   FVEN = CARS(FVN)
   FUNN = FUEN/ARSO
   FVNW = FVNW*FVNW
   CAMPL(2.ITET) = 10+ALOG10(FVNW)
   IF (ITET.EQ. MZ2) CAMPL (2. ITET) = CAMPL (2. ITET 1)
87 CONTINUE
   DC 25 IVK=1.91.2
   ZTET = (IVK-1) * 180/MZ
25 WRITE(6.73)ZTET.CAMPL(1.IVK).ZTET.CAMPL(2.IVK)
73 FCRMAT(6x,F6.2,E16.6,13x,F6.2,E16.6)
   WRITE(6,90)
9C FORMAT(1H1)
   kRITE(6.46)
46 FORMAT(5(/) . 20X . 20S PONTOS 2 E 1 NO GRAFICO CORRESPUNDEM AOS PONTO S
  CS2./.35x. >NO PLANO E(HORIZONTAL) E PLANO H(VERTICAL) RESPECTIVAMEN TEZ.///)
  CTE2.///)
   RETURN
   END
                                                                             FURNAT
                                                                             FORMAT
                                                                                 SEG
```

```
SUBROUTINE INMACO(N, TOL)
 C
      ESTA SUPROTINA INVERTE A MATRIZ. FELO METODO DE PIVUTAMENTO
C
      A MATRIZ A SER INVERTIDA E SUPRICA FELO COMMON A
 C
 C
       A MATRIZ INICIAL E PERDIDA, PORTANTO CASO NECESSITE DESSA MATRIZ
C
            ARMAZENE-A
        C
      N ... DIMENSAD DA MATRIZ QUE SE CESEJA INVERTER. NO MAXIMO 20 TOL ... SE O ELEMENTO DA MATRIZ POSSUI VALOR ABSOLUTO INFERIOR A
 C
 C
C
               TOL E CONSIDERADO COMO ZERO
         ********************
C
      COMPLEX A(30.60), TEMP. PIV. DIVA
      COMMON A
      FORMACAC MATRIZ UNITARIA.
C
      N1 = N+1
      NZ = 2 + N
      DO 3 I=1.N
      DO 3 J=1.N
      NJ= N+J
      A(I,NJ) = (0.,0.)
      IF(1.EG.J)A(I.NJ)=(1..0.)
    3 CONTINUE
      NX = N-1
      M = 0
C
      GERACAC PIVOT, VERIFICAR SE COLUNA DIFERENTE DE ZERO
      DO 23 L=1.N
      LX = L+1
      PX = 0
      DO 13 I=L,N
      IF(CABS(A(I,L))-TOL)13,13,11
   11 \text{ MX} = 1
   13 CONTINUE
      IF(MX)15.37.15
¢
      TESTE MAIOR ELEMENTO COLUNA
   15 00 19 I=LX.N
      IF(CABS(A(L.L)) - CARS(A(I.L)))17.19.19
      TROCA DE LINHAS
C
   17 00 19 JX=L.NZ
1EMP = A(L.JX)
      A(L,JX) = A(I,JX)

A(I,JX) = TEMP
   19 CONTINUE
      FAZER PIVOT IGUAL A 1
C
      PIV = A(L,L)
      CO 21 JX=L,NZ

A(L,JX) = A(L,JX)/PIV
   21 CONTINUE
. C
      ALGCRITHO GAUSS JORDAN
      DO 23 K=1.N
      I=K
      IF(I"L)190,18,190
   18 I = I + 1
      IF(I-N)190,190,23
  190 M=0
      DIVA = A(I.L)
      DO 210 J=L.NZ
      A(I,J) = A(I,J) - A(L,J) + OIVA
      VERIFICAR SE LINHA DIFERENTE DE ZERC
      IF (I-L)20,20.189
  189 IF(J-K)191,191,210
```

```
191 IF(CABS(A(I,J))-TOL)210,210,20
20 M=1
210 CONTINUE
    IF(M)23,37,23
23 CONTINUE
    RETURN
37 WRITE(6,775)
775 FORMAT(/,27x,28H MATRIZ INVERSA NAO DEFINIDA)
    RETURN
    END
```

FORMAT . SEG

APÊNDICE F

TABELAS DA DIRETIVIDADE E RFC DE ANTENAS YAGI COM ALTURAS E ESPAÇAMENTOS DOS DIRETORES UNIFORMES

Neste apêndice são apresentadas as tabelas de diretividade e RFC de antenas YAGI com as alturas e os espaçamentos dos diretores uniformes.

As alturas do refletor e do excitador são 0.51λ e 0.49λ respectivamente, e a distância entre os elementos referidos 0.25λ .

O parametro d/λ \tilde{e} a distancia normalizada (em relação ao comprimento de onda) entre os diretores enquanto h/λ \tilde{e} a altura normalizada dos diretores. Cabe observar que em cada quadro o valor superior corresponde a diretividade (em dB) enquanto o valor inferior \tilde{e} a RFC (em dB) da antena.

- F.2 -

TABELA F.1

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 3 ELEMENTOS COM

ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

N = 3 A = 0.0033690 H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

d/x h/x	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50
0.200	6.1	6.3	6.5	6.7	6.9	7.1 15.5	7.2	7.3	7.4	7.4	7.4	7.3	7.2	7.1 8.2	6.9	6.9 7.7	7.5	6.5 7.5	6.3 7.5	7.7	6.1 7.9
0.205	6.2	6.5	6.7	7.0 18.9	1.2 11.5	7.4	7.6	7.7	7.7 11.2	7.7	7.6	7.5	7.4	7.2	7.1	6.9 7.2	6.7 7.1	6.5 7.1	6.4 7.2	6.2 7.4	6.1 7.7
0.210	6.4	6.7	7.1	7.4	7.6	7.8	8.0	8.1	8.1 10.3	8.0	7.9	7.7	7.5	7.3	. 7.1	6.9	6.7	6.5	6.3	7.1	6.0 7.5
0.215	6.7	7.1 27.9	7.5 24.9	7.8 19.2	8.1	8.3 13.2	8.4	8.4 10.1	8.4 9.0	8.2	8.0	7.8	7.5 6.6	7.3 6.3	7.0 6.1	6.8	6.5	6.3 6.2	6.1 6.5	6.0	7.3
0.220	7.1	7.5 27.8	8.0	8.3 15.2	8.6 12.6	8.7 10.7	8.7 9.3	8.6	8.4 7.4	8.2	7.9 6.2	7.6	7.3	6,9 5.3	6.7 5.3	6.4 5.3	6.2 5.4	5.9	5.8	5.6 6.5	5.5 7.1
0.225	7.6	8.1	8.6	8.9	9.0	8.9	8.7 7.0	8.4	8.1 5.6	7.7 5.1	7.3	6.9	6.6 4.4	6.3	6.0	5.7 4.5	5.5	5.3	5.2	5.1 6.2	5.0 7.0

TABELA F.2

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 4 ELEMENTOS COM ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

N = 4 A = 0.0033690 H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

d/λ h/λ	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50
0.200	7.6 19.4	7.9 15.4	8.1	8.1 11.5	8.1	8.0 10.5	7.9	7.8	7.9 13.2	8.0	8.1 16.4	8.3 15.5	8.4	8.5 10.9	8.4 9.1	8.2 7.8	7.9 6.9	7.6 6.4	7.2 6.2	6.9 6.4	6.6
0.205	7.9	8.2	8.4	8.4	8.3	8.2	8.1	8.2	8.3	8.4 17.5	8.7	8.9	9.0 12.1	9.0 9.7	8.8	8.4	8.0	7.6 5.7	7.2 5.6	6.8	6.5
0.210	8.3 15.9	8.6 12.8	8.7	8.6	8.5 10.0	8.4	8.4	B.5	8.8	9.1	9.4 18.0	9.6 13.1	9.6	9.4 7.8	8.9 6.4	8.4 5.5	7.8 5.0	7.3	6.9 4.9	6.5 5.4	6.2 6.2
0.215	8.6	8.8	8.8	8.7 9.5	8.7 9.8	3.6	8.8	9.1	9.5	9.9	10.2	10.2	9.8	9,2	8.5 4.5	7.3 4.0	7.1 3.7	6.6	6.2 4.1	5.9 4.8	5.7
0.220	8.9	9.0 9.5	8.9 8.9	8.8	8.8	9.0	9,4 16.9	9.9	10.4	10.7	10.4	9.6 5.2	8.7	7.8	7.0	6.3	5.8	5.4	5.1 3.4	5.0 4.3	4.9 5.6
0.225	9.0	8.9	8.9	8.9 9.5	9.2	9.7 17.3	10.3 17.8	10.6	10.2	9.1	7.9	6.8	6.0	5.3	4.8	4.4 0.8	4.1	3.9	3.8	3.8	3.9

TABELA F.3

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 5 ELEMENTOS COM

ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

4 = 5 A = 0.0033690 H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

piy qiy	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50
0.200	8.5	8.5	8.4	8.4	8.5 15.3	8.8	9.0	9.1	9.1	9.0	8.9	8.8	8.9	9.1	9.3	9.3	9.0	8.6	8.0 5.3	7.4	6.9
0.205	8.7	8.7	8.6	8.7	8.9	9.3	9.6	9.7	9.6	9.4	9.3	9.3	9.5	9.8	10.0	9.8	9.3	8.5	7.7	7.1	6.7
0.210	8.9	8.8	8.8	9.1	9.4	9.9	10.1	10,1 11,3	9.9	9.7	9.7	10.0	10.4	10.8	10.6	9.9	8.8	7.8	7.0	6.5	6.1
0.215	9.0	8.9	9.1 12.9	9.5	10.1	10.5	10.5	10.3	10.1 9.4	10.1	10.4	11.1 30.6	11.5	11.1	9.8 4.1	8.4	7.2	6.3	5.7	5.4 3.2	5.2 4.8
0.220	9.0 9.2	9.1	9.5 15.8	10.1	10.6	10.6	10.4	10.1 8.3	10.3	10.9	11.7	11.6 7.9	9.9	7.9	6.4	5.4	4.7	4.3	4.0	4.0	4.1
0.225	9.0 9.7	9.4	9.9	10.2	10.1-	9.8 6.8	9.8 7.4	10.3	11.1 16.0	9.9 5.8	6.8	4.7	3.5	2.9	2.6	2.4 .	2.3	2.3	2.4	2.7	3.0 4.6

- 1.5 -

TABELA F.4 DIRETIVIDADE E RFC DE ANTENAS YAGI DE 6 ELEMENTOS COM ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

N = 6 $\Lambda = 0.0033690$ H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

d/x	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	-0.38	0.40	. 0.42	0.44	0.46	0.48	0.50
.200	8.7	8.8	9.1	9.5	9.7	9.7	9.5 .	9.4	9.5	9.8	9.9	9.8	9.6	9.5	9.7	9.9	10.0	9.5	8.6	7.8	7.1
	10.9	13.1	18.8	21.7	14.9	12.1	11.7	13.3	17.2	18.3	13.9	11.4	11.0	12.9	17.3	14.9	9.3	6.2	4.7	4.4	5.3
205	8.8	9.0	9.5	10.0	10.2	10.0	9.9	9.9	10.2	10.5	10.5	10.3	10.1	10.2	10.6	10.9	10.5 .	9.4	8.2	7.2	6.6
205	11.0	14.5	25.1	19.4	13.2	11.3	11.8	14.9	21.8	17.6	12.4	10.6	11.2	15.3	21.4	11.7	6.7	4.3	3.4	3.6	4.8
0.210	9.0	9.4	10.0	10.5	10.5	10.3	10.2	10.5	10.9	11.2	11.0	10.7	10.7	11.2	11.8	11.3	9.8	8.1	6.9	6.2	5.8
0.210	11.5	17.1	31.3	15.1	11.3	10.6	12.5	18.7	25.2	13.9	10.4	10.0	12.6	25.3	13.9	6.7	3.5	2.1	1.9	2.7	4.4
	9.2	9.9	10.5	10.7	10.5	10.4	10.7	11.3	11.7	11.4	11.0	11.0	11.7	12.5	11.2	8.8	6.8	5.6	4.9	4.7	4.7
1.215	12.7	22.2	17.0	11.3	9.7	10.6	15.0	31.2	14.5	9.8	8.7	10.7	20.5	12.4	4,.8	1.5	0.1	-0.1	0.5	1.8	4.1
	9.5	10.2	10.5	10.3	10.3	10.6	11,3	11.6	11.2	10.7	11.1	12.3	11.0	7.3	4.9	3.7	3.1	2.9	2,9	3.1	3.5
0.220	15.6	17.4	10.9	8.7	9.1	12.8	21.1	12.3	8.0	7.2	9.9	17.5	5.2	-0.2	-2.2	-2.8	-2.6	-1.8	-0.6	1.2	3.9
	9.6	9.7	9.5	9.6	10.2	10.6	9.9	9.2	9.6	10.4	4.1	-0.5	-0.6	-0.2	0.1	0.4	0.6	0.9	1.3	1.7	2.3
0.225	16.2	9.8	7.4	8.0	12.4	15.6	7.8	6.2	6.6	16.1	-1.4	-6.8	-6.8	-6.0	-5.3	-4.5	-3.7	-2.6	-1.1	1.0	4.1

TABELA F.5

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 7 ELEMENTOS COM

ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

N = 7 A = 0.0033690 H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

h/1 d/1	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.23	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50
0.200	9.1	9.7 28.7	10.1	10.1	9.9	10.0	10.3	10,4 15.0	10.3	10.1	10.2	10.4	10:4 73.0	10.3	10.1 12.3	10.3	10.6	10.4 6.9	9.3	8.0 3.7	7.2 4.7
0.205	9.4	10.2	10.5	10.3	10.2	10.5 20.1	10.9	11.0	10.8	10.7	10.9	11.2	11.1	10.8	10.9	11.4	11.5 8.7	10.3	8.5	7.2	5.5 4.2
0.210	9.8	10.5	10.6	10.4	·10`.6	11.2	11.5	11.4	11.1	11.3	11.8 25.1	12.0	11.5 9.5	11.4	12.0 28.3	12.6 9.9	10.7	8.2	6.6	5.7	5.4 3.8
0.215	10.2	10.6	10.4 9.5	10.5	11.1	11.7	11.6	11.3 9,7	11.5	12.2 26.8	12.5	11.8	11.6	12.6 19.5	12.7	8.9	6.0	4.6	4.0	3.9	4.2 3.5
0.220	10.1	10.0	10.1 9.3	10.7 14.8	11.3	11.1 9.4	10.8 8.1	11,2	12.0 19.1	11.8	10.8	11.2	12.1	5.8	2.3	1.5	1.4	1.5	1.8	2.3	2.9 3.5
0.225	8.9 7.8	9.1 7.9	9.7 13.5	9.6 13.2	8.9 6.9	. 9.1 6.7	9.9	9.1	7.2	8.1 5.8	2,3	-12.2 -18.2	-4.5	-2.5 -8.2	-1.6 -7.0	-1.0 -6.0	-0.6 5.0	-0.1 -3.8	0.4	1.1	1.8 3.7

7.0

TABELA F.6

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 8 ELEMENTOS COM

ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

N = 8 A = 0.0033690 H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

d/λ h/λ	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50
0.200	10.0	10.4	10.3	10.3	10.7	10.9	10.7.	10.6	10.8	11.0	10.8	10.7	10.8	11.0	10.8	10.6	11.0	11.1	9.9	8.2	7.2
	29.6	13.6	11.7	15.0	25.1	15.1	12.3	14.5	21.3	15.2	12.1	14.0	19.9	13.8	10.8	13.1	19.2	5.4	4.0	3.0	4.3
0.205	10.4	10.6	10.4	10.7	11.3	11.4	11.1	11.2	11.6	11.6	11.4	11.4	11.8	11.8	11.4	11.6	12.3	11.2	8.7	7.0	6.3
	19.5	11.7	11.6	17.9	22.4	12.9	12.0	17.1.	22.7	13.1	11.8	16.6	20.6	11.5	10.4	17.5	12.8	4.4	1.7	1.7	3.7
0.210	10.6	10.6	10.6	11.2	, 11.7	11.7	11.4	11.9	12.3	12.0	11.8	12.3	12.7	12.1	12.0	13.2	11.7	8.2	6.1	5.2	5.1
	13.9	10.2	12.3	25.9	15.1	11.0	12.7	26.1.	15.6	10.8	12.4	29.5	13.2	9.0	11.9	17.9	4.0	0.1	-0.6	0.5	3.3
0.215	10.4	10.3	10.8	11.5	11.5	11.3	11.8	12.5	12.2	11.9	12,5	13.1	12.2	121	13.6	8.8	4.9	3.4	3.1	3,2	3.7
	10.2	9.6	15.2	17.9	10.4	10.1	16.3	17.6	10.0	9.9	18.0	13.2	7.4	9.3	13.1	0.3	-3.1	-3.5	-2.5	-0.4	3.1
0.220	9.6	10.0	10.7	10.6	10.4	11.1	11.,7	11.0	10.9	12.0	11.5	10.0	11.6	3.2	-1.4	-0.8	-0.2	0.4	0.9	1.6	2.5
ï	8.2	11.1	18.2	9.6	8.3	13.0	15.6	8.1	8.0	16.3	8.5	4.7	12.7	-3.9.	-8.6	-7.5	-6.3	-5.0	-3.3	-0.8	3.1
0.225	8.7	8.8	8.0	8.2	9,1	8.0	7.1	8.4.	6.5	3.5	5.9	-4.7	-4.1	-3.1	-2.4	-1.9	-1.4	-0.8	-0.2	0.5	1.5
.,	9.1	18.4	8.0	7.0	14.5	9.8	4.9	9.9	7.5	0.4	5.4	-10.7	-10.0	-8.7	-7.7	-6.7	-5.8	-4.6	-3.0	-0.6	3.4

ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS D(2) = 0.250

d/x	0.10	0.12	0.14	0.16	0.13	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	.0.42	0.44	0.46	0.48	0.50
0.200	10.6	10.4	10.6	11.2	11.2	11.0	11.2	11.4	11.2	11.2 16.6	11.4	11.4	11.1	11.3	11.4	11.2 10.7	11.3 17.5	11.7	10.5	8.4 2.4	7.1 3.9
0.205	10.7	10.6	11.1 24.1	11.6 15.6	11.4	11.4	11.9	12.0	11.7	11.9	12.2 16.0	12.0 11.6	11.9	12.3	12.2	11.9 11.3	12.6 23.5	12.0	8.9	6.8	6.1 3.3
0.210	10.5	10.7	11.5 23.4	11.7	11.5	12.0	12.5 15.9	12.2	12.2 _.	12.8 25.4	12.7	. 12.4	12.9	13.2 11.6	12.4	13.1 19.1	12.8 5.3	7.9	5.4	4.6 -0.5	4.7
0.215	10.1 9.4	10.8	11.3 13.0	11. <u>!</u> .9.4	11.5 13.3	12.3 19.1	12.0	11.9	12.7	12.8 11.4	12.2 8.9	12.9	13.3 10.8	11.9	13.3 15.1	8.6	3.3 -4.9	2.1 -5.0	2.1	2.6 -1.4	3.3 2.8
0,220	9.7	10.1	9.7 8.1	10.2	11.0	10.5	10.5	11.6	10.9	10.4	11.7	9.6 5.0	9.3 5.1	-0.1 -6.5	-5.8 12.9	-2.6 -9.2	-1.4 -7.4	-0.6 -5.9	0.2	1.1	2.1
0.225	7.8	6.8 7.0	7.8 9.6	7.5 . 17.1	6.2	7.4 9.4	6.8	4.7 3.4	7.1 17.1	2.8	8.2 19.4	-0.7 -7.0	-2.8 -8.8	-3.0 -8.6	-2.7 -8.0	-2.3 -7.1	-1.9 -6.2	-1.3 -5.1	-0.7 -3.6	0.1	1.2

TABELA F.7

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 9 ELEMENTOS COM

D(1) = 0.000

H(1) = 0.255

H(2) = 0.245

1 .

TABELA F.8

DIRETIVIDADE E RFC DE ANTENAS YAGI DE 10 ELEMENTOS COM

ESPAÇAMENTOS E ALTURA DOS DIRETORES IGUAIS

N = 10 A = 0.0033690 H(1) = 0.255 H(2) = 0.245 D(1) = 0.000 D(2) = 0.250

h/2	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48.	0.50
0.200	10.5	10.8	11.5	11.4	11.3	11.8	11.7	11.5	11.8	11.8	11.6 14.8	11.8	11.8 12.8	11.6 13.9	11.8	11.8 11.0	11.5	12.2 15.1	11.1	8.4	7.0 3.5
0.205	10.6	11.2	11.7	11.5	11.9	12.3 16.1	12.0	12.2	12.6	12.3	12.3	12.7	12.4 11.5	12.5	12.9 15.0	12.4 9.4	12.7	12.9	8.9 0.5	6.5	5.8 3.0
0.210	10.6	11.5	11.5	11.5	12.3	11.8	12.2	12.9 32.2	12.9	12.6	13.2 34.9	13.2 11.5	12.8 11.5	13.6 25.5	13.2 8.6	12.9	13.8 7.5	7.5	4.7 -2.9	4:0	4.4· 2.6
0.215	10.5 15.5	10.9	10.7	11.5 17.2	11.9	11.6 9.6	12.3	12.7	12.2 9.4	12.9	13.1	12.4 8.6	13.5 19.5	12.5 6.7	12:3	8.3	1.2	0.8	1.3	2.0	3.0 2.5
0.220	9.4 15.8	9.0 7.8	9.8 12.1	9.9 13.1	9.5 7.6	10.5	10.4	9:9 7.2	11.1	10.0 7.5	9.8	10.1	5.5 1.4	0.1 -5.9	-6.9 -13.9	-3.4 -10.0	-2.1 -8.1	-1.2 -6.6	-0.4	0.6	1.9
0.225	5.8 7.4	7.1 11.9	5.9 11.4	5.6 6.8	7.0	4.7 5.7	6.1 9.9	5.7 7.2	4.5	· 7.0	77 9.2	-0.3	-2.5 -8.5	29 -8.5	-2.9 -8.1	-2.6 -7.4	-2.2 -6.5	-1.7	-1.1 -4.0	-0.2	1.0

APENDICE G

ALGUNS VALORES RELATIVOS A CONFIGURAÇÕES OTIMIZADAS DE ANTENAS YAGI DE 3 ATÉ 10 ELEMENTOS

Neste apêndice são apresentadas algumas configurações otimizadas de antenas Yagi de 3 até 10 elementos, com os diagramas de irradiação e as diretividades respectivas, além das configurações iniciais a partir das quais foram otimizadas.

Quanto aos diagramas de irradiação cabe observar que no e \underline{i} xo horizontal estão assinalados os modulos do vetor de Poynting (em dB) normalizados em relação ao valor máximo, enquanto no eixo vertical estão indicados os ângulos polares.

APENDICE H

COMENTÁRIOS SOBRE DESENVOLVIMENTO TEÓRICO EFETUADO POR KING

Na obra de King et al. (1968) hā um desenvolvimento te \overline{ori} co especifico no caso em que o excitador e ressonante, ou seja $h_2 = \lambda/4$, pois nesse caso certas formulas apresentadas nesse texto resultam em in determinações da forma 0/0.

As otimizações realizadas para as alturas por Chen e Cheng (1975) porem comprovaram que a altura do excitador não precisa ser ressonante para satisfazer a condição de diretividade máxima. Desta forma foi omitida deliberadamente a formulação para o caso do excitador ressonante.

Existem no livro de King (1968) na parte relativa à ante na Yagi, algumas fórmulas com erros tipográficos. Apresentamos abaixo essas fórmulas escritas corretamente:

$$A_{2} \int_{-h_{2}}^{h_{2}} Moz_{2}^{i} K22d (z_{2}, z_{2}^{i}) dz_{2}^{i} + \sum_{i=1}^{N} B_{i} \int_{-h_{i}}^{h_{i}} Fozi K2id (z_{2}, z_{i}^{i}) dz_{i}^{i} +$$

$$\sum_{i=1}^{N} D_{i} \int_{-h_{i}}^{h_{i}} Hozi K2id (z_{2}, z_{i}^{!}) dz_{i}^{!} =$$

$$= \frac{\text{j4k}}{\zeta_0 \cos \beta_0 h_2} \left[\frac{1}{2} \text{Voz Moz}_2 + \text{U}_2 \text{Foz}_2 \right]$$
 (6.25)

$$A_{2} \int_{-h_{2}}^{h_{2}} Moz_{2}^{1} Kk^{2}d (z_{k}^{1}, z_{2}^{1}) dz_{2}^{1} + \sum_{i=1}^{N} B_{i}^{1} \int_{-h_{i}}^{h_{i}} Fozi Kkid (z_{k}^{1}, z_{i}^{1}) dz_{i}^{1} +$$

$$+ \sum_{i=1}^{N} D_{i} \int_{-h_{i}}^{h_{i}} Hozi Kkid (z_{k}, z_{i}') dz_{i}' =$$

$$= \frac{j4k}{\xi_0 \cos \beta_0 h_k} U_k \text{ Fozk} \qquad k = 1,3,4...N$$
 (6.26)

Pagina 193

$$R_{kih} = \sqrt{(h_k - z_i')^2 + b_{ik}^2}$$
 (6.35)

Pagina 200

$$\Psi_{22\text{dV}}^{1h} = \frac{1 - \sqrt{2}}{\Lambda_2^2} \left\{ \left[C_a(h_2, \frac{h_2}{2}) - C_a(h_2, h_2) \right] \left[1 - \frac{1}{\sqrt{2}} \right] - \left[C_a(h_2, 0) - C_a(h_2, h_2) \right] \right\}$$

$$\cdot \left[\cos \frac{\pi}{8} - \frac{1}{\sqrt{2}} \right] + \frac{1}{\Lambda_2} \left\{ \left[- S_a(h_2, \frac{h_2}{2}) + S_a(h_2, h_2) + E_a(h_2, \frac{h_2}{2}) - E_a(h_2, h_2) \right] \right\}$$

$$- E_a(h_2, h_2) + \frac{1}{\sqrt{2}} \left[S_a(h_2, 0) - S_a(h_2, h_2) - E_a(h_2, 0) + E_a(h_2, h_2) \right] \right\}$$

$$(6.76c)$$

$$\left| S_{R}(R_{2}, \theta, \phi) \right| = \frac{P_{2N} \zeta_{0}}{4\pi^{2} R_{2}^{2} G_{2N}} \frac{\cos^{2} \beta_{0} h_{2} |A_{2}|^{2}}{|Vo_{2}|^{2}} |F_{VN}(\theta, \phi)|^{2}$$
 (6.93b)

$$G_{2N} = \frac{\zeta_0}{4\pi^2} \frac{\cos^2\beta h_2}{|V_{02}|^2} |A_2|^2 \int_0^{2\pi} \int_0^{\pi} |F_{VN}(\theta,\phi)|^2 \operatorname{seneded}\phi$$
 (6.95b)

$$P_{N_{Omni}} = \frac{P_{2N}^{\zeta_0}}{{}^{\pi}G_{2N}} \cos^2 \beta_0 h_2 \frac{|\Lambda_2|^2}{|V_{02}|^2} |F_{VN}(\theta,\phi)|^2$$
 (6.76)

$$D_{N}(\frac{\pi}{2}, 0) = \frac{\zeta_{0}}{\pi G_{2N}} \frac{\cos^{2}\beta_{0}h_{2}|A_{2}|^{2}}{|Vo_{2}|^{2}} |F_{VN}(\theta, \phi)|^{2}$$
 (6.97)

APENDICE G.1

ALGUNS VALORES RELATIVOS A CONFIGURAÇÕES OTMIZADAS DE ANTENAS YAGI DE 3 ATÉ 10 ELEMENTOS

Neste apêndice são apresentadas algumas configurações otimizadas de antenas Yagi de 3 até 10 elementos, com os diagramas de irradiação e as diretividades respectivas, além das configurações iniciais a partir das quais foram otimizadas.

Quanto aos diagramas de irradiação cabe observar que no ei xo horizontal estão assinalados os módulos do vetor de Poynting (em dB) nor malizados em relação ao valor máximo, enquanto no eixo vertical estão in dicados os ângulos polares.

OS PONTOS E E H NC GRAFICO CORPESPONDEM AGS PONTOS NO PLANO E(HORIZONIAL) E PLAND MOVERTICAL) RESPECTIVAMENTE

CURVA H50.0 CURVA E50.0	-40.0 -40.0	-30.0 -30.0	-20.0 -20.0	-10.0 -10.0	0.0
0.0	1 1 2 h _{1/1} 0.242 0.243 d _{1/1} 0.000 0.186				
20.0	DIRETIVIDACE = 9.6c FBR = 7.0d8				EH.
40.0				E H	E H H H H H H H H H H H H H H H H H H H
*		; ; ; ; ;		H H H H	
80.0				H H H	
100.0			E E C C	H H H H	
120.0		į. E	E H . E H .	н	
140.0				E H E H E H E H E H	R H
160.0		_ - 0.18χ 37 = 9.5dB			E-H

OS PONTOS E E H NC GENETON CORRESPONDEM AOS BONTOS NO PLANC E(MORIZONIAL) E PLANN M(VERTICAL) RESPECTIVAMENTE

CURVA H	-50.0 -50.0	-40.0 -40.0		-30.0 -30.0	-20,	-10.	0.0
	0.0	1 1 h _{1/λ} 0.240 d _{1/λ} 0.000	2 J 0.243 0.226 0.221 0.441			:	E
	20.0	DIRETIVIOADE = FCR = 6.7dB	9.6d0	:			EH .
	40.0					E E H	
	60.0			ε.	E. E	H H	
	80.0	E E	e e		(* *	н н н н	
	100,0				E E E E E	H H H H H	
	120,0					н н н н н	
	140.0		* - * - * - * -			E H E H E H E H E E	V H H
	160.0	Configuração h = 0.220à Diretividade = 7.9dS	d = 0.14x FBR = 19.848				EM
	140.0	**********		• • •			

OS PONTOS E E H NC GHAFTON CORMESPONDEM AOS PONTOS NO PLANO E(MORIZONTAL) E PLANO HOVERTICAL) HESPECTIVAMENTE

CURVA H	-50.0 -50.0	-40.0 -40.0	-30.0	-20.0	-10.0 -10.0	0.0
	0.0	1 1 h ₁ / _A 0.247 d ₁ / _A 0.000		221		EH. EH. EH. EH.
	20.0	DIRETIVIDADE FBR = 9.0d3	- 11.2d3 ,			EH EH EH EH EH EH EH
	40.0		*******	E H	E H E H H . H	E H
	60.0		******	E H H E H H E E E E E E E E E E E E E E	н н н н	
	80,0	E E	τ τ		H H H H H	
	100.0		C C C C C C C C C C C C C C C C C C C	м н н н	н " н	
	120.0		******	E H E H E H E H E H E H E H		
	140.0			E H E H E H E H E E	H E H E H E H E H	
	160.0	Configuração In h = 0.2201 Diretividade = 9.849	icial d = 0.24x FDK = 28.948	a a a a a a a a g _a a	E H. C H.	# :
	150.0	********			* * * * * * * * * *	

OS PONTOS E E H AC GRÁFICO CORMESAGNEM AOS ADMICS NO PLANC E(MORIZONTAL) E PLANG MOVERTICAL) RESPLCTIVAMENTE

CURVA C	•50.0 •50.0	=40.0 =40.0		-30.0 -30.0	-20.0 -20.0	-10.0 -10.0	3.0 C.0
	20.0	1 1 h _{1/1} 0.2439 d _{1/1} 0.000 DIRETIVIDADE FBR = 7.9dB	2 3 0.2445 0.2198 0.153 0.453 • 11.248 · ·	4 6.2150 0.903			E H . E H .
	40.0			Tan C	е е е	е и е и е и	E H E H E H
,	80.0				e e e e e e e e e e e e e e e e e e e	H H H H H H H H H H H H H H H H H H H	
	120.0	E E	f f	E	E E E	н н н н	
	140.0		H E H	E .×	E H E H E H E H E H	н н н	
	160.0	<u>Configuração In</u> h = 0.215; Diretividade = 7.8dR	i <u>cial</u> d = 0.40 _λ FBC = 4.1d3			E H E H E H	H E E E E
	10.0	********		<u>:</u> .			

OS PONTOS E E H NC GRAFICO CORPESAGNOEM AGS PONTES NO PLANC E(FCRIZONTAL) E PLAND MOVERTICAL) RESPECTIVAMENTE

CURVA H	-50.0 -50.0	-40,0 -40,0	-3g.0 -3g.0	-20.0 -20.0	-10.0 -10.0	0.0
	0.0	1 1 2 h _{1/1} 0,242 0,241 d _{1/1} 0,000 0,195	3 4 5 0,219 0,216 0,221 0,374 0.530 0.815			E
	20.0	DIRETIVIONDE = 11.30 FBR = 8.1d3	18			E H . E H .
	40.0				E H H H H H H	
	60.0			t t t	H H H H H H H H H H H H H H H H H H H	
	•	E E E		H 1	* * * * * * * * * * * * * * * * * * *	
	20.0		ŧ	H , H , H , H , H , H , H , H , H , H ,	н н н н	
			E,H	E	# #	
	40.0		EH. E	H E H E	H E H E H E H	
	60.0	50.48 G 220	. 0.181 K = 30.2d8		E H. EV EH E E E E E E E E E E E E	

OS PONTOS E E HINC GEAFTER CCEPESPONDEM AOS DONTES NO PLANC E(HORIZONTAL) E PLAND M(VERTICAL) RESPECTIVAMENTE

	0.0 0.0	-40.0 -40.0		:	30.0		-20.0 -20.0		-10.0 -10.0		0.0
c	.0										
	1	1	2	2	4	5		#8 ⊈8 \$7	8		EA
	:	/A 0.251	0.244	0.222	0.219	0.220		<u>.</u>	2	•	E.
	d ₁	/A 0.000	0.227	0,497	0.818	1.173				•	E + .
20	:.	DIRETIVIDADE FBR = 9.5dB	= 12.3d0		: .						EH .
	:	FDK = 9.300			:			ii Ž	3	E)	Ен .
	:				į			.	9	. E H	
	a •	:			•		•	ig Su	E H.		•
40	:				: .		:	е еµ-	E H.		:
	:				•		E	E H	9		
	o •1				•		ε.	н	91 91	<u>.</u>	*
					•			E H	н		
60	<u> :</u>			s = +0= 0			:	. E 	" H .		:
#O**		:			•		_:	E .	H.	16 15	:
	•	- - - -							, F		i
		i							н ;		•
80	. :	:		Ε.	: .			. H) 	!
60		ε :	077 07 1 1 17 17		•	н	н :				
	;	16 18 0 0 0	H		н;		:			KI KI	:
	č	. :			:		н.	н		6) 0) - 1002 1)	:
	•		E	Ε				, H			
100			• • • •	1 m. H	ι	 [K-	• • • •		• • • • • •
	:				:	΄ ε	:	Ä		6 10	
	•	:			:	E.	:	# # #			:
	į	i					£ :	H H			18
120	.0				• • • •	• • • •	[k			
	:					8.0	έ.	H T			į
	i	:				£ r		H .			
	•					E	ж .				
140.	, 0 :			HE -		-н	:		:		
	•	• •			FE.	ΕH	•				
		•			:	MR.	E # .	н			•
	•	•						E H E H	:		
160.	.0 :			• • • •			:		K :		
	•	Configurat	n Trici				:		EH E		
	h = 0.			d = 0.7			•			τ	
	Direti	vidade = 11.	6.13	FER = 1	19.215		:		:	ĒH E	
180,	.0:					* * * * * * * * * * * * * * * * * * *	:		:		:

OS PONTOS E E H NC GRAFICO CORMESPONDEM AOS PONTOS NG PLANC E(MORIZONTAL) E PLANO M(VERTICAL) MOSPECTIVAMENTE

CURVA H	-5n.n -50.n	-40.0 -40.0		-30.0 -30.0		-20.0 -20.0		-10.0 -10.0		0.0
	0.0 -	· <u>·····</u>	• • • • • •		• • • •					
	:	1 1	2 3	4	5			i		£.
	:	h 1/3 0.245	0.244 0.219	0.215	0.217					Ę.
	:	d _{1/1} 0,000	0.187 0.490	0.670	1.227		ti K			EH .
	20.0:	DIRETIVIDADE . FBR = 9.8dB	12.5dB	: .				:		H - :
	•	FBR = 9.00B	:	24€ 14€ 12€				:	E H E H	
	÷						20 Ka U	·	E H	
	:		:	•				τ .	Е н	•
	40.0			i .						:
	:		:	нç	E	н .	K	•		•
	:			":	E H		н	:		
	:		•			ξ.	, H	. :		•
	60.0		: • • • • • • •	: .			ξ • • • • • •	"н : н		:
	:		•	•		E	E	* .		
			:			£ E .		ж°:		
	•		•	ε:	E		H	, .		:
	60.0		į į	``.		,	. н	:		. , i
	į	Ε	•: €1 2 6 1	# :	H	•		•		•
	į		: N t:: •:		H	н :		:		:
	•	Ε		•		н.	н			:
	100.0			: .		:	H H	:		i
	:			į ;		•	Н			:
				, C		•	н н н	*:		:
	i			i, E		н.		•		•
j	120.0 -					H-		:		
			•		C		H	•		:
	:			Ş	E E	:	H			
	;			:	Ē	:	H			
i	140.0 -				-E	H :				
	® >•.(, E	ь. E.	н	•		•		
	:			Î E H	Ен			n n		
	•			•		£ H .	н			
1	160.0					:	EH			i
	•	Configuração h = 0.215%	d = 0.36x			•		EH .		1 1
	i	Diretividade = 11.1c				•		Ε.		i
		nostewnen.wouldtoop 111.125				•				
1	140.0			i .		:		• • • • • • • •		:

OS PONTOS E E H NO GRAFICO CORRESPONDEM AOS PONTOS NO PLANC E(MORTZONTAL) E PLANO M(VERTICAL) RESPECTIVAMENTE

CURVA H =50.	-40.0	-30.0 -30.0	-50.0	-10.0 -10.0	0,0
0.0		*********			
	1 1 2	3 4 5	6	•	ç
	h1/x 0.242 0.240	0.216 0.213 0.210	:	•	٤٠ ٤٠,
	d _{1/λ} 0.000 0.206	0.365 0.492 0.716	0.831	:	έκ. εκ. εκ.
20.0	DIRETIVIDADE = 11.3d FBR = 8.7dB	•			EH
			i	: [к .
4º.0			E H E H	к .	
60.0			E E E	H H H H H H H H H H H H H H H H H H H	
80.0				#	
100.0	E E E E		н н	к к	
100,0		c	. H	# # #	
120.0		E H ^E	E H E H E H	H H	
140.0	:			*****	
160.0	<u>Configuração Inicial</u> h = 0.2151 d = (E H	H	
	Diretividade = 10.7d3 FSR	11.5dB	:	EH	•
	:	en e	:		
180.0					erener, i

OS PONTOS E E HIAC GRAFICO CORPESPONDEN AGS PONTOS NO PLANC E(MORIZONTAL) E PLANO H(VERTICAL) HESPECTIVAMENTE

CURVA F	50.0 50.0		-40. -40.	0		-30.0 -30.0		-2c	0		-10.0 -10.0		¥	0.0
d	0.0	1 h _{1/λ} d _{1/λ}	0,254	0.245	0.222	0.219		6 0.220	:			 : :		e G G E . E .
2	0.0	DIRE	0,000 TIVIDADE = - 11.4dB	0.243 13.0dB	C.529	0.872		1.566	: : :	• • • • •	■ 1 = 0 (= 0 = 0)	E #	- ~ EH E H E H H	EH . EH . H .
	0.0					* 1 = 1			:	E H	H H	Е Й У ! !		
				:					:	£ E E E	H H	н . н		:
6	0.0			:	• • • • •	E	e • • •	 Е	: E :	- [*]	+ H H	: : : :		· · · · :
8	o.c -	*			ć (H		н: :	H- ;			:= := :e :	<u>:</u>
10	٠.٠	¥ • • • •		; ; ; ;				- :-: -: -: -: -: -: -: -: -: -: -: -: -		, k	Б к		:• • • ·	
		t	E		Ē	H .	H E E	K E		н				
12	0.0								£,	· - "-»;	н н н		* * *	
16	0.0						 E	E		 				
16	0.0	· <u>c</u>	onfiguraçã	o Inicial	E Mil No M	н£	* * * *	E	H. -EH	. • • • • Ен				
18	0,0	h • 0.220	lade = 12.2		0.32 ₃ = 18.1d3			y n > 0 • 01• 2•		egergi gra	E* EH E			

OS PONTOS E E H NO GRAFICO CORRESPONDEM AOS PONTOS NO PLANO E(MERIZONTAL) E PLANO H(VERTICAL) PESPECTIVAMENTE

CURVA H	-50.0 -50.0		-40.0 -40.0			-30.0 -30.0		-20. -20.	0	-10.0 -10.0		0.0
	0.0			• • • •								٠ و ر
		h _{iya}	0.245	0.244	0.219	0.21	5 0.215	0,217			•	ς. ε.
		d _{1/λ}	0.000	0.142	0.454	0.86	-	1.597	•	12	5 • •	EH. EH.
į	20.0	DI	RETIVIDADE BR = 12.3 d	• 13.6d		:			i	****		EH .
4	:		æ	:					•		E H	н .
25			a N	:		:			:	K	• F	:
	10.0	****		i		:		· -e-t	н. 		: :	
¥ *	:		. '	•				E	. [H	! · · .	
	:			:		:			. [. [н н	•	:
	:		2 <u>1</u>	:		:				H H	•	:
	0.0			 :	• • • •	:	* * * * *		:	H -	:	:
,	:		9			ε :	E H		¥ H			:
W203	•				E E	н .	н	H.		er ()	•	:
8	0.0				· · · · · · · · · · · · · · · · · · ·	:			**- # ; -			:
##: ##:	:	· E	c	Ε	• .	•	(●)		. "#			•
	į	Ē E	3 °				100 mg	ų.	į ×	84 E.S.		
	. ;	c *			888		N K		:	9 2 2 = 2 = 2 ⁸		
· 10	0.0		Ε.		ε			н	•			W.
	:		100	e K	E	ε ;	. *	* ;	4 .	320		•
	:			k1 16 16		:	E .	H H	:	ii ii g	e: 16 15	533 • • •
12	0.0					· - [· [н- н		:			
1 .	. :	- G					E E	н	: :	3	ÎÎ, ▶2 ₽0	
\$5 FD	:	24				•		E E	. " "			
14	<u>.</u>					!			.c	# :		
¥1						;			. E H) 	•
			E				ε	E H	. *			:
9 99						E 9	H " E H		•			
16	n.o :		nfiguração					- *E* -	:			
200	i	h = 0.2151			0.31 x ■ 9.2dB	:			CH.	Ε,		
e2017 En	:	Diretivida	oe +10,935	165	- 3.208	:			•	```		1
1.6	c.o :					:			:	[i

OS PONTOS E E H NO GRAFICO CORMESPONDEM AOS PONTOS NO PLANO ECHORIZONTAL) E PLANO MOVERTICAL) MESPECTIVAMENTE

CURVA H50.0 CURVA E50.0		-40. -40.	0		-30.0 -30.0		-20 -20	. G . O	-10.0 -10.0		ri.	0.0
.0.0	1	1	2	3	4	5	6	7		: · :		5 - • ·
:	h _{1/2}	0.244	0.244	0.219	0.215	0.211	0.214	0.216		:		E. E.
i	d _{i/λ}	0.000	0.135	0.475	0.775	1.047	1.322	1.679				€:
20.0	DIRETI FBR =	VIDADE: 11 11.7dB	.4d3		:			. !			EH EH E H	EH .
			•		:				E H	E H	н	•
40.0			:		:		E -H-	E .H . E	H E H	: :		:
			•				E	H. H E E	н н Е- н	•		•
60.0					:	. 0 . 8 .5 .€ .•						:
	r		τ	k E	E .	τ	н н	К	H	*		
80.0	* * * * *		:	t	<u>i</u> :			н.	H			
:	E C E E	r	:		•		н:	, H	H			•
100.0	• • • • • • • • • • • • • • • • • • • •	E		E E	E .	H H H	н н н				ו.•	
120.0						<u>-</u> -	H					
						E E	E R	. E . H . H	H H H			
140.0			! !	1 - 1 - 1 - 1	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	E H	E. H	р ^п		. 	
360.0	<u>Cc</u>	onfiquração			E K.	e • • • • •	EH	: :н:	t			
	h • 0.215) Diretivida			0.28 _k = 27.3dB		* *			EH E			:
160.0								:			• • •	• • •

OS PENTOS E E H NE GRAFIER CERHESPONDEM AOS PONTES NO PLANE E(HERIZONTAL) E PLAND MEVERTICAL) HESPEC*IVAMENTE

CURVA H50.0 CURVA E50.0	-40	.0	-30.0 -30.0		-20. -20.	0	-10.0 -10.0		0.0
0.0 •									•
	1 1	2 3	4	5	6	7			Ė.
	h _{1/λ} 0.234	0.244 0.216	0.211	0.211	0.211	0.213		V	ε.
# *	d _{i/λ} 0.000	0.157 0.498	0,936	1,333	1.739	2.140		• A • I	ξ.
20.0	DIRETIVIDADE FER • 11.5d8	- 14.2d8				:		EME	EH .
		:	i				E H	E H E H	
40.0			ЕН	E	E .	H			
•0.0		•				: [E H . E H .		
		•					E H		÷
60.0				E	^E	: -H-		*****	• • • i
:		** : ** :	E	E E E	нñ	; *	В		•
:			Ę	C		•	H H		
80.0						н . «•			• • • •
		: •	н ;		H	•			:
- :	E	•		11	H H	÷	Ω π.• vy	*	:
100.0			:			. н .н н			:
	τ		•	н	н		и. 1.0 20		:
•	Ε	e: : E	* •	H	н				:
		:	ε :		. H	•			į
120.0		•	· · · · :	ė • • • ·	н н- _. -	•			• • • • •
1			EH .	H H		:	(/E		:
•				£	н Е	: : н	•		
			:		, E	;	`н .		į
140.0			• • • • •	• • • • •		· [H		•
					1	Е н	н .		:
:		:	363 383	r	E H	: "			:
		1		E H	н	1			
160.0	Configuração	<u>Inicial</u>		a) a) 5 (2 (5	e e e e u	. EH	н ;	. # :# :# :# # # # :	
•	h . 0.210x	d = 0.38 _k	#####################################				EH .		
	Diretividade = 11.9	B FBK = 25.5d	3			:	ָרָא .		
180.0		i	!	* /* ***** :		!	, E.		

DS PONTOS E E M NC GRAFICO COGRESPONDEM ACS PONTOS NO PLANC E(MORIZONTAL) E PLAND MOVERTICAL) RESPECTIVAMENTO

CURVA H *50.0 CURVA E *50.0	= 4 0 = 4 0	.0		-3g.0 -3g.0		-20.	o o		-10.0 -10.0		0.0
. 0.0	1 1 h1/λ 0.243 d1/λ 0.000		3 0.215 0.324	0.212	5 0.207 0.726	6 0.211 0.854	7 0.206 1.132	8 0.213			EH .
20.0	DIRETIVIDADE = FBR = 10.1dB	12.5d8	#: # :# . .					An An An An I		E H E H E H	EH - EH - H - H - H
40.0					. % . 9 %	e e	. H	H H			
60.0			*** **	i	ε ε	ε ε	:	 H	н н н н н	****	
80.0	E E				н н	н н	н н	e ded des ved s	:		
100.0			E			к н н	. H		:		:
120.0	*****		****	!	- e - c	E E E	. н . н	; ; ; ; ; ;			
140,0		£	н		E H	E- 1 - H E H	:				
160.0	Configuração h = 0.210\ Diretividade = 11.7	d = 0.						EH EH	E		

05 PONTOS E (H NC GRAFICO CORMESPONDEM ADS PONTOS NO PLANO E(HORIZONTAL) E PLANO MOVERTICAL) RESPECTIVAMENTE

CURVA H	•50.0 •50.0		-40 -40	:0		-30.0 -30.0		-2	0.0		•10.0 •10.0		0,0
	0.0 -	1	· • • • • • • • • • • • • • • • • • • •	2	3	4	5		7	8]		* 5
	•	hiza	0.243	0.237	0.224	0.203	0.214	0.205	0.207	0.217		E E	E. E.
	•	d _{1/λ}	0.000	0.212	0.424	0.663	0.896	1.131	1.331	1.689		V E E	EH .
	20.0	DIRETI FBR =	VIDADE » 1	3.5d3 -								E H	EH . EH
	:			•						E H	F W		•
	40.0							E	- # -	!			:
								E	E	н	H _H		
									τ.		. н . н		1
	60.0					E	E		, ; ,	H .	1		•
	:			•	Ē	Ε .): 51 •	H	н.				:
	80.0	a : • :• :• :		. :	E					K			
		E E	,1	:			H .	и	н н	H			
	100.0	3 6 - 1 - 2 - 2	• • • • • • • •		E	ι	E E E	- H -	к . . н				
				•			E E	н	H .H				:
	120.0	• • • • •	at will will be to			• • • •	 E	- K	:				:
	:						E	e E	н . . н 	н н н			
	140.0 -			. :					£:	H			
	•			: : :	ε :	1	E H E	ĸ					
	160.0		 Configuraç	ão Inicia			* * * *		н Ен	EH EH E			
	•	h = 0.21		d	= 0.241 R = 18.7d	В		14	•	,	E E		
	150.0	1 2 2 2 2							.i	. 21 21 2 12		E E	

OS PONTOS E E HINC GRAFICO CORMESPONCEM ACS PONTOS NO PLANC E(MORIZONIAL) E PLANO M(VERTICAL) MESPECTIVAMENTE

UDPARTIO DOS	F071299 as		PER NOW I						4		-10.0				
CURVA E	-50.0 -50.0		-40.			-30.0 -30.0		-20	.0		-10.0			0	.0
	0.0 -														- e
	•	i	1	2	3	4	5	6	7	8					. 3
	:	h _{1/x}	0.247	0.244	0.219	0.215	0.212	0.212	0.215	0.216)	Ē.
	•	· d _{1/λ}	0.000	0.184	0.439	0.832	1.112	1.405	1.707	2.091				EH E	:
	20.0		IVIDADE: 1	1.1dB		i			. i				- e H	H -	
	:	FUK -	12.8dB	•		:			•			Е Н Е Н	EH		•
	:			•		:				٤	K E				:
				•					E . H	EH	Vi .				
	40.0			i		:			• E	н eн-					. :
	:			•		:			•	E	H	•			•
				•		:	9			E E	. н	•			•
	:			i					ે દ	€ "	H H				
	60.0			•		:		E	: . . :	Н Н					. :
				. E	¥	:	н								
				:		E :	Ε.	н	: н	**					:
				:		:	E E			H H	8				i
	:			;		ċ	E			H					
	80.0		ε			:			: н	ж.					•
	į			•			н	H							1
	9	н		:		:	н	10	:						:
	:	£	E			:		н	н.						÷
	100.0.			• • • •	Ē 3				-н н.	1			•1 • 1	• • •	• •
	:			: .	Ę	:		H H			35				
	į			E	_	•		H	•						•
	i			:	E	ε :		H H	•						
	120.0					: :	ε	- H * *		***					
	:			•		:	Ē	E #	н .			ī.			•
	•			:				E	. н	н					:
	•			•		;			٠٤	H.					•
	140.0		• • • •	•		:	• • • •		E	- H -					
				:		:			. E	. # ^K					•
	:			i		:		E H	В	n		•			:
	•			: .	٤	к :	E	2.017	•						•
	160.0		ıfiquração			L = 3:					*	* - *			
	:	h = 0.215			0.361	:			·E	c _ c		•			•
	:		lade = 12.5		= 17.2dB	14			•	, E11					•
	:			•		:			•	5 F	Ę.				:
	140.0			.		:					-Ē :				. :

OS PUNTOS E E H NC GRÁFICO COPRESPONDEM AND BONTOS NO PLANO ECHORIZONTAL) E PLANO PECVENTICAL) HESPECTIVAMENTE

100.0	CURVA H	-51.0 -50.0		-40.	o .		•30.0 •30.0		-2	0.0		-10.0 -10.0			0.0
Total Continue C		0.0 -													e
				٠ ,1	2	3	4	5	6	7	8	1			į
### 140.0 Margin 1.0.000 0.158 0.501 0.501 1.361 1.712 2.171 2.340			h1/2	0.243	0.244	0.216	0.211	0.211	0.211	0.211	0.212				EH.
100.0 10		•	d1/2	0.000	0.158	0.501	0.951	1.361	1.762	2.171	2.589			1	
EN E		20.0 -			4.9d0					. :			! ,	H	
EH E		:	FER W	13.203	•					:		2 103	E H EH .		
EN E		•			•			•			EH	EH	•		
40.0							[.6] 8.5	EH		.H					
100.0		:	2:								E	н			
100.0 Configuração Inicial Configuração		40.0						••••	• • • •	•		н-	:		1.
80.0							10	M B			E	N H			
60.0					:					Ε.	н	н			:
140.0 Configuração Inicial b = 0.201		•					ŧ :	J	E						
100.0		60.0				• • •		e e	ĸ	- : - :	• • • •				• •
100.0					:		:	j	C E		H H	95	•		
100.0		•			:			ε '			н" н				
100.0			250	Ē		E		н		н.					:
140.0		80.0 -				H	:	H-	:		• • • •	!	:		-:
100.0 C C Configuração Inicial E K E K E K E K E K E K E K E K E K E				E			:					1			•
100.0 E E H I I I I I I I I I I I I			Ė E	-	•		:		4	н.					•
100.0		9		£	•		:	H	H	:					•
E	1	00.0 :	[: :,		:	Ħ	. .	. !			s Lacarea		. :
120.0			19.		•	ε	ε :		н	н:		8			•
120.0		:			•		ξ.		н						•
140.0 E H E H E H E H E H E H E H E H		Ė			: ε	ĒН	н			125 136 136		1			
140.0 E H E H I H E H E H E H E H E H		. :			. E		ε :	H	H			6			
140.0 E H E H E H E H E H E H E H E	1	20.0 -			•		80 21 8 8 68	Ę		, A		• • • •			
140.0 140.0 E H E H E H E H E H E H E H E		~ 1			:		ė	٤,	H			1			:
140.0 E H E E				E	: *	£	н .	420		•					•
160.0 Configuração Inicial b * 0.2101		•			:				. F						
Configuração Inicial h = 0.2101	1	40.0			:					. E	H	:			
Configuração Inicial h = 0.2101		•			:		•			•	E H				
Configuração Inicial h = 0.2101		•			•		;				ะู้ห	:			•
Configuração Inicial h = 0.2101										É H	250	i			:
b = 0.210x	1	60.0 : .			inicial		:		F .H.	.:	• • • •	:			. :
tiret(vidade = 13.1dS FRR = 20.1dB E E E		:	0.200			0.401	•		FH	EV.	Ĥ				
							:			100 ATA	E C	. :			
180.0						8				•		٠, :			
	1	8n.c i .			i							[. :			

DS PONTOS E E H NC GRAFICO CORMESPONCEM ACS DONTOS NO PLANC E(MORIZONTAL) E PLANO M(VERTICAL) RESPECTIVAMENTE

CURVA H	-50.0 -50.0		:	40.0		*30.	0		•20.0 •20.0		-10.0 -10.0		0.0
	0.0				• • • •								<u>.</u>
		1	1	2	. 3	4	5 .	6	7	8	9	:	ε.
		h _{1/x}	0.243	0.241	0.218	0.213	0.211	0.210	0,205	0.209	0.214	•	ε.
		d _{i/}	0.000	0,155	0.442	0.764	0.983	1.311	1.583	1.829	2.185	•	EH .
	20.0		RETIVIDAD R = 11.8	E = 14.2	dB 	• • • •	! !				E	Е Н Е Н	-EH
	40.0		elly he he i	!.			: :	E *	E .H	E H		: : :	
							•		τ	E E H	" H H H		
	60.0			E	E	H _E		- ĭ	- k-	 			
	, i						•			н.			
	80.0		E	in i			н	н	н.	,			
		5.24 5.24		• E	τ	a Ār	1000	7	. H	ů D			<u>.</u> .
	100.0			. E	E E			H H	H .			e e	
	120.0				E (E-` Н	н Е	- H	н.	н н	* * * * *		
	140.0		rejeren			е н		н . Е	E EH	E; E H E H	¿=		
	160.0	h = 0.2 Diretiv			ial d • 0.282 FBR < 27.			EN	E.H	EH EH	t t t		

OS PONTOS E E H KC GRAFICO CORRESPONDEM ACS PONTOS NO PLANC E(HORIZONTAL) E PLANO MOVERTICAL) RESPECTIVAMENTE

CURVA H50.0	-40. -40.		-30.0 -30.0	-20.0 -20.0	-10.0 -10.0	0.0
	:	2 3	4 5 0.216 0.215	6 7	8 9 .	
	•		0.876 1.196	1.565 1.906	2.192 2.595	: EH :
20.0	DIRETIYIDADE = FBR = 12.3 dB	14.6 dB	!	E. H	ЕН	E H EH
40.0		 !			E H E H E H	
60.0	£	ж		E	H	
80.0	ε ε • • • ε • • • • • • • • • • • • • •		Е Н	E	н н	
100.0	E 	:	V Н н- E	н н . и н . н . н .		
120.0		E E	E	H H H H H H H H H H H H H H H H H H H	W	
140.0					H H H H H H H H H H H H H H H H H H H	********
160,0	Configuração h = 0.2151 Diretividade = 13.4d8	Inicial d = 0.24%	H . E	E H ,	E EH E	
180.0	******				E	i

OS PONTOS E E HAC GRAFICO COMHESPONDEM ACS MONTOS NO PLANO ECHGRIZGNIAL) E PLANO MOVERRICAL) MESPECIIVAMENTO

CURVA H	*50.0 *50.0		-4	0.0		-30.0 -30.0		: 8	-20,0 -20.0		-10.0 -10.0		0.0
	0.0 -												6
	:	1 h _{1/λ}	0.244	0.244	0.215	0.211	0.210	0,210	0.211	0.211	0.211	:	ε.
		d _{1/λ}	0.000	0.149	0.495	0.983	1.371	1.780	2.182	2.602	3.030	:	ε.
	1					0.333	•	1.750	. 100	2.002	3.030	: • EH	EH :
	20.0		RETIVIBADE				:	• - • •	• • • •	• • • •		E-H- ⁻ -	
				¥ a			•			EH	E H	•	
	:5							E	EH .	н		•	:
				•					:	, E		•	
	40.0 :			4. W		• • • •	:	• • • •	: .	•	E H	i	
	•			i			•		:	€ €	้ ผ ^{ู้}	:	:
	:				E		•	ε	. H	H		:	•
	:			i	•	Ε .	. H		i			:	i
	60.0			. :				· 5	: -	н		:	:
				:				E		H H		•	:
	•			ε		E		ĸ	iн	.55			:
	•		ε	:	E	. к	•	н	:			•	:
	80.0			. :			:		H			: :	:
			E	. [:=::				н .н			•	:
	:	н					. *						:
	į		£	•			:	H	н :				
	100.0			Ē ;			•	н	R .				:
	100,0	ε			H	н		-н		1			:
					ε	1000	. н	к	i		0		•
	•			•		E E	•	н н	*	8	0.7		;
	:				E .		н	n:	180 180 180		20		
	120.0		* * * * *		Ε.	· • • • »		н					
	•					E		K	н :				
				:		E	, н	н	•			•	:
	*		EH	•		: н	τ	¥			0	•	•
	140.0			• • • •				e	- H-	н			
				•			:			E	u:		
				•			•	*	:•// 2	E E H	н .		1.5 1.6
							•		1 1	E H "		•	į
	160.0		nfiguração	Inicial				• • •E•	, - t H		• • • • · ·		!
	8	h = 0.21			0.49%	1	τ."			. 	60 60		10
			dade = 13.		17.868				Ε . ε			•	•
	:			•						C .	10		
	180.0:			. :						^r			:

OS PONTOS E E H NO GRAFICO CORMESPONDEM AOS PONTOS NO PLANC E(HORIZONTAL) E PLANO MOVERTICAL) RESPECTIVAMENTE

CURVA E50.0 -40.0 -30.0 -20.0 -10.0 0.0								12		Ģ						
100.0 1 2 3 4 5 6 7 8 9 10 10/17, 0.224 0.224 0.221 0.223 0.232 0.231 0.210 0.205 0.211 0.205 0.215 10/17, 0.224 0.221 0.222 0.232 0.272 0.231 0.210 0.205 0.211 0.205 0.211 10/17, 0.200 0.212 0.232 0.232 0.272 0.231 0.210 0.205 0.211 0.205 0.211 10/17, 0.200 0.212 0.232 0.232 0.232 0.232 0.210 10/17, 0.200 0.212 0.232 0.232 0.212 0.210 10/17, 0.200 0.211 0.200 0.211 10/17, 0.200 0.211 0.200 0.211 10/17, 0.200 0.211 0.200 0.211 10/17, 0.200 0.211 10/17	CURVA H						•30.0	0	19	20.0	2	-10.	0		0	.0
100.0 1 2 3 0.231 0.232 0.232 0.232 0.232 0.230 0.205 0.201 0.205 0.231 0.232 0.235		捐						• 1.					-			
140.0		0.0			,]	,							10	ĺ		- E
### ### ##############################																E.
ORRETIVICNO - 14.1db FER . 15.0cb 100.0 1											100000000000000000000000000000000000000			İ		
120.0								•	D. Severe	i i		77.5.4		1	€ H	:
10.0		20.0				1.145	• • •	••••	• • • •	* * • • •	• • • •		•			
100.0 10										:			E	E R		:
# # # # # # # # # # # # # # # # # # #										•	72 S					•
40.0 60.0 C H H H H H H H H H H H H								•		; ;	ЕН,	* ***	16			:
100.0 10		40.0						i		٠.٠٤	H -		: · ·			. :
60.0 E M M M M M M M M M M M M		100000000000000000000000000000000000000	i K					•		e 🚦	E	` H	•			•
60.0 C H H H H H H H H H H H H		1						•		į	, ř.	Ř	•			:
60.0 C C C H H H H H H H H H H		20							253	ε. ε		H (11.00 11.00 11.00			
100.0 10		e e		2 70 80 101 1		HAN FEW SE TOPS 1		•	Ε .	١,	, H	V 100 100 100	•	= 100 100	120 120 120	
100.0		60.0					٠			•						•
100.0					:			: ' (к.	н					
100.0			i i		•			. E		•	K		•			•
120.0 120.0 120.0 120.0 120.0 120.0 140.0 140.0 16					•		5	. E		:	H		•			•
100.0 100.0 100.0 120.0 120.0 140.0 140.0 150.0 16		80.0			; .	- • ·E·		:	• • • •	• • • • •	-H	• • • •	• •		* * *	- :
100.0				•	•			:	н н				•			
120.0 12					•			: '								•
100.0 E E H H H H H H H H H H T E H T E H T E H T E H T H T E H T T			i i	£	•	:		:		¥ .						:
120.0		100 0			:".	£		:		H			:			. :
120.0 E E H E H IA0.0 140.0 140.0 Configuração inicial E H E E					:	È	1			H .						
120.0 E E H E H IA0.0 140.0 140.0 Configuração inicial E H E E					:	נ		;					•			
120.0 E		13			:	15	Ę	:	"H	:			•			:
E							Ē	.ε		н :						i
140.0		120.0			• • • •		• • • •	E	• • • •	к .		• • • •		• • •		• •
140.0		•			:					н . :			•			:
140.0		15						:	, _E -	ε . H	н					į
140.0					•					ε.	H					
E H E H		140.0			: .			:			K		• •			. :
E H E H E H E H E H E H E H E H E H E H E H E H E H E H E H E H E E		5.0			:			:		1	E H		•			
E H 160.0 Configuração Inicial h = 0.215\(\text{V}\) Configuração Inicial E H E H E H E H E H E H E H E										֓֞֞֞֞֜֞֞֞֞֞֞֞֞֞֞֞֓֓֞֞֞֞֞֞֓֓֓֞֞֓֓֓֓֓֓֞֓֓֓֞֞֓֓֞֞֞	н ⁷					
160.0		3								F .H			•			•
Configuração Inicial E		140 0					E H	. E	в	: .			Ϊ			. :
h = 0.215\\ d = 0.24\\ Diretfyidede = 12.8d\(S \) FER = 13.5d\(B \) E E E E E E E			<u>c</u>	onfiguraçã	o Inicial)	er#enden d 940	. E	ЕH		2018 B M	a × 70 5	:		8 8 0	•
E EH			h = 0.2	151	d	■ 0.24×			1859	£ .E			•			
			Diretiv	idade = 13	2.8d3 Fi	IR ■ 13.5d	В	•	è		E		:			•
180,0		1	9								E E		•		12	:
		180.0				• • • •	• • • •	• • • •		: .	[-		1	• • •		

03 PONTOS E E H NC GRAFICO CORMESPONDEM ACS PONTOS NO PLANC ECHORIZONIAL) E PLANO MOVERTICAL) HESPECTIVAMENTE

CURVA H	-50.0 -50.0			40.0		-30.	0		-20.0 -20.0		-10 -10	.0		0.0
	0.0	• • •	<u></u> .	2	3	4	5	6	7	ļ 8	9	10		
	:	h ₁ /2	0,243	0,244	0,217	0,212	0,209	0,209	0,209	0,207	0,200	0,212		E .
	:	d ₁ /λ	0,000	0,167	0,490	0,811	1,081	1,392	1,711	2,011	2,283	2,643		E .
	:	•—	Diret	ividade =	14.4dB		:					:	EH	EH .
	20.0			14,8dB	7/2 5 7/2 15	* * * *						 	E H E H	
	:			ě							E H	:		ė
	•			٠			•	E H	н :	EH	- 1/14	•		•
	:			:			:		Ε.	H E F	ł	1		
	40.0	• • •	• • • •	• • • •						E -	H			
	:			:						É E	: ,	:		
	·			•				520	ε:	E	H			
	•	ε		:	H 5	£		E	•	н		•		•
	60.0			: -		6	: - :	· - # -		 H			• • • • • •	
	;			•			•	E .	:	. н	L	•		•
	:			•			: .	τ	:	H	r			:
				•	E	Ε	: . H	15	н :	K		: # : •		
	80.0	[-	 E	: -		-н		н	:			• • • •		:
			£				:		н.			•		
							:		н.					
	•			÷			•	H				•		
	100.0	^r .	· · · · E	: ;			н		-9- :			:		• • • • •
			s		E			"н н .	į			*		200
	:			ξ.	Ε .	К	. H		•			•		¥ .
					3	E	# 15 # 5	н		a a		•		:
	120.0 :					E	:		-"# : .				• • • • •	:
							. E	н	н :			•		•
	16			:	H E	E	. H		•					•
	:					E		E	:			:		:
	140.0		• • • •	t.			i		E	н		:		!
	•			•			•		• •	E H		•		
				•						E H				•
	•			•			•		ε: :	H .		•		
	160.0			i .		-EH-	t	." <u>.</u>	.". i.			i		
	() ((())	CON	F IGUPAÇÃO	INICIAL			•1	EH	. :			•1		•
		1	,210)		0,301				Ĺн	E		:		
		Diret	ividade =			.9d 8			:	EH		•		
	180.0 -			e e Ingr			* !			E		i. Line		

OS PONTOS E É H AC GRAFICO CCRHESPONDEM AOS JONTOS NO PLANC E(HORIZONTAL) E PLANO M(VERTICAL) MESPECTIVAMENTE

CURVA E	•50.0 •50.0	-40.0 -40.0				-30.0 -20.0 -30.0 -20.0			-20.0 -20.0			0.0				
	0.0		· · · · ·			• • • •					; <u>- • •</u>		. - -		•	- e
	19	ſ	1	2	3	4	5	6	,	8	9	10	_			ε.
		h _{1/}	0.244	C.244	0.216	0.212	0.212	0.210	0.208	0.208	0.210	0.212				EH.
		dily	0.000	0.163	0.498	0.921	1.281	1.630	1.985	2.328	2.708	3.100			EH EH	
			DIRETIVE		5.2dB								-EH	EH EH	4 18 1	_ :
	20.0		FBR = 15	. OdD	-				•			. E		an an		
				•			:		ŧ	н	EK					•
	1	L		•			•	EH	e i			:				•
							•		•	E H	E H	i				÷
	40.0		• • • • •	• • •	• • • •	• • • •	:	• • • •	• • • •		• ε • • Ε	ж н .	• •	•		- :
		ř.		•			•		:	E E	H H	:				:
						E.	•	E R		н	H					:
						· ·	•	_ H	i	H		:				i
	60.0			. 1.			·		ŧ . : .	^K		. :	٠.		- 4	. :
	•	Ē		•			:	Ε	ε.			•				•
					E		: τ	E	н :	H	H)					·
	į			: : E		H	N	н	•							:
		N Name of		•	E	E	•		в : ,	H		•				•
	80.0			· · ·	{-				н	-н						• •
) T			H			H	10.0			1381 1481 1782				•
	ė			•	N3/	В	(#) (#)	н	•			₩ 1. 9 5				٠
	:	il s.	E	ε :			•		н :							•
	100.0		ε				: _H -	• -H- •	"• • <u>•</u> •	• • • •		. :	•	• •		- :
	ė		Ε		30		. H									÷
		Ei Ei	.=:	:	E	E E	•	H H	•			•				•
	:			•	ε	t .	. H	н				•				•
	120.0			. : €	8		·	H	i.			. :		# (# O		. :
	. :			•		E	ć	ĸ	н :			15				•
	:			:			• E	н	* :			:				:
		0 () ()		•	HE	€ 5	•	В				3.40 1.46				•
		99 Di					i H	E.	н :							
	140.0					• • • •			E)	H		• • • •	• •	# # 8	•	•
	;		-:				•		•	E H	v.	3 8 1				•
				:		9	:		:	E H	A.S.	÷				·
	:			:			•	6	. E . E	H						
	160.0			.:.			ė					. :	• •	• •	• •	. :
	:	U. De	Configura	5,63			: 1	н	. :	*0						•
		h = 0.	2101 vidade = 13		d = 0.363 FCR = 29.		•			t						•
		Direti	truade t 13	•	. LN - 60.	A MAN	*		•	EH	EH_	•				•
	190.0			. : .			:					. i			ė.	. :
											-17					- 1

OS PONTOS E E H AC GRAFICO CORMESPONDEM ACS DONTOS AC PLANC ECHCHIZONTALI E PLANG HIVERTICAL) HESPECTIVAMENTE

	-50.0 -50.0	-40.0 -40.0			-30.0 -30.0			-20.0 -20.0			-10.0 -10.0			0.0		
	0.0 -				••••						• • •	· · · ·				
	•	- h _{i/1}	0.244	0.244	0.216	4	5	6	7	8	9	10		Ε	E.	
	:	d _{1/x}		0.244	0.514	0.211	0.210	0.210	2.221	2.632	3.063	3.505	,	EH		
		1		IDADE - 15			:		•	73-701		l	EH E	Н		
	20.0 -		FBR • 1:	3.648		* * * *				 Ен	E H	• -E-H-			•	
	:			•					ΕV	н		•			÷	
	•			:			:		:	E	E #	·:			:	
	40.0			! .			i		:		, E				. :	
9			925	:	122 BATTE	t was t e t soot ee	•	-	•	H E	, H	:			•	
	:			i	E		н	E		н.		:				
	•			•			•	E	ε. :	н	ě	•			:	
3	60.0			i .			. i _. .	• • • • •		н-	H	. i			. •	
	:	13			E	£		H	* :	H		:				
	•					E	. E		× .	н					•	
	:			i,		£	;			H H		i			÷	
į	80.0 :	6-		: - '			: H				• • •	. :		•••	. :	
	:								н .н	ы		•			•	
	è	Ė		:		22		H	ě.	5A		•				
	6			. :	H	, r	:	H	:	37						
10	00.0			- : :		 [:		н .						•	
				ε:	ε	ĸ	ė	H	:						•	
	:			: 1		E	: н	μ	i			*			:	
1:	20.0 :			i.	*:*	6	ť.,,	H			(* * * ³				. i	
	•	8		;		ξ.	• н					•			*	
	:					(,6)			н .			•			•	
	:			ε:		r E		н							•	
1	٠٠.٥ :		• • • •	; .	E	H	: e	H -	E .H					ď.		
	•			į			•		٠٤	E . H		•			•	
	:			•			i		÷	Ę	H K					
	:			i						E H E H	*					
1	60.0 -	* * 5	Configura	cão Inici	 :1			 Ç н	• е н						•	
	;	<u>Configuração Inicial</u> h • 0.210 ¹ d • 0.42 ¹				τ		ι :			•			÷		
	•	Diret	ividade =	14.0dB 1	F58 • 8.9	15	:		19. 19.	E E	E	•			:	
	80.0 -			!.				V 2 V	!		Ę .	. :			:	
•	- Water Co	200 2 2	3 N S S	acre 2 155	AL 5 15	resident d	- A B	i e i ta a a a		er 2018 2 15	.	N 40 0 0	a es 151 (5	- AT A B	10 miles	