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ABSTRACT 

This paper is committed to explore object-oriented methods for 
the classification of Quickbird images, aiming to support future 
urban population estimates. The study area concerns the southern 
sector of São José dos Campos city, located in the State of São 
Paulo, Brazil. By means of a multi-resolution segmentation 
approach and a six-layer hierarchical classification network, 
homogeneous residential areas were identified in terms of density 
of occupation and building standards (single dwelling units or 
high-rise buildings). The classification network was built upon 
spectral, geometrical and topological features of the objects in 
each level of segmentation as well as upon their contextual and 
semantic interrelationships in-between the hierarchical levels. The 
final classification of homogeneous residential units was subject 
to validation, using an object-based Kappa statistics. 

Categories and Subject Descriptors 

I.2.4 [Computing Methodologies]: Knowledge Representation 
Formalisms and Methods – representations (procedural and rule- 

based), semantic networks.  

General Terms 

Experimentation, Design, Algorithms. 

Keywords 

Object-oriented analysis, high resolution images, knowledge-
based methods, semantic networks, population estimates. 

1. INTRODUCTION 
Works dealing with satellite imagery for population estimates 
have become more and more often in the latest years. In Northern 
Leicestershire, UK, a population density surface was conceived 
for this end [1]. Initially, a LS-TM image was registered onto the 
same geographical coordinates as the census data, and then, a 
supervised maximum likelihood classification was conducted 
using principal components analysis (PCA) as input, in order to 
identify pixels that could be classified as residential. The 
population figures were allocated to the residential pixels falling 
within each ward, through a simple division between population 
and number of pixels, so as to produce a crude dasymetric map of 
the population-per-pixel. And finally, a surface transformation 
was applied on the image using kernel areas of 0.25 km2 and 1.0 
km2, and the results could then be visualized through a fish-net 
representation, onto which a shade sequence has been 
superimposed according to the degrees of population density. 

The use of texture and contextual measures to be associated with 
housing densities by means of linear regression models has also 
been proposed [2]. The housing density was considered as the 
dependent variable, and the mean reflectance values on the image 
bands as well as texture and contextual measures for the 
concerned sub-image as the independent variables. Three types of 
texture were used: urban pixel density, homogeneity and entropy. 
The first one is simply defined as the proportion of all pixels 
within a sub-image classified as urban land-cover; the 
homogeneity is derived from a joint probability distribution (P) 
matrix by measuring the sum of the squares of the matrix entries; 
and the entropy is also applied to a P matrix, yielding higher 
values when matrix entries are equal, and lower values when they 
are unequal. Only a single contextual measure was used: distance 
from the city centre. The results obtained indicated that the best fit 
was achieved when using TM bands 5 and 7 and the homogeneity 
measure only, since it is a normalized measure, and hence, its size 
is independent of the absolute number of urban pixels in a sub-
image.  
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Nighttime satellite imagery has also been used for estimating the 
population density in the USA [3] and in China [4]. In the first 
work, the authors derived the nighttime stable-lights imagery from 
the visible near infrared band of 231 orbits of the Defense 
Meteorological Satellite Program Operational Linescan System 
(DMSP-OLS). Analyses of the saturated areas of the images 
indicated strong correlations between the areas of the saturated 
clusters and the populations those area cover.  

The radiance-calibrated DMSP-OLS data was also used to 
evaluate their potential for population estimates in China at the 
provincial, county, and city levels [4]. The light clusters were 
classified into six categories of light intensity, and their areal 
extents were extracted from the image. Mean pixel values of light 
clusters corresponding to the settlements were also determined. 
The author conceived a light volume measure to indirectly assess 
the three-dimensional population capacity of a settlement. The 
author dealt with linear regression models, regarding the Chinese 
population and population densities as the dependent variable, 
and the light area, light volume, and pixel mean as independent 
variables. It was found that the DMSP-OLS nighttime data 
produced reasonably accurate estimates of urban population using 
either the light area or light volume as input. The total sums of the 
estimates for both urban and total population closely 
approximated the true values given by the Chinese statistics at all 
three spatial levels. 

A pixel-based alternative approach for modeling population 
estimation was as well proposed [5]. In this method, pixels of a 
LS-TM image were classified as residential or non-residential 
using standard techniques. Initial reference populations were 
assigned by uniformly distributing the population of each zone 
across its residential pixels. An expectation-maximization (EM) 
algorithm was used to iteratively regress pixel population on 
spectral indicators and re-estimate pixel populations. This model 
produced population estimates of comparable accuracy to those 
resulting from a much more complex zone-based modeling 
procedure, and had its predictive validity evaluated by applying 
the fitted regression equation to a second image. 

Recent works started to introduce high-resolution estimates for 
assessing the population spatial distribution. In this sense, the 
correlation between census population density and Ikonos image 
texture has been investigated [6]. The spatial unit adopted for the 
analysis was census blocks with homogeneous land use. Ikonos 
image texture was described using three methods: the gray-level 
co-occurrence matrix (GLCM), semi-variance, and spatial metrics. 
The authors suggest that the correlation is not strong enough to 
predict or forecast residential population, but the image texture 
does provide a base to refine census-reported population 
distribution using remote sensing.  

This paper presents a new method for identifying homogeneous 
residential areas by means of an object-oriented multilevel 
segmentation and fuzzy classification of Quickbird images, 
developed in the knowledge-based platform e-Cognition. The 
identified homogeneous units are associated with certain ranges of 
population density, and based upon their areal extensions, it is 
possible to infer the amount of population living in each 
considered residential unit. Details regarding particularities of 
urban targets found in the urban scene and the methods employed  

for this knowledge-based classification approach are given in the 
following sections. 

2. THE STUDY AREA 
The municipality of São José dos Campos is located in the 
southeastern State of São Paulo, within coordinates 46º06’W, 
23º18’S, 45º40’W and 22º49’S. Its total surface amounts to 
1,099.60 km2 and it comprises a population of about 539,313 
inhabitants, out of which 532,717 (98.78 %) inhabitants live in 
urban areas. It is situated along the road that connects São Paulo to 
Rio, and it is famous for being the country´s aerospace pole. The 
city residential areas present very diverse spatial patterns, which 
correspond indeed to socio-economic standards of their dwellers. 
It is observable that the higher the standard of a given 
neighbourhood, the greater its share of urban greening, and hence, 
the lower its density of occupation. In the present work, only part 
of the southern sector of the city will be investigated. This selected 
study area, although of reduced size in comparison to the whole 
urban area of São José dos Campos, contains a great diversity of 
residential areas categories, ranging from very high, high, medium 
to medium-low and low standards. The area also contains three 
squatter settlements, popularly known as `favelas´. 

3.   METHODOLOGY 

3.1 Building the Database 
Five bands of a Quickbird image were used in the database of this 
research: a panchromatic one, with 0.67 m of resolution, and four 
multispectral bands (blue, green, red, and near infrared) with 2.40 
m of resolution. Their level of geometric correction is 
ORStandard2A and the acquisition date is May 17th, 2004. They 
present an off-nadir angle of 7.0º and radiometric resolution of 16 
bits, although the pixels DN are actually distributed within a range 
of 11 bits. 

Besides the image bands, one GIS layer related to the study area 
streets network (in shape file format) was imported to the 
database. This layer, issued by the planning department of the 
local government [7], was used for the initial segmentation of 
streets and blocks, which effectively guided the segmentation of 
further levels of the database. 

For the classification of urban land cover of the study area, i.e. 
roof materials, paving materials, shadow, trees and grass areas, the 
database was initially structured in three levels of segmentation 
[8], in the following sequence: (i) Level 3 – segmented according 
to the GIS layer of the streets network, with scale factor of 
10,000; (ii)  Level 2 – segmented after Level 3, with scale factor 
of 50; and (iii) Level 1 – segmented after Level 2, with a very fine 
scale factor of 20. Such scale factor is an internal parameter of e-
Cognition [9], and the user sets it heuristically in each 
segmentation level. 

The classification of Level 3 corresponds to blocks and streets; 
Level 2, on its turn, was roughly classified in vegetation, shadow, 
and built-up areas; and finally, the classification of Level 1 refers 
to the urban land cover of the study area (Figure 1), including: 
trees, grass, shadow, asphalt, light and dark bare soil, light and 
dark ceramic roofs, dark concrete/asbestos roofs, medium tone 
concrete/asbestos roofs, metallic roofs, and swimming-pools. 
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Figure 1. Hierarchical network of Level 1 and respective attributes for each class. Source: PINHO (2005). 
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Only one geometrical attribute was necessary to differentiate 
streets from blocks at Level 3: the rectangular fit. At Level 2, 
shadow was defined as a function of the objects brightness; 
vegetation was identified by means of the objects NDVI, and 
built-up areas were classified by mutual exclusion of these two 
former classes. 

Each of the attributes of Level 1 presented a fuzzy membership 
curve, built upon samples collected on the image. Some of these 
curves were continuous, and others crisp. It is worthy reminding 
that the objects of Level 3 were decisive for the classification of 
Level 1. The final classification of Levels 1, 2 and 3 are presented 
in Figure 2. 

(iii) high standard houses of type I (big plot areas and high share 
of green areas); 
(iv) high standard houses of type II (very large plot areas and also 
high share of green areas); 
(v) medium standard houses of type I (ceramic roofs); 
(vi) medium standard houses of type II (asbestos roofs); 
(vii) low standard houses of type I (ceramic roofs); 
(viii) low standard houses of type II (asbestos roofs); 
(ix) squatter settlements (`favelas´). 

The final classification of these homogeneous units, undertaken at 
Level 4, took several attributes into consideration (Table 1), 
mainly found at Level 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Classification of Levels 1 (urban land cover), 2 (vegetation, shadow and built-up areas) and                                                         

3 (streets and blocks). Black holes inside the classified images correspond to clouds or clouds shadow.
 

3.2 Defining the Homogeneous Residential 

Units and their Respective Attributes 
In order to classify the residential areas of the city into 
homogeneous units, the blocks had to be firstly classified into 
residential and non-residential areas. This was done manually at 
Level 5, since the local Planning Department of the city did not 
dispose of these data in digital format. Moreover, some residential 
areas occupied only part of the blocks, so there has been a vector 
edition, so as to subdivide blocks into residential and non-
residential areas. 

The next step was the definition of the homogeneous residential 
units. Nine classes of homogeneous residential areas were taken 
into account within the study area: 

(i) high-rise buildings of type 1 (single buildings);  
(ii) high-rise buildings of type II (sets of buildings);  

A specific fuzzy membership curve was created for each of the 
above attributes, considering the behavior of these attributes 
regarding the concerned class. Again, some curves were fuzzy, 
and others crisp. Figure 3 presents some illustrative examples of 
such curves in the case of the relative area of Dark Ceramic Roof 
for Medium Standard of types I and II. 

3.3 Creation of a Customized Indicator of 

Streets Greening Density  
The homogeneous residential units could be mostly differentiated 
by the attributes characterizing the share of certain types of roof 
material or the share of vegetated areas. A problem regarding the 
discrimination of medium and low standard residential areas 
became evident: the share of roof material and green spaces alone 
could not cope with the separation among these classes. 
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Table 1. Attributes adopted to discriminate the homogeneous residential units at Level 4. 

 

Classes Attributes for the classes discrimination 

High-Rise I Existence of Objects of High Brightness 

 Relative area of Objects of High Brightness 

 Relative area of Dark Concrete/Asbestos Roof 

 Relative area of Shadow 

 Relative area of Trees 

High-Rise II Existence of Objects of High Brightness 

 Relative area of Objects of High Brightness 

 Relative area of Dark Concrete/Asbestos Roof 

 Relative area of Shadow 

 Relative area of Trees 

High Standard I Total Area 

 Relative Area of Trees 

 Relative area of Dark Ceramic Roof 

High Standard II Total Area 

 Relative Area of Trees 

 Relative area of Dark Ceramic Roof 

Medium Standard I Relative area of Dark Ceramic Roof 

 Relative area of Dark Concrete/Asbestos Roof 

 Customized Indicator of Streets Greening Density 

Medium Standard II Relative area of Dark Ceramic Roof 

 Relative area of Dark Concrete/Asbestos Roof 

 Customized Indicator of Streets Greening Density  

Low Standard I Relative area of Dark Ceramic Roof 

 Relative area of Dark Concrete/Asbestos Roof 

 Customized Indicator of Streets Greening Density 

Low Standard II Relative area of Dark Ceramic Roof 

 Relative area of Dark Concrete/Asbestos Roof 

 Customized Indicator of Streets Greening Density 

Squatter Settlements (`Favelas´) Not existence of Swimming-Pools 

 Relative area of Objects of High Brightness 

 Relative area of Metallic Roof 

 Relative area of Dark Concrete/Asbestos Roof 

 Relative area of Shadow 

 Relative area of Grass 
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Figure 3. Fuzzy membership curves regarding the attribute “Relative area of Dark Ceramic Roof” (Telha Cerâmica Escura) for 

Medium Standard Residential Areas of Type I (left) and II (right). The curve to the left has a fuzzy configuration, whereas the one 

to the right presents crisp limits. 

 

One peculiar characteristic of medium standard and low 
standard residential neighbourhoods is the obvious difference as 
to their density of streets greening (streets trees density). 
Usually, low standard neighbourhoods arise irregularly. They 
are further regularized, but the streets greening initiatives by the 
local government are not as effective as those promoted in the 
case of formal medium standard neighbourhoods. 

For assessing the streets greening density, a first solution was to 
estimate the total trees area inside a 15-meter buffer surrounding 
each residential block. A second possibility was to calculate the 
share of the intersection perimeter between the class “Streets” 
and the class “Residential Block” in relation to the total block 
perimeter. Both solutions were combined into one and they were 
implemented outside the e-Cognition platform, in the TerraView 
opensource software, developed by the Division for Images 
Processing of the Brazilian National Institute for Space 
Research (DPI-INPE)1. The reason for this external 
implementation lies on the fact that there is no buffer operation 
inside e-Cognition. Furthermore, the intersection perimeter can 
only be calculated for classes belonging to the same level inside 
e-Cognition. Regrettably, due to the huge number of trees 
polygons (over 102,000), a merging operation between the 
classes “Trees” and “Residential Block” was not rendered 
possible due to memory capacity constraints of such platform.  

A threshold was established for the “Streets Greening Density 
Indicator”, designed to differentiate medium from low standard 
residential areas (Equation 1). This indicator was further 

                                                                 

1 http://www.dpi.inpe.br/terraview.html 

 

imported to the e-Cognition database at Level 6, indicating 
blocks above and below the threshold, as follows: 

 
    SGD = TA  < =  100 m2  AND  IP/TBP  < =  0.06              (1)       
 

where TA refers to the trees area inside the 15-m buffer, IP 
relates to the intersection perimeter between the polygons 
belonging to the class “Trees” (lying over the class “Streets”) 
and to “Residential Block”, and TBP corresponds to the total 
residential block perimeter. 

3.4 Final Hierarchical Framework for the 

Classification of Homogeneous Residential 

Units  
The process of extracting homogeneous residential units was 
organized upon basis of a double-stage knowledge-based 
classification process, well sumarised in Figure 4. 

Starting from a Quickbird image and a GIS layer containing the 
city streets network, assigned to Level 3, a classification of 
vegetation, shadow and built-up areas was carried out and 
assigned to Level 2. Observing these two levels, a classification 
of urban land cover was finally made at Level 1.  

On a second stage, residential and non-residential blocks were 
manually classified at Level 5. A customised indicator of streets 
greening density was limiarised in a binary form and spatialised 
at Level 6. Simultaneously considering Levels 1, 5, and 6, a 
classification of homogeneous residential units was 
automatically accomplished at Level 4. 
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Figure 4. Schematic flowchart of the knowledge-based classification process of homogeneous residential units. 

 

In this way, Levels 1 to 3 concern the first stage of the 
classification process, taking into account mainly spectral and 
geometrical information. Levels 4 to 6, on the other hand,  
regard a second stage of such classification process, mostly 
considering class-related and topological information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.   RESULTS AND DISCUSSION 
The final classification of Levels 4, 5, and 6 are presented in 
Figure 5. It is noticeable that only one polygon remained non-
classified at Level 4 and it in fact concerns a high standard 
residential zone under construction, which presents high 
percentages of Bare Soil and low percentages of Ceramic Roof. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Final classifications of Level 4 (homogeneous residential units), Level 5 (residential and non-residential blocks), and Level 

6 (indicator of streets greening density in binary form, showing blocks above and below the threshold set by Equation 1). 
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Table 2. Validation: Contingency table for the polygons-based Kappa statistics. 

Ground Truth HR1 HR2 HS1 HS2 MS1 MS2 LS1 LS2 FAV  NC Total 

HR1 66          66 

HR2  10         10 

HS1   1        1 

HS2    1       1 

MS1     376  16 1   393 

MS2     1 9  1   11 

LS1     48  65    113 

LS2        6   6 

FAV         3  3 

C
la

ss
if

ic
a

ti
o

n
 

NC          1 1 

Total 66 10 1 1 425 9 81 8 3 1 605 

 

The High-Rise Building Areas were well identified, and the 
attributes for these two types are exactly the same, only differing 
in the fuzzy curves and fuzzy membership values The High 
Standard Unifamiliar (Single Dwelling Units) Zones were also 
well discriminated upon basis of the neighbourhoods area,  
relative area of Trees and of Dark Ceramic Roof. 

The Medium Standard Residential Area of Type I is the most 
common residential unit in the city, with a maximum of 25% of 
Asbestos Tiles, and a minimum of 30% of French Tiles. On the 
other hand, Standard Residential Area of Type II concerns a 
very particular neighbourhood in the city, and presents from 
40% to 50% of Asbestos Tiles, and up to 18% of French Tiles. 

Although the `Favelas´ have the most complex set of attributes, 
they were well identified. The greatest confusion remained in 
the discrimination between Medium Standard from Low 
Standard Residential Areas, of both Types I and II. 

5. CONCLUSIONS AND DIRECTIONS 

FOR FUTURE WORK 
The final classification of homogeneous residential units at 
Level 4 was subject to validation by means of a ground truth 
level (Level 7) built upon field observation. The contingency 
table is presented below (Table 2), and the value of the 
polygons-based Kappa statistics reached 78%. According to 
[10], this rate can be regarded as very good,  since the 
classification quality is set according to the ranges of the Kappa 
index as: [<0.00]: very bad; [0.00 - < 0.20]:  bad; [0.00 – 0.40]: 
acceptable; [0.40 - < 0.60]: good; [0.60 - < 0.80]: very good; 
[0.80 – 1.00]: excellent. 

The authors acknowledge this is a work in progress, and will 
continue on tackling many open questions and mismatches in 
the classification process. As directions for future work, the 
authors plan to investigate texture measures related to specific 
classes of homogeneous residential units, to explore further 
customized (arithmetic and/or relational) attributes, to insert 
census and cadastral data (plots and housing un its sizes) as well 
as to include 3-D models derived from LIDAR data, in order to 
precisely assess the number of stores in high-rise buildings, and 
hence, support more consistent methods for population 
estimates. 
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