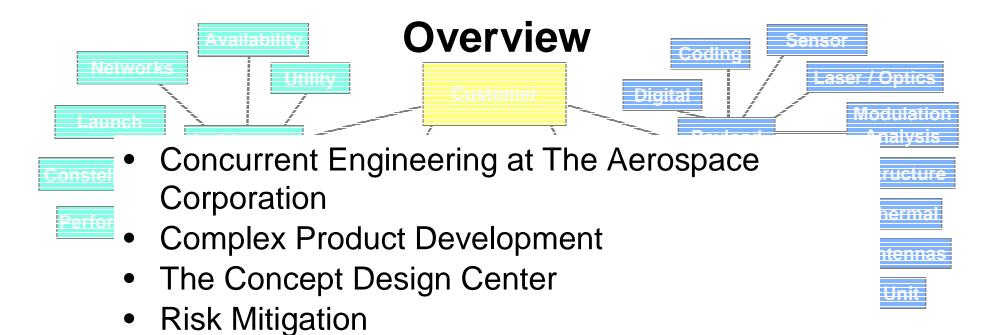
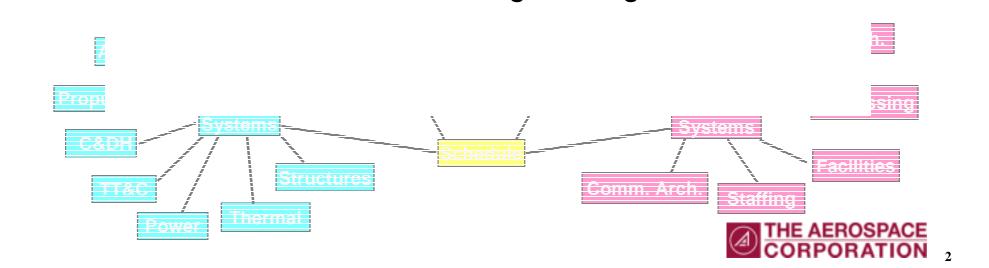
Concurrent Engineering of Space Systems


International Society for Productivity Enhancement


CE 2007, São Jose dos Campos, Brazil

16-20 July 2007

Dr. Wanda M. Austin
Senior Vice President
The Aerospace Corporation

Results of Concurrent Engineering

Concurrent Engineering: A Definition

- Concurrent Engineering: "A design team working together to improve efficiencies in product development"
 - Faster development cycles `
 - Better quality products
 - Lower total cost

Sounds like faster, better, cheaper...

...but there is an unstated assumption her

...but there is an unstated assumption here which makes the process work...

Example of successful Concurrent Engineering

- NASA Apollo 13 Anomaly: from lunar module to lifeboat
 - Time critical integrated design solutions developed within hours

Examples that Concurrent Engineering could improve:

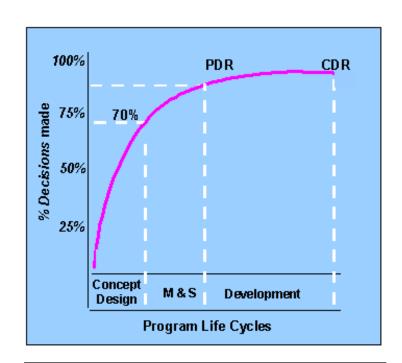
- Urban planning avoiding traffic congestion
 - Design, build, and maintain continually evolving network that functions well for all its users better transport of goods and people, fewer disruptions/delays
- Emergency response to tsunami, hurricane, earthquake, etc.
 - Pre-planned coordination of relief, recovery, and rebuilding efforts; timely placement of people, equipment, and donated goods

The Aerospace Corporation

- A California nonprofit corporation that operates a Federally Funded Research and Development Center (FFRDC) sponsored by the United States Air Force
- Space Stewardship Accountabilities:
 - Provide highly knowledgeable technical staff, available throughout the engineering development cycle
 - Apply broad technical expertise to assess and solve complex, multidisciplinary technical issues

Dedicated to Space Mission Success
Supports All Phases of Program Acquisition

An Engineering Matrix Organization


SYSTEMS PLANNING ENGINEERING AND TECHNOLOGY GROUP AND ENGINEERING **SPACE PROGRAMS Communications Electronics Computers Vehicle** Laboratory **Systems** and and Software and Sensors **Engineering Operations Systems SPACE SUPPORT Networking** Micro-Communication Computer Guidance/ System **Electronics** LAUNCH **Technology** Control **Architecture** electronics **Architectures** and **Photonics** Sustomer **PROGRAMS Power Network Systems** Information Real-Time Modeling Science Simulation Simulation Mechanics **Systems** Communication **ELECTRONIC** Flight/Fluid Sensor **Systems** Software Mission **Materials PROGRAMS Mechanics Performance** Engineering **Engineering Engineering** Space & Exploitation Spectrum Software Thermal Concept Environment **IMAGERY** Verification Control Optical Management Design Mission **PROGRAMS** Sensors Software Structural/ Oriented Digital Cost Radar Communication Research Acquisition **Dynamics** Engineering **ADVANCED Systems Implementation Analysis** Ground Resource Special **TECHNOLOGY** Communication Test and Sensor **Systems** Allocation **Electronics Evaluation Fabrication Operations** Operability **PLANNING & Antenna Systems Engineering** Risk Assessment Remote COMMUNICATIONS Sensing Management Reliability & **Signatures** Failure CIVIL & **MEMS Analysis COMMERCIAL A Matrix Organizational Structure Facilitates Concurrent Engineering**

Complex Product Development

- Space systems are some of the most complex products ever devised
 - Drive for cutting edge performance
 - Integration of diverse subsystem technologies
 - Need for high quality materials, manufacturing procedures, workforce
 - Long design and procurement cycles
 - Severe consequences of failure
- Successful products start with good designs
- Most projects use some combination of design methodologies
 - Top down: start with a vision
 - Bottom up: start with some pieces
 - Sequential: develop the pieces, then integrate
 - Concurrent: plan to integrate the pieces
- Concurrent design, as part of a complete concurrent engineering approach, is vital to success

Conceptual Design & Program Life Cycle

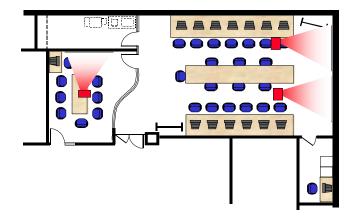
70% Of All Decisions Affecting Life Cycle Costs Are Made During the Concept Definition Phase^{1,2}

Conceptual Design...

- Helps define requirements via performance, risk, & cost trades
- Identifies internal element coupling
- Examines impact of new technologies
- Assesses business cases/models
- Supports RFP generation, source selections, & independent assessments
- Helps determine block upgrade strategies

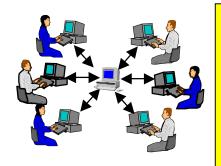
Wade, D.I. and C.S. Welch. 1996. "Spacecraft Manufacturing Implications for Volume Production Satellites." Paper No. IAF-96-U.4.08, presented at the 47th International Astronautical Congress, Beijing, China.

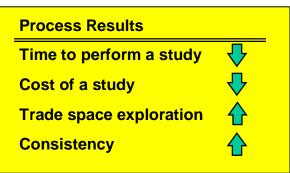
²"The Affordable Acquisition Approach Study (A3 Study), Part II, Final Briefing," Headquarters Air Force Systems Command, Andrews AFB, MD, 1983.


The Concept Design Center (CDC)


Aerospace's Primary Example of Successful Concurrent Engineering

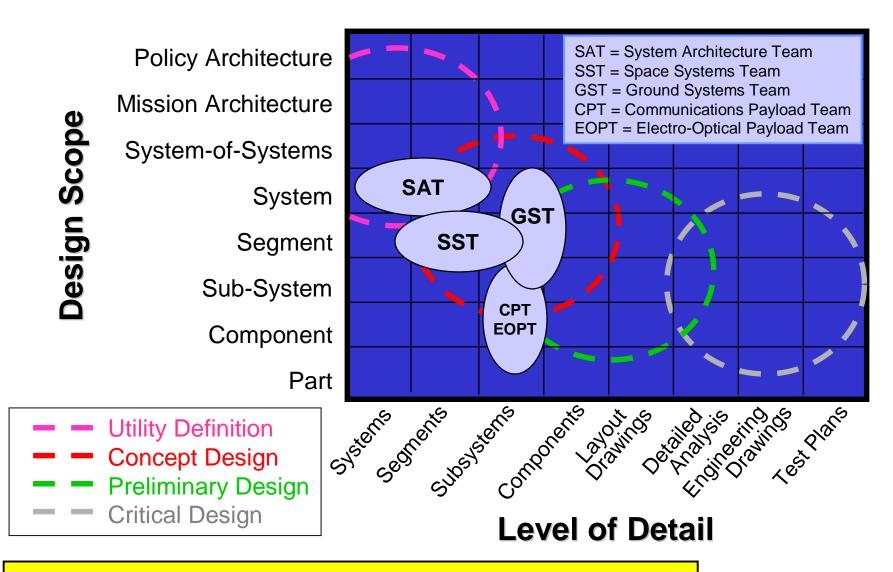
<u>Teams</u> provide full breadth & depth of required expertise


- Experience across many, many space programs
- Can include regional site experts as needed
- 26 avg. years of experience since bachelor degree*

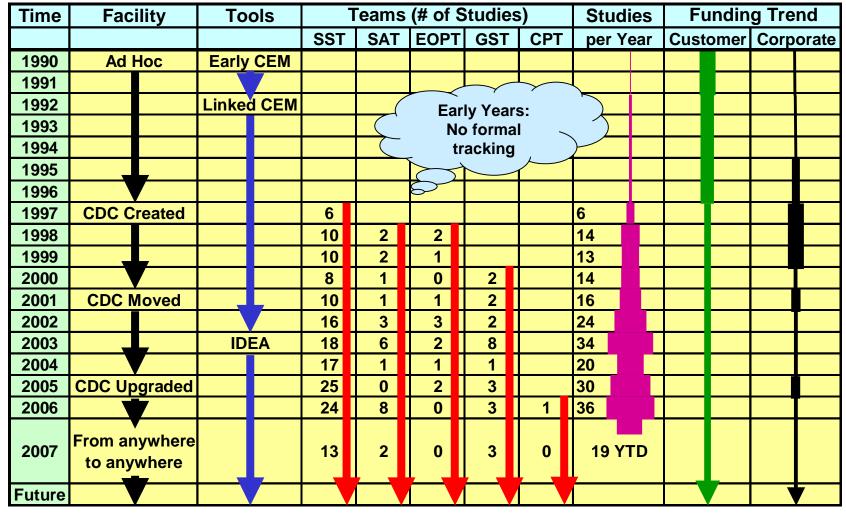


Facilities enable the customer to interact efficiently with a team of experts

<u>Process</u> integrates team & design tools to produce quality results quickly



^{*} Based on Aerospace MTS population


CDC Teams vs Design Cycles

CDC teams address transition into preliminary design

Concept Design Center - Evolution & History

SST = Space Systems Team

GST = Ground Systems Team

CEM = Concurrent Engineering Methodology

SAT = Space Architecture Team

CPT = Communications Payload Team IDEA = Integrated Data Exchange Architecture

EOPT = Electro-Optical Payload Team

Investments in Concurrent Design Tools have resulted in greater productivity, lower cost to design

Types of Success in the CDC

Design Validation

CDC design validated contractor design very close to what will fly

Requirements Validation

Rapid exploration of configurations provided better insight into system needs;
 requirements rewritten to be unambiguous and verifiable

"Path Pruning"

 Killing off unfeasible ideas early, saving program cost that would be needed to explore or develop them

Launch Cost Reduction

 Careful orbit selection to optimize SV duty cycle and power sizing reduced the initial estimated SV mass, allowing spacecraft to fly on smaller launch vehicle

Technical Improvements

- Optimized constellations and replenishment strategies to save costs
- Developed alternate SV transfer orbit designs, increasing available SV mass for payloads or propellant

Team Building

- Accelerated customer education early-on, program personnel are still learning about their system-to-be, and will carry early knowledge and decisions with them
- Sharpen skills for other activities such as source selection or cost estimation

Concurrent design provides customers with timely, integrated, lower risk solutions

The Unstated Assumption: Risk Management

Risk is multidimensional and must also be managed concurrently

- Four variables in project management:
 - Schedule
 - Performance
 - Cost
 - Risk
- Need to define risk rigorously and cap it at an acceptable level
- If you cap the other three variables, risk grows

General Methods to Reduce Risk

- Plan out the effort among stakeholders
- Leave time to fail early in the program
- ✓ Nail down requirements
- ✓ Perform scenario planning
- ✓ Ensure technology is or will be available.
- ✓ Have margins for schedule, cost, performance, resources
- ✓ Use models, prototypes, and simulations
- Have alternative sources
- Perform non-stakeholder reviews
- Improve production models
- Implement continuous customer feedback cycles
 - ✓ Defined concurrently during Conceptual Design

Concurrent Engineering and Risk Mitigation Strategies

- ✓ Know what the risks are
 - Consistent and complete risk identification
- ✓ Implement executable plans and off-ramps
 - Early review of risks, and handling plans
 - Preserve margin for unknowns
 - Limit risk exposure
- Track aggregate risk & keep risk constant or decreasing
 - Continuous monitoring & review against milestone targets
 - Take off-ramps or modify requirements as necessary
 - Independent reviews of program risk level
 - Actively allocate resources
- Integrate with other engineering areas
 - Reliability
 - Safety
 - Parts, Materials and Processes
 - Mated to WBS to show program hot spots
 - ✓ Risk management strategies are further developed and defined during conceptual design activities

Key Ways Aerospace Manages Risk

Develop disciplined mindset early in program development

- Aerospace standardized Mission Assurance Framework captures program risk management "To Do's" from historical baselines
- Include entire Customer/Aerospace/Industry team
- Significant success demonstrated on EELV program
- Don't "catch up later"

Establish environment that encourages problem reporting

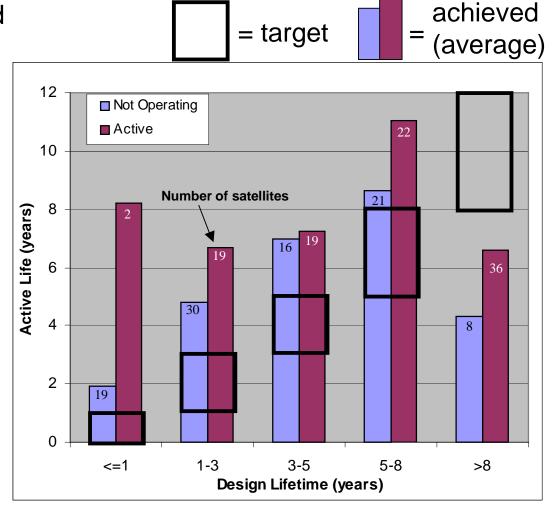
- Weekly Watchlist shared across programs, where possible
- Broad dissemination of Problem/Failure Reports
- Formal lessons learned management

Manage risk at a sufficiently senior level

- Lower levels trading mission success for cost and schedule increases risk
- Perform "What If" scenarios don't stop at the "obvious" quick fix

Government/Industry team manages risk incrementally

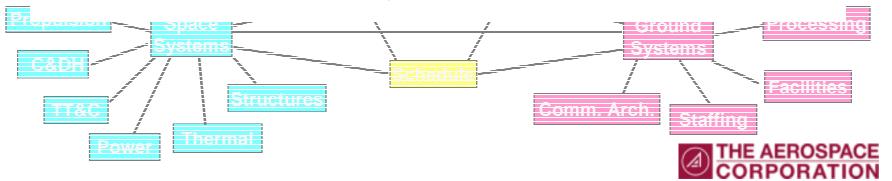
- Robust mission assurance tailored to program phase
- Use "buildup" process in design and test to identify and manage risk


Find and fix defects early, by using broadly based teams versed in concurrent methodologies

Results: Actual vs. Design Lifetime

Analysis of U.S. civil and military satellites


- 2005 Aerospace internal study
- Using our Space
 Systems Engineering
 Database
- On average, most satellites live well beyond their original design life
- Satellites with >8 year design life launched too recently to accurately assess


Good concurrent engineering practices contribute to enhanced mission success

Conclusions

 Concurrent engineering facilities, tools, and teams are an investment that pay back in reduced program costs and increased system life

Backup

Selected CDC References

- "Modular Concurrent Engineering Models: Enabling Alternative Models in Conceptual Satellite Design", B.Lewis, J.Lang, R.Jolly, 2007 IEEE Aerospace Conference, 2007.
- "Next Generation Concurrent Engineering: Developing Models to Complement Point Designs", E.Morse, T.Leavens, B.Cohanim, C.Harmon, E.Mahr, B.Lewis, 2006 IEEE Aerospace Conference, Big Sky, Montana, March 4-11, 2006.
- "A Systems Engineering Tool for Small Satellite Design", A.McInnes, D.Harps, J.Lang, C.Swenson, 15th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, August 13-16, 2001.
- "Concurrent Design at Aerospace", P.Smith, A.Dawdy, T.Trafton, R.Novak, S.Presley, Crosslink, Winter 2000/2001.
- "Scope vs. Detail: The Teams of the Concept Design Center", J.Aguilar, A.Dawdy, 2000 IEEE Aerospace Conference Proceedings, March 18-25, 2000.
- "The Aerospace Corporation's Concept Design Center", J.Aguilar, A.Dawdy, G.Law, Proceedings of the 8th Annual International Symposium of the International Council on Systems Engineering, July 26-30, 1998.

