

AN ALGEBRA FOR OPENGIS® COVERAGES BASED ON TOPOLOGICAL
PREDICATES

 Danilo Mori Palomo

Master Thesis in Applied Computing Science, advised by
Dr. Gilberto Câmara

INPE
São José dos Campos

2007

 2

 3

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-

AN ALGEBRA FOR OPENGIS® COVERAGES BASED ON TOPOLOGICAL
PREDICATES

Danilo Mori Palomo

Master Thesis in Applied Computing Science, advised by
Dr. Gilberto Câmara.

 4

 5

AN ALGEBRA FOR OPENGIS® COVERAGES BASED ON TOPOLOGICAL
PREDICATES

ABSTRACT

Map algebra is a collection of functions for handling spatial datasets where each data
contains a set of geometries of the same type which bound to a geographical reference.
The current theory for Map Algebra uses ad hoc operators proposed by Dana Tomlin.
His proposal has had great practical success, and most GIS implementations provide its
operations. However, there is a lack of theoretical foundations for the operations
proposed in Tomlin’s map algebra. This is a limitation for the proposal of international
standards for map algebra. Specifically, the Open Geospatial Consortium’s proposal for
handling a map (the coverage data type) lacks a set of functions to manipulate its
content. To address this problem, our work proposes a specification for an algebra for
Open GIS® coverages which uses a dimension-extended version of Egenhofer and
Herring’s 9-intersection predicates to express spatial operations. The proposed coverage
algebra includes all Tomlin’s functions, as well as operations that are not part of
Tomlin’s algebra, but are useful in practice. Our proposal could be the basis for setting
up standards for operations on Open GIS coverages. The use of standards for operations
in coverages would be a significant advance for increased interoperability of spatial
data.

 6

 7

UMA ÁLGEBRA PARA “OPENGIS
®
 COVERAGES ” BASEADA EM

PREDICADOS TOPOLÓGICOS

RESUMO

Álgebra de mapas é uma coleção de funções para a manipulação de dados espaciais
onde cada dado contém um conjunto de geometrias do mesmo tipo ligado a uma
referência geográfica. A atual teoria para Álgebras de Mapas utiliza operadores ad hoc
propostos por Dana Tomlin. Sua proposta obteve um grande sucesso prático, e a maioria
das implementações de Sistemas de Informações Geográficas disponibiliza essas
operações. Entretanto, existe uma carência de bases teóricas aos operadores propostos
na álgebra de mapas de Tomlin. Já a proposta do Open Geospatial Consortium para a
manipulação de mapas (ou coverages) necessita de um conjunto de funções para
manipular esse conteúdo. Nosso trabalho propõe a especificação de uma Álgebra de
Mapas para a coverage do Open Geospatial Consortium que utiliza uma versão
estendida dos predicados topológicos propostos por Egenhofer e Herring. A álgebra
para coverages aqui proposta inclui todas as funções propostas por Tomlin, bem como
operações que não são parte, mas que na prática são úteis. Nossa proposta pode ser uma
base para o desenvolvimento de um padrão para as operações sobre coverages. O uso de
padrões para as operações sobre coverages seriam um avanço significativo para o
avanço da interoperabilidade dos dados espaciais.

 8

 9

TABLE OF CONTENTS

Page

FIGURE LIST .. 11

TABLE LIST .. 13

1. INTRODUCTION .. 15

2. LITERATURE REVIEW .. 17
2.1 The OpenGIS® Coverage ... 17
2.2 Topological operators for spatial relations... 19
2.3 Map Algebra... 21

3. A GENERALIZED ALGEBRA FOR COVERAGES .. 25
3.1 Conventions used in the text .. 25
3.2 The Coverage Data Type.. 26
3.3 Coverage operations... 29
3.4 Expressiveness of Topological Operators for Coverage Algebra 32
3.5 Examples of Coverage Algebra.. 33

4. PROGRAM ENVIROMENT.. 37
4.1 TerraHS .. 37
4.2 Haskell Implementation ... 38
4.3 Integration into GUI software .. 42
4.4 Examples .. 46

5. CONCLUSION AND FUTURE WORKS.. 51

REFERENCES ..53

 10

 11

FIGURE LIST

Figure 2.1 - The Open GIS discrete coverage function.. 18
Figure 2.2 – Coverage Subtypes... 19
Figure 2.3 – Topological predicates for area-area based on the 9-intersection matrix. . 20
Figure 2.4 – The Hybrid Raster Representation... 21
Figure 2.5 – Local Operation.. 22
Figure 2.6 – Focal Operation.. 22
Figure 2.7 – Zonal Operation ... 23
Figure 3.1 – Example of CASL sintax ... 25
Figure 3.2 - Declaration of sorts and constructors in CASL .. 26
Figure 3.3 – Spatial Operations (selection + composition). ... 30
Figure 3.4 – Focal sum of deforestation.. 35
Figure 4.1 - Retrieving and storing a coverage .. 40
Figure 4.2 – The main window... 43
Figure 4.3 – Insert Coverage .. 44
Figure 4.4 - Insert Single Argument Function... 45
Figure 4.5 - Insert Multiple Arguments Function... 45
Figure 4.6 – Insert Spatial Function ... 46
Figure 4.9 – Deforestation, protected areas and roads (Pará State, Brazil)................... 46
Figure 4.10 - Main header of the TerraHS programs ... 47
Figure 4.11 – Resulting coverage with classified deforestation..................................... 48
Figure 4.12 – Deforestation mean by protection area .. 49
Figure 4.13 – Deforestation mean along the roads... 50

 12

 13

TABLE LIST

Table 3.1 - Single Function Specification ... 26
Table 3.2 - Multiargument Function Specification .. 27
Table 3.3 - List Specification ... 27
Table 3.4 - Comparision Predicate Specification ... 27
Table 3.5 - Topological Predicate Specification .. 27
Table 3.6 - Abstract specification of the Coverage data type... 28
Table 3.7 - Abstract specification for the coverage operations 30
Table 3.8 – Topological operators applicable to spatial operations on coverages 32
Table 3.9 – Convenience shorthand for non-spatial operators 33
Table 3.10 – Examples of non-spatial operators .. 33
Table 3.11 – Examples of Spatial Operations .. 34
Table 4.1 - Type class Coverages... 38
Table 4.2 - Instance of type class Coverages.. 39
Table 4.3 - Generic type class Operation ... 41
Table 4.4 - Instantiation of the Operations... 41
Table 4.5 – Comparison of spatial operators with Tomlin’s map algebra 50

 14

 15

CHAPTER 1

INTRODUCTION

In recent years, there has been a significant effort to standardize the technology of

geographical information systems (GIS). This effort is motivated by the large diffusion

of GIS worldwide, the need to share geographical data, and for long-term maintenance

of geographical archives. Sharing geographical data requires that different institutions,

using diverse technologies, have access to the same data sets. Long-term archive

maintenance needs that data outlives both its original media support and the software

used to build it. Thus, sharing and maintenance of geographical data need

standardization. The Open Geospatial Consortium (OGC) is developing standards for

modelling, accessing, storing, and sharing geographical data. The extent of the effort

involved in OGC’s mandate is significant. Therefore, despite the progress already

achieved, there are still areas where OGC’s task is not complete. One of the missing

parts of OGC’s specification is a set of functions for manipulation of coverages, a

subject commonly referred to as ‘map algebra’. The current version of OGC’s

specification for coverages (Kottman, 2000) mentions unary and binary operations, and

does not consider spatial operations. Since there is a literature on map operations

(Berry, 1987) (Frank, 1987) (Tomlin, 1990), it is important to consider how these

operations can be used for handling OGC’s coverages. This work will discuss how to

extend OGC’s coverage data type to create an algebra for coverages.

The main contribution to map algebra comes from the work of Tomlin (Tomlin,

1990). Tomlin proposed a set of operations that has proven useful in practice.

Extensions to Tomlin’s map algebra include the GeoAlgebra of Takeyama and

Couclelis (Takeyama; Couclelis, 1997) and MapScript, a language that includes

dynamical models (Pullar, 2001). Extensions of map algebra for spatio-temporal data

handling are discussed by Mennis et al. (Mennis et al., 2005) and Frank (Frank, 2005).

All these works use Tomlin’s algebra as a basis for their work. The main problem with

Tomlin’s algebra and its extensions is their ad hoc basis. There is no foundation for

 16

assessing the completeness of his algebra. Thus, there could be other types of operations

that are missing in his algebra.

Therefore, one of the open challenges in spatial information science is to

develop a theoretical foundation for a comprehensive set of operations on coverages.

We need to find out if Tomlin’s map algebra is part of a more general set. We state

these questions as: “What is the theoretical foundation for spatial operations on

coverages?”, “Could this theoretical foundation provide support for a comprehensive

spatial algebra for coverages?” To respond to these questions, we take the topological

predicates of Egenhofer and Herring (1991) as a basis for defining an algebra for

coverages. Using these predicates, we develop a coverage algebra that includes

Tomlin’s map algebra as a subset.

In what follows, we briefly review the literature about coverages, map algebra

and spatial predicates in chapter 2. In chapter 3, we present an algebraic specification of

an algebra for coverages. In chapter 4, we show the implementation of the algebra in the

Haskell language, some examples of its use, including some problems that are not

expressible in Tomlin’s work and the implementation of it into a GUI interface. To

conclude, in chapter 5 we present our conclusions and point out future lines of research.

 17

CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the main basis for our work: OGC’s definion of coverages,

Tomlin’s map algebra, and Egenhofer’s topological operators.

2.1 The OpenGIS® Coverage

OGC’s definition of coverage provides a support for the concepts of ‘fields’ and ‘maps’

(Kottman, 2000). A coverage is a spatial representation that covers a geographical area

and divides it in spatial partitions that may be either regular or irregular and assigns a

value to each partition. The computer representation of a coverage consists of a

coverage function over a discrete domain, called the DiscreteC_Function. Its domain is

a collection of geometries and its range is a set of vectors of attributes. The OGC

specification describes the DiscreteC_Function as having four operations, shown in

Figure 2.1:

• Num: finds the number of geometries in the coverage.

• Values: finds the possible values of the coverage function.

• Domain: finds the geometries in the domain of the coverage function.

• Evaluate: given a geometry, return a vector that represent the values of the

coverage function for the associated location.

 18

Figure 2.1 - The Open GIS discrete coverage function

Source: (Kottman, 2000)

An example is the coverage whose domain is the geometries that describe the

states of a country, and the range is each state’s population in 2004. A second example

would be a coverage whose domain is a set of regular cells and the range is a set of

values representing the maximum and minimum yearly temperatures of the region

covered by the set of cells. OGC considers a set of coverage subtypes, where each

subtype uses a different spatial data structure to build its domain. The subtypes include

polygons, images, TINs, surfaces, and point sets. OGC describes how to evaluate the

discrete coverage function for different coverage subtypes (Kottman, 2000).

2.1.1 The Discrete Spatial Domain

The discrete spatial domain of a DiscreteC_Function may be any geometry or collection

of geometries.

The domain can be represented by a raster, i. e., a region composed by a planar-

enforced set of closed homogeneous rectangles (named “pixels”, “cells” or “locations”),

like an image or a cell space. A coverage with this kind of domain maps from

“locations” to values.

Furthermore, a domain can be composed of a collection of homogeneous

geometries. A geometry can be represented by a point, line or region. A coverage with

this kind of domain maps from geometries to values. Examples of elements in this

 19

domain are rivers and roads, represented by lines, or states and forests, represented by

polygons. The Figure 2.2 shows all the subtypes domains that a Coverage Function can

assume.

Figure 2.2 – Coverage Subtypes

Source: (Kottman, 2000)

2.1.2 The Range of a Coverage and the DiscreteC_Function

The range of a DiscreteC_Function is a set of vectors of attributes. For any geometry

of the domain, the DiscreteC_Function maps to a vector of attributes.

DiscreteC_Function: (geometry in spatial domain) → (v1, v2, v3, ... , vn)

The DiscreteC_Function can be seen like a set of functions with the same

spatial domain, where each function maps to a unique attribute range.

f1 : p→ v1 , ... , fn : p→ vn where p is a geometry in the spatial domain.

For example, considering that the domain is composed by all states in a country,

the DiscreteC_Function may assign to each state its population of the years 2004 and

2005, and the percentage of deforestation area. Besides, considering the domain the

region of a forest partioned in a discrete way - a set of pixels - for each pixel the

function may assign its temperature, elevation, dampness, and deforestation value.

2.2 Topological operators for spatial relations

The OGC specification describes a set of topological predicates for spatial relations

between geometries of simple features (Herring, 2006). These predicates use a

 20

dimension-extended version of the 9-intersection model proposed by Egenhofer and

Herring (Egenhofer et al., 1991). The 9-intersection model considers a geometrical

object (A) as composed by a set of boundary points (∂A), a set of interior points (Aº),

and a set of exterior points (A-).

This model allows identifying 512 binary relations in ℜ2. For area-area relations

the model presents a standard set of seven predicates {‘disjoint’, ‘equal’, ‘touch’,

‘inside’, ‘overlap’, ‘contains’, ‘intersects’}, as adopted by the Open Geospatial

Consortium (Figure 2.3). The predicate ‘intersects’ is included for user convenience,

following OGC’s proposal (OGC, 1998). ‘Intersects’ is defined as

 intersects(a,b) ⇔ ! disjoint(a,b)

Figure 2.3 – Topological predicates for area-area based on the 9-intersection matrix.

Adapted from Egenhofer and Herring (1991)

 For line-area relations, the model proposes the set {‘disjoint’, ‘touch’, ‘within’,

‘cross’, ‘intersects’}. For point-area relations, the model proposes the set {‘disjoint’,

‘touch’, ‘within’ }. Other topological relations are described in (Egenhofer et al., 1991).

The works of Winter (1995) and Winter and Frank (2000) extends the

Egenhofer’s 9-intersection model to application in raster representations. Application of

 21

the Egenhofer’s 9-intersection model is only defined over entities that have a set of

interior and exterior points. In a discrete raster representation of the geographical space

its entities don’t satisfy this requirement. Winter and Frank (2000) present a new hybrid

raster model, where they define a raster element with boundary, interior and exterior

(Figure 2.4). So, “In this hybrid raster representation, topological relations relate again

to general topology in Euclidean space, and the four or nine-intersection can be applied

in full accordance to vector representations.” Winter and Frank (2000).

Figure 2.4 – The Hybrid Raster Representation

Source: (Winter et al., 2000)

 In what follows, we define that spatial operations in coverage algebra should use

OGC’s topological predicates.

2.3 Map Algebra

The main contribution to map algebra comes from the work of Tomlin. Tomlin’s map

algebra (1990) includes first-order and higher-order functions for maps. First order

functions take values as arguments (these are the functions associated to the map

values). Higher order functions are functions that have other functions as arguments.

Higher order functions are the basis for map algebra operations (Frank, 1997). These

functions apply a first-order function to all elements of map. Tomlin (Tomlin, 1990)

proposes three higher-order functions:

• Local function: produce a new map, whose value in each location p depends only

of the values in p in the input maps, as in “classify as unsuitable for farming all

areas with slope greater than 15%”. A local operation is a mapping between the

ranges of the input and output fields (Figure 2.5).

 22

Figure 2.5 – Local Operation

Source: (Tomlin, 1990)

• Focal function: produce a new map, whose value in each location p depends only of

the values of a neighbourhood around p in the input map, as in the expression “for

each county, calculate the average population of its neighbours” (Figure 2.6). Focal

functions use the condition of adjacency, which matches the spatial predicate touch.

Figure 2.6 – Focal Operation

Source: (Tomlin, 1990)

• Zonal function: produce a new map, whose value in each location p depends on the

values of a region in an input map. This region is defined by a restriction on a third

map, called the reference map. Example is “given a map of cities and a digital

terrain model, calculate the mean altitude for each city” (Figure 2.7). Zonal

functions use the condition of topological containment, which matches the spatial

predicate inside.

 23

Figure 2.7 – Zonal Operation

Source: (Tomlin, 1990)

We can express Tomlin’s spatial operations using Egenhofer and Herring’s

(Egenhofer et al., 1991) topological predicates. The focal operation uses the condition

of adjacency, which matches the spatial predicate ‘touch’. The zonal operation uses the

condition of containment, which matches the spatial predicate ‘within’. Since ‘touch’

and ‘within’ are part of a more general set of predicates, Tomlin’s operations use only a

subset of all possible topological relations between areas. Tomlin’s algebra uses spatial

predicates in a limited way. It applies the ‘touch’ relation (focal function) only over the

same input map. It also only applies the ‘within’ relation (a zonal operation) over a

reference map. If we remove the limits of Tomlin’s algebra, we can have a coverage

algebra based on the full set of topological predicates, whose operations don’t restrict

the way in which the predicates are used.

 24

 25

CHAPTER 3

A GENERALIZED ALGEBRA FOR COVERAGES

This chapter presents the design of an algebra for coverages. The proposed algebra

extends the coverage data type defined by the Open GIS consortium (Kottman, 2000)

and has nonspatial and spatial higher-order functions. The nonspatial operations are

Tomlin’s local operations. The spatial operations perform operations on coverages using

topological predicates.

3.1 Conventions used in the text

We define the coverage operations using an algebraic specification of data types. In our

definitions, we use CASL, the Common Algebraic Specification Language (Bidoit,

2004). CASL is a general-purpose language for both requirements and design

specifications. A basic specification in CASL consists of a set of declarations of

symbols, and a set of axioms and constraints, which restrict the interpretations of the

declared symbols. For a detailed syntax for CASL specifications, see (Bidoit, 2004). We

provide examples from the CASL user manual (Bidoit, 2004) to allow the reader to

better follow our proposal. The first example has a unique sort and a predicate, showed

in Figure 3.1:

spec STRICT_PARTIAL_ORDER =
sort Elem

pred __ < __: Elem × Elem

axioms
forall x,y,z: Elem

· x < x %(reflexive)%

· x=y if x < y /\ y < x %(antisymmetric)%

 · x < z if x < y /\ y < z %(transitive)%

Figure 3.1 – Example of CASL sintax

The STRICT_PARTIAL_ORDER specification uses a sort Elem and a binary infix

predicate symbol ‘<’. Argument sorts are separated by the sign ‘×’. CASL uses ‘__ ‘

 26

(pairs of underscores) as place-holders for arguments. The predicate ‘<’ is associated to

three axioms: reflectivity, antisymmetry and transitiveness. CASL provides the keyword

type to shorten declarations of sorts and constructors, as in the example of the Figure

3.2:

spec CONTAINER [sort Elem] =
type Container::= empty | insert (Elem: Container)
pred __inside __: Elem × Container

axioms
 ∀ e, e’: Elem; C: Container

• ¬(e inside empty)

• e inside (insert (e’, C)) ⇔ (e = e’ ∨ e inside C)

end

Figure 3.2 - Declaration of sorts and constructors in CASL

3.2 The Coverage Data Type

This section presents an algebraic specification for an extended version of Open GIS

coverage. A coverage i/s a discrete c_function:: G→ V over a finite collection of

geometries G and a set of attribute values V. Without loss of generality, we will discuss

the case of coverages where each geometry has only one value. The generalization to a

coverage that returns a vector of values is simple, but would need a slightly more

complicated notation. We will assume that Geometry and Value sorts are those used by

OGC. The reader should refer to (Kottman, 2000) for details. We begin by defining a

set of auxiliary specifications (Table 3.1–5) : list (a list of elements), single and

multiargument functions, comparison predicates and topological predicates. For

brevity’s sake, we provide a limited list of single and multiargument functions and of

selection predicates. We can extend these lists of functions if needed.

Table 3.1 - Single Function Specification

spec SINGLEFUNCTION =
 sort Value
 ops

Log: Value → Value

Exp: Value → Value

sin: Value → Value

sqrt: Value → Value

 End

 27

Table 3.2 - Multiargument Function Specification

spec MULTIFUNCTION =
 sort Value

ops
sum: Value × Value → Value

product: Value × Value → Value

maximum: Value × Value → Value

mean: Value × Value → Value

minimum: Value × Value → Value

 end

Table 3.3 - List Specification

spec LIST [sort Elem]
type List::= empty | cons (Elem; List)
ops
 length: List → Integer

end

Table 3.4 - Comparision Predicate Specification

spec COMPPRED =
 sort Value
 pred

__== __: Value × Value
__<__ : Value × Value
__ >__ : Value × Value
__ != __ : Value × Value

end

Table 3.5 - Topological Predicate Specification

spec TOPOPRED =
sort Geometry

 pred
__within__: Geometry × Geometry
__overlap__: Geometry × Geometry
__disjoint__: Geometry × Geometry
__equal __: Geometry × Geometry
__touch__: Geometry × Geometry
__contains__: Geometry × Geometry
__cross__: Geometry × Geometry
__intersects__: Geometry × Geometry

 end

Using these definitions, we provide an abstract specification of the Coverage data

type (

Table 3.6). It uses the operations defined by OGC (see Figure 2.1 above) and

includes three constructors, a new predicate and a new operation.

 28

Table 3.6 - Abstract specification of the Coverage data type

spec COVERAGE [sort Geometry, sort Value, sort List] =
type Coverage::= empty |

 new (List [(Geometry, Value)])

 subset (Coverage, List [Geometry])

ops
insert: Coverage × (Geometry, Value) → Coverage

evaluate: Coverage × Geometry → Value

domain: Coverage → List [Geometry]

num: Coverage → Integer

values: Coverage → List [Value]

pred

__contains

__:
Coverage × Geometry

axioms
 ∀g, g’: Geometry; v: Value; C: Container

• contains (C, g) ⇔ g ∈ domain (C)

• evaluate (C, g) == error ⇔ contains (C, g) == false

• evaluate (insert (C, (g, v)), g) = v

• v = evaluate (C, g) ⇔ v ∈ values (C)

• num (C) = length (domain (C))

• values (C) = List [evaluate (C, g), ∀ g ∈ domain (C)]

• subset (C, List[g]) ⇔ (C1 = empty ())∧ insert (C1,(g, v)), ∀ g ∈ List [g] ∧ v =

evaluate (C, g)
end

The first constructor (empty) builds an empty Coverage. The second constructor

(new) builds a new Coverage by providing a list of (Geometry, Value) pairs. The third

constructor (subset) builds a new Coverage by extracting a subset of the original

locations. The predicate contains verifies if a certain instance of Geometry is in the

Coverage. Insert includes a new (geometry, value) pair in the coverage. Evaluate takes

a coverage and a geometry and produces an output value (“give me the value of the

coverage at location g”). Domain returns the geometries of the coverage’s domain. Num

returns the number of geometries on the coverage’s domain. Values returns the list of

values of the coverage’s range. The axioms point to the various restrictions on the

Coverage specification. The last axiom shows that creating a Coverage from a subset of

 29

locations of an existing one is the same as building an empty Coverage and then

inserting a list of (Geometry, Value) pairs.

3.3 Coverage operations

Operations on coverages are operations that produce a new coverage, and include

nonspatial and spatial ones. For nonspatial operations, the value of a location in the

output coverage depends on the values of the same location in one or more input

coverages. They include logical expressions such as “classify as high-risk all areas

without vegetation with slope greater than 15%” and “find the average of deforestation

in the last two years”. We consider three types of nonspatial operations: single (single

argument operations), multiple (multiple argument operations) and select (nonspatial

selection using a comparison predicate).

Spatial operations are higher-order functions that use a topological predicate and

generalize Tomlin’s focal and zonal operations. They include expressions such as

“calculate the local mean of the coverage values” and “given a coverage of cities and a

digital terrain model, calculate the mean altitude for each city”.

Spatial operations take two coverages (the reference coverage and the input

coverage) and produce a new coverage, which has the same geometries as the reference

coverage. A spatial operation has two parts: spatial query and composition. The spatial

query operation starts by finding the matching geometry in the reference coverage for

each location p in the new coverage. Then it applies a topological predicate between

that geometry and all geometries of the input coverage. The result of the spatial query is

a new (temporary) coverage containing the input geometries that match the predicate.

The composition operation then applies a function to the values on the new coverage to

produce the result (Figure 3.3).

Take the expression “given a coverage of cities and a coverage of altitudes,

calculate the mean altitude for each city”. In this expression, the input coverage is the

altitude one and the reference coverage is one with cities. To evaluate the expression,

we first select the terrain values within each city. This uses the selection operator with

 30

the within predicate. Then, we calculate the average of each set of these values. This

uses the composition operator with the mean function.

Figure 3.3 – Spatial Operations (selection + composition).

Adapted from (Tomlin, 1990)

To provide the abstract specification for the coverage operations, we distinguish

between nonspatial and spatial operations. For spatial operations, we define two

auxiliary functions (query and compose). We use the CASL ‘local … within’ construct

for such needs. This construct distinguishes between operations which are visible

outside the specification and auxiliary functions.

Table 3.7 - Abstract specification for the coverage operations

spec COVERAGE_OPERATIONS

[sort Geometry, sort Value, sort Coverage, sort SingleFunction, sort MultiFunction, sort List,

sort CompPred sort TopoPred]

ops

single: SingleFunction × Coverage → Coverage

multiple: MultiFunction × List[Coverage] → Coverage

select: Coverage × CompPred × Value → Coverage

local ops

sp_query: Coverage × TopoPred × Geometry → Coverage

compose : MultiFunction × Coverage → Integer

within op

 31

spatial: MultiFunction × Coverage × TopoPred × Coverage

→ Coverage

axioms

∀g, g1: Geometry; v, v1: Value; C, C1, C2: Container, topo: TopoPred,

comp: CompPred, fs: SingleFunction, fm: MultiFunction

• single (fs, C) = new (List[g, v]),

 ∀ (g, v) | g ∈ domain (C) ∧ v = fs (evaluate (C, g))

• multiple (fm, C1, C2, …, Cn) = new (List[g, v]),

 ∀ (g, v) | g ∈ (domain (C1)∩ domain (C2) …∩ domain (Cn)) ∧

 v = fm (evaluate (C1, g), evaluate (C2, g),…, evaluate (Cn, g)))

• select (C , comp, v1) = subset (C, S), where

 S = List [g | g ∈ domain (C) ∧ comp (evaluate (C, g), v1)]

• sp_query (C, topo, g1) = subset (C, S), where

 S = List [g | g ∈ domain (C) ∧ topo (g, g1)]

• compose (fm, C) = fm (values (C))

• spatial (fm, C1, topo, C2) = new (List[g, v]),

∀ (g,v) | g ∈ domain (C2) ∧ v = compose (fm, sp_query(C1 , topo, g))

end

The first axiom describes the single operation, which applies a function to all values of

the input. The second axiom describes the multiple operation, which applies a

multivalued function to all values of the input. The third axiom describes the nonspatial

selection operation. The fourth axiom shows that the spatial query selects a subset of

the original coverage whose geometries satisfy a topological predicate (“select all

deforested areas within the state of Amazonas”). The fifth axiom describes the

composition operation.

The last axiom describes the spatial function. It builds a new coverage by

providing a list of (Geometry, Value) pairs. The geometries of the new coverage are the

same as those of the reference coverage. We get the values of the new coverage by

combining a spatial query and a composition. In the next section, we show how these

operations for coverages are enough for a comprehensive algebra.

 32

3.4 Expressiveness of Topological Operators for Coverage Algebra

All coverage subtypes proposed by OGC are implemented as discrete geometrical

spatial data structures. Thus it is important to consider what extent the topological

operators can cover the spatial relations between these coverage subtypes. As discussed

in section 3.3, spatial operations have two parts: a spatial query and a composition on

the values selected by the query. The expressive power of the spatial query is limited by

the capacity of computing them it in each spatial data structures. Based on OGC’s

proposal for coverage subtypes (Kottman, 2000), we can distinguish different types of

discrete data structures for coverages:

• 2,5D structures: TIN coverages.

• 2D Area-based structures: grid coverages, images, polygon coverages, surfaces.

• 1D Line-based structures: segmented line coverages, line string coverages.

• 0D point-based structures: discrete point coverages, nearest neighbor coverages,

lost area interpolation.

Since the dimension-extended version of the 9-intersection model only handles 2D,

1D and 0D data structures, the proposed coverage algebra cannot be used for TIN

coverages. Also, consider that a spatial query operation involves two coverages: the

reference and the input coverages (see Section 3.2). Thus, application of topological

operators depends on the geometries of the reference and the input coverages, as

outlined in Table 3.1.

Table 3.8 – Topological operators applicable to spatial operations on coverages

Input coverage

type

Reference

coverage type

Operators

area area {‘disjoint’, ‘equal’, ‘touch’, ‘within’,

‘overlap’, ‘contains’, ‘intersects’}

area line {‘disjoint’, ‘touch’, ‘intersects’,

‘contains’}

area point {‘disjoint’, ‘touch’, ‘contains’}

line area {‘disjoint’, ‘cross’, ‘touch’, ‘within’,

 33

‘intersects’}

line line {‘disjoint’, ‘equal’, ‘touch’, ‘within’,

‘overlap’, ‘intersects’}

line point {‘disjoint’, ‘touch’, ‘contains’}

point area {‘disjoint’, ‘touch’, ‘within’}

point line {‘disjoint’, ‘touch’, ‘within’}

point point {‘disjoint’, ‘equal’}

3.5 Examples of Coverage Algebra

To provide examples of the proposed coverage algebra, we propose a shorthand

notation for the operations, as follows:

Table 3.9 – Convenience shorthand for non-spatial operators

new_cov:= single singlefun in_cov; % single value functions%

new_cov:= multiple multifun [in_cov]; % multivalued functions%

new_cov:= select in_cov comp_pred value; % selection%

new_cov:= spatial multifun in_cov topo_pred ref_cov; %for spatial

operations%

The parameters for the operations are:

• new_cov is the coverage with the new values.

• singlefun is a single argument function as given in section 3.2.

• multifun is a multiargument function as given in section 3.2.

• in_cov is the input coverage.

• [in_cov] is a list of input coverages.

• comp_pred is a comparison predicate.

• value is the comparison value.

• topo_pred is a topological predicate (section 3.2)

• ref_cov is the reference coverage used as a basis for applying the topological
predicate.

The examples of the Table 3.10 show the use of non-spatial operators applied to

coverages. Table 3.11 shows examples of spatial operations.

Table 3.10 – Examples of non-spatial operators

Informal description Coverage Algebra Expression

 34

“Find the square root of the

topography”
topoSqrt:= single sqrt

topography;

“Find the square root of the

cities’ population”
popSqrt := single sqrt

cityPop;

“Find the average of

deforestation in the last two

years”

defAve := multiple mean

(defor2004, defor2003);

“Select areas higher than

500 meters”
highM := select

topography > 500;

“Select the cities with the

population higher than

50.000”

highPop := select cityPop

> 50000;

Table 3.11 – Examples of Spatial Operations

Informal description Coverage Algebra Expression

“Given a coverage of cities and

one of states, find the total

population for each state”

statePop := spatial sum

cityPop within

statePop;

“For each cell, calculate the

average deforestation of its

neighbours”

fsum := spatial sum

defor touch fsum;

“Given a coverage of rivers and

one of cities with population, find

the number of people that live

along each river”.

riversPop:= spatial sum

cityPop intersects

rivers;

“Given a coverage of cities and

one of deforestation, find the

average deforestation of each

city”.

ave_city_defor:=

spatial average defor

within city;

“Given a coverage containing

roads and a one of deforestation,

calculate the mean deforestation

along each road”.

defRoads:= spatial mean

defor intersects roads;

Consider the operation: “For each cell, calculate the average deforestation of its

neighbors”. In Tomlin’s algebra, this is a focal operation (Figure 2.6). Considering the

 35

deforestation coverage (defor) as input and the focal sum coverage (fsum) as output,

we state the operation as shown in Figure 3.4.

fsum := spatial sum defor

touch fsum;

Figure 3.4 – Focal sum of deforestation

Note one interesting feature: the result (fsum) is also the reference coverage for

the spatial predicate (defor touch fsum). This syntax may seem odd at first sight,

but it follows from the generality of the proposal. By taking the reference coverage and

the new coverage to be the same, we ensure the outcome satisfies the condition (“local

mean”). Had we used a third coverage as a reference, the result would be different if this

coverage would not have the same spatial partitioning as the output coverage.

 36

 37

CHAPTER 4

PROGRAMING ENVIROMENT

This chapter shows how the proposal map algebra was implemented using the Haskell

functional language and integrated with a spatial database using TerraLib. A graphical

interface was build to help the users to write and maintains his programs. We also show

some examples of its use and compare our proposal to Tomlin’s map algebra.

4.1 TerraHS

To make our algebra useful was necessary to implement it in a computer language. The

implementation was made in the Haskell functional language (Jones, 2002), (Peyton

Jones et al., 1999) and (Thompson, 1999). Functional programming is a programming

paradigm that considers that computing is evaluating mathematical functions.

Functional programming languages are convenient to translate algebraic specifications

into testable code (Frank e Kuhn, 1995; Frank e Medak, 1997) and functional languages

express the semantics of abstract data types directly, an essential property for formal

specification languages (Frank e Kuhn, 1995). The Haskell report describes the Haskell

language as:

“Haskell is a purely functional programming language incorporating many

recent innovations in programming language design. Haskell provides

higher-order functions, non-strict semantics, static polymorphic typing,

user-defined algebraic datatypes, pattern-matching, list comprehensions, a

module system, a monadic I/O system, and a rich set of primitive datatypes,

including lists, arrays, arbitrary and fixed precision integers, and floating-

point numbers” (Jones, 2002).

 TerraLib is a spatial database programming environment that provides support to

storage and retrieve spatial data (Câmara et al.). TerraHS (Costa et al, 2006) was

created as an application that enables developing geographical applications in the

Haskell functional language using data stored in a spatial database manipulated with

TerraLib.

 38

4.2 Haskell Implementation

The Haskell implementation of the algebra was presented in (Costa, 2006). In this

section we will show this implementation, concentrating in how to translate the data

storage in a TerraLib database to coverages and in the syntax language that a user will

use to write his programs.

4.2.1 Data Type

Based on the Coverage specification on section 3.2, in TerraHS was defined the type

class Coverages in Haskell, described in Table 4.1:

Table 4.1 - Type class Coverages

class Coverages cov where

 evaluate :: (Eq a, Eq b) => cov a b → a → Maybe b

 domain :: cov a b → [a]

 num :: cov a b → Int

 values :: cov a b → [b]

 new_cov :: [a] → (a → b) → (cov a b)

 fun :: (cov a b) → (a → b)

The functions of type class Coverages are parameterized on the input type a and the

output type b.

• evaluate is a function that takes a coverage and an input value a and

produces an output value.

• domain is a function that takes a coverage and returns the values of its

domain.

• num returns the number of elements of the coverage’s domain.

• values returns the values of the coverage’s range.

• new_cov, a function that returns a new coverage, given a domain and a

coverage function.

• fun: given a coverage, returns its coverage function.

 39

 The instance of the type class Coverages to the Coverage data type is

shownTable 4.2:

Table 4.2 - Instance of type class Coverages

instance Coverages Coverage where

new_cov a f = (Coverage (f, a))

evaluate f o

| (elem o (domain f)) = Just ((fun f) o)

| otherwise = Nothing

domain (Coverage (f, a)) = a

num f = length (domain f)

values f = map (fun f) (domain f)

fun (Coverage (f,_)) = f

 TerraHS provides support to the object-set data type storage in TerraLib. Object-

set in TerraLib database is represented by a layer of geo-objects in a vector

representation and a table of attributes. Where each object of the layer is linked with

one line of the table. When we map an object set to a Coverage Function, we can take

the layer as the domain of the function and the range of one column of attribute as the

range of the function. The mapping of the function is given by the relationship of the

object and its attribute. The Figure 4.1 shows an example of retrieving and storing a

coverage.

 40

-- db connection

host = "localhost";

dbname = "tedbteste";

user = "root";

password = "";

db = database (dbname, host, user, password, MySQL)

-- layers and attributes

layer_def = "def_cel";

ldef = layer (db, layer_def)

att_def = attr (ldef , "luc_def")

layer_def_out = "def_cel_out";

ldef_out = layer (db, layer_def_out)

main:: IO ()

main = do

 cov_def <- loadMap att_def

 let cov_def_sqrt = (single fsqrt cov_def)

 saveMap cov_def_class "FSQRT" ldef_out

 Figure 4.1 - Retrieving and storing a coverage

As showed in the example, to retrieve and store the information from a TerraLib

database we need to inform the host, dbname, user name and password to make the

connection with the database.

 The loadMap function connects to the database, loads the geo-object set,

converts these geo-objects into a coverage, and return it as output. The saveMap

function converts a coverage to a geo-object set that will be saved in the database. If the

column of attribute name does not exist in the layer, it will be created.

4.2.2 Operations

We use a generic type class for the coverage algebra operations (Table 4.3).

 41

Table 4.3 - Generic type class Operation

class (Coverages cov) => CoverageOps cov where

single :: (b → c) → (cov a b) → (cov a c)

multiple :: ([b]→c) → [(cov a b)] → (cov a b)→(cov a c)

 select :: (cov a b) → (a → c → Bool) → c → (cov a b)

compose :: ([b] → b) → (cov a b) → b

 spatial :: ([b] → b) → (cov a b) → (a → c → Bool)

→ (cov c b) → (cov c b)

 The implicit assumption of these is that the geographical area of the output

coverage is the same of the reference coverage.

 The instantiation of the coverage operations is provided by Table 4.4.

Table 4.4 - Instantiation of the Operations

instance CoverageOps Coverage where

-- non-spatial operation on a single coverages

single f1 c = new_cov (domain c) (f1 . (fun c))

-- non-spatial operation on multiple coverages

multiple fn clist c = new_cov (domain c)

(\x -> fn (faux clist x))

-- spatial selection

select cov pr o = new_cov sel_dom (fun cov)

where sel_dom = [l | l <- (domain cov) , (pr l o)]

-- spatial composition

compose f cov = (f (values cov))

-- spatial operation : selection + composition

spatial fn c1 predic cref = new_cov (domain cref)

(\x -> compose fn (select c1 predic x))

The single function has two input arguments: a coverage (input_cov) and a

first-order function (f1), and produce a new coverage as output (new_cov). Its

general syntax is:

let new_cov = single f1 input_cov

 The word “let” is a keyword of the language, and the word “ single” is used
to specify the kind of operation.

The multiple function has three input arguments: a multivalued function (fn), a

coverage list, and a reference coverage (ref_cov), and produces a new coverage as

output. Its general syntax is:

 42

let new_cov = multiple fn [input_cov1, input_cov2, …,

input_covN] ref_cov

 The spatial selection has three input arguments: an input coverage, a predicate

(predicate) and a reference element (geo), and generates a new coverage as

output. Its general syntax is:

 let new_cov = select input_cov predicate geo

The composition function has two input arguments, an input coverage and a

multiple arguments function and generates a single value as output. Its general syntax

is:

compose fn input_cov

 The spatial function has three input arguments, a reference coverage, a

multivalued function and a select predicate, generating a new coverage as output. Its

general syntax is:

let new_cov = spatial fn input_cov predicate ref_cov

4.3 Integration into GUI software

A graphical interface was developed to the create and edit of the TerraHS programs.

This graphical interface was integrated with TerraView (Câmara et al.) as a plugin.

4.3.1 Main Window

The main window has a text box that allows the edition of the programs (Figure 4.2).

When the user creates a new program, the text starts with the includes necessaries to

compile and run the Haskell program, and also sets the variables necessaries to the

database connection, according to the database connection opened in the TerraView.

 43

Figure 4.2 – The main window

 The interface presents two buttons relatives to the program generation; these

buttons assist the user to insert a coverage and to insert a operation in the program,

respectively Insert Coverage and Insert Operation. We also place three buttons to

compile and run a program. The Clear button is used to delete the intermediate files

generated by previous compilation of the program. The Build button is used to compile

the program and to generate an executable file. The RUN button executes the program.

 44

4.3.2 Algebra Interfaces

The sort of windows showed above are used to Insert a Coverage, Insert a Single

Argument Function, Insert a Multiple Argument Function and Insert a Spatial Function.

When we conclude the procedure of insertion, it generates the correspondents code of

the operation and inserts this text in the text box of the Main Window.

The window of the Figure 4.3 is used to insert a Coverage. To insert a coverage

we select the layer and the attribute; after this we give a name to the coverage.

Figure 4.3 – Insert Coverage

To insert a single argument function we need to select the output coverage, the

single argument function and the input map (Figure 4.4).

 45

Figure 4.4 - Insert Single Argument Function

To insert a multiple argument function we need to select the output coverage, the

multiple argument function and the list of input coverages (Figure 4.5).

Figure 4.5 - Insert Multiple Arguments Function

To insert a spatial function we need to select the output coverage, the multiple

argument function, the input coverage, the spatial predicate and the reference coverage

(Figure 4.6).

 46

Figure 4.6 – Insert Spatial Function

4.4 Examples

The examples use INPE’s database of deforestation of the Brazilian Amazonian

(Aguiar, 2006). We selected a data set from the central area of the Pará state, composed

of three coverages: deforestation (grid cells of 25 x 25 km2), roads (lines), and

protected areas (polygons), as shown in Figure 4.7.

Figure 4.7 – Deforestation, protected areas and roads (Pará State, Brazil)

 The Figure 4.10 shows the main header of the program used for all the programs

of the examples below.

 47

module Main(main) where

--import

…

-- db connection

host = "localhost";

dbname = "tedbteste";

user = "root";

password = "";

db = database (dbname, host, user, password, MySQL)

-- layers and attributes

layer_def = "def_cel"

ldef = layer (db, layer_def)

att_def = attr (ldef , "luc_def")

layer_roads = "roads_lin";

lroads = layer (db, layer_roads)

att_roads = attr (lroads, "object_id_3")

layer_pa = "pa_pol";

lpa = layer (db, layer_pa)

att_pa = attr (lpa, "object_id_1")

-- MAIN

main:: IO ()

main = do

 cov_def <- loadMap att_def

 cov_roads <- loadMap att_roads

 cov_pa <- loadMap att_pa

Figure 4.8 - Main header of the TerraHS programs

The three main coverages of the example are instanced:

• cov_def: the deforestation coverage

• cov_roads: the roads

• cov_ap: the protection areas

 48

The first example considers the expression: “Given a coverage of deforestation and

a classification function, return the classified coverage”. The input is the deforestation

coverage and the output is a classified coverage (cov_def_class) The classification

function defines four classes: (1) dense forest; (2) mixed forest with agriculture; (3)

agriculture with forest fragments; (4) agricultural area. This function is:

 classify :: Value → Value

 classify v

 | v < 0.2 = "1"

 | ((v >= 0.2) && (v < 0.5)) = "2"

 | (v >= 0.5) && (v < 0.8) = "3"

 | v >= 0.8 = "4"

We get the classified map (Figure 4.9) using the expression

let cov_def_class = single classify cov_def

Figure 4.9 – Resulting coverage with classified deforestation

As a second example, take the expression: “Calculate the mean deforestation for

each protection area”. The inputs are: the deforestation coverage (cov_def), a spatial

predicate (within), a multivalued function (mean) and the coverage of protected

areas (cov_pa). The output is a coverage of the protected areas (cov_def_prot)

with the same objects as the reference coverage (cov_pa) and the deforestation

average for each area (Figure 4.10). The final expression is:

let cov_def_prot = spatial mean cov_def within cov_ap

 49

Figure 4.10 – Deforestation mean by protection area

The third example is the expression: “Given a coverage containing roads and

one with deforestation, calculate the mean of the deforestation along each road”. We

have as inputs: the deforestation coverage (cov_def), a spatial predicate

(intersect), a multivalued function (mean) and a road map (cov_roads). The

product is a roads coverage with one value for each road. This value is the mean of the

cells that intercept this road (Figure 4.11). The expression for this operation is:

let cov_def_roads = spatial mean cov_def intersect

cov_roads

 50

Figure 4.11 – Deforestation mean along the roads

Table 4.5 presents a comparison between the spatial operators as expressed in

our proposal and in Tomlin’s map algebra. The examples show that the proposed map

algebra expresses the focal and zonal functions of Tomlin’s map algebra, using the

‘touch’ and ‘within’ topological predicates. Operations involving ‘overlap’,

‘contains’ and ‘intersects’ predicates are part of our proposed coverage algebra

and are not directly expressible by Tomlin’s algebra. This shows that the proposed

algebra is richer than Tomlin’s, as well as having a solid conceptual basis.

Table 4.5 – Comparison of spatial operators with Tomlin’s map algebra

Informal Description Generalized Map Algebra Tomlin

“Focal mean of
topography”

fmean:= mean topo

touch fmean

FOCALMEAN OF

TOPOGRAPHY

“Given a coverage of cities
and one of topography,
find the mean altitude for
each city.”

altcit:= mean topo

within city

ZONALMEAN OF

TOPOGRAPHY WITHIN

CITIES

“Given a coverage of
national forests, get the
deforestation at the edges
of each forest”

defBord:= sum defor

overlaps forests

(no equivalent)

“Calculate the mean of the
deforestation along the
road”

defRoad:= mean defor

intersects road

(no equivalent)

CHAPTER 5

CONCLUSION AND FUTURE WORKS

Map algebra is a fundamental class of operations for spatial data sets. Most of the

current implementations of map algebra use Tomlin’s Map Algebra (Tomlin, 1990)

proposal for local, focal and zonal operations. However, Tomlin’s proposal uses ad hoc

concepts and lacks a sound theoretical basis. This work addresses this problem, by

proposing a new foundation for operations involving coverages. We have designed a

coverage algebra that uses topological predicates to express spatial operations and that

includes Tomlin’s algebra as a subset.

There is one important set of operations on coverages that is not part of our

proposal nor of Tomlin’s: convolution operators. A convolution operation requires two

coverages C1 and C2 and produces a third coverage C3. The value of each point p of C3

is the integral of the product of C1 and C2, when C2 is shifted so that its central point is

coincident with p. From a conceptual point of view, convolutions are not part of map

algebra, since the geometrical support for the second coverage C2 (also called a mask)

changes for each point of the output coverage. Convolution does not involve topological

relations, but rather the definition of an integral function.

Our proposal points to a situation where all modeling of topological relations in

two-dimensional spatial datasets can be handled by the 9-intersection model

(dimension-extended), both for simple features and for coverages. Spatial data sets of

higher dimensions (e.g., TIN coverages) need a different foundation. The foundation for

handling spatial relation of higher dimensions requires topological operators that

operate on 3D surfaces (Egenhofer, 2005). Convolution operations are a special case

and need to be handled separately. A possible extension to our algebra would be to

consider directional relations (Frank, 1992), which would be useful to express

operations such as “find the population of all cities north of the river”.

 52

The development of the coverage algebra application using TerraHS in the

Haskell Language enabled it faster, easy and precise implementation. The use of this

implementation in real problems demonstrate the usability of the algebra. It is desirable

that in the future the implementation of coverage algebra can manipulate all kinds of

geographical data available at TerraLib.

Another possible future work is to extend our algebra to the spatiotemporal

domain. Examples of the proposal spatiotemporal algebras are presented in (Güting;

Schneider, 2005), which defines an algebra for moving objects and (Medak, 2001),

which proposes an algebra for modeling change in socio-economical units. To do this

we need to extend the geographical elements of the coverage to spatiotemporal domain,

extend our algebra operations and extend the topological predicates to include temporal

predicates.

Even considering the limitations, the expressiveness of the proposed coverage

algebra is considerable. Given that it is based on a solid foundation, it could be

considered as the basis for setting up standards for operations on Open GIS coverages.

The use of standards for operations in coverages would be a significant advance for

increasing interoperability of spatial data.

 53

REFERENCES

AGUIAR, A. P. D. D. Modeling Land Use Change in the Brazilian Aamazon:
Exploring Intra-Regional Heterogeneity. (Doctor Thesis). Instituto Nacional de
Pesquisas Espaciais (INPE), São José dos Campos, 2006.

Berry, J. K. Fundamental Operations in Computer-Assisted Map Analysis.
International Journal of Geographical Information Systems, v. 1, n. 2, p. 119–136

Câmara, G.; Souza, R.; Pedrosa, B.; Vinhas, L.; Monteiro, A. M.; Paiva, J.; Carvalho,
M. T.; Gattass, M. TerraLib: Technology in Support of GIS Innovation. In: II
Brazilian Symposium on Geoinformatics, GeoInfo2000, 2000, São Paulo.

Egenhofer, M.; Herring, J. Categorizing Binary Topological Relationships Between
Regions, Lines, and Points in Geographic Databases. Orono, ME: Department of
Surveying Engineering, University of Maine, 1991.

Frank, A. Overlay Processing in Spatial Information Systems. In: Chrisman, N. R.
(Ed.). AUTO-CARTO 8, Eighth International Symposium on Computer-Assisted
Cartography. Baltimore, MD, 1987, p. 16-31.

___. Qualitative Spatial Reasoning about Distances and Directions in Geographic
Space. Journal of Visual Languages and Computing, v. 3, n. 4, p. 343-371

___. Higher order functions necessary for spatial theory development. In: Auto-Carto
13, 1997, Seattle, WA. 5: ACSM/ASPRS, p. 11-22.

___. Map Algebra Extended with Functors for Temporal Data. In: Perspectives in
Conceptual Modeling: ER 2005 Workshops, 2005, Klagenfurt, Austria. Springer, p.
194-207.

Güting, R. H.; Schneider, M. Moving Objects Databases. New York: Morgan
Kaufmann, 2005.

Medak, D. Lifestyles. In: Frank, A. U., Raper, J., & Cheylan, J.-P. (Ed.). Life and
Motion of Socio-Economic Units. ESF Series. London: Taylor & Francis, 2001.

 54

Mennis, J.; Viger, R.; Tomlin, D. Cubic Map Algebra Functions for Spatio-Temporal
Analysis. Cartography and Geographic Information Science, v. 32, n. 1, p. 17-32

OGC. OpenGIS Simple Features Specification for SQL. Boston: Open GIS
Consortium, 1998.

Peyton Jones, S.; Hughes, J.; Augustsson, L. Haskell 98: A Non-strict, Purely
Functional Language. 1999. Disponível em: http://www.haskell.org/onlinereport/.

Pullar, D. MapScript: A Map Algebra Programming Language Incorporating
Neighborhood Analysis. GeoInformatica, v. 5, n. 2, p. 145-163

Takeyama, M.; Couclelis, H. Map Dynamics: Integrating Cellular Automata and GIS
through Geo-Algebra. International Journal of Geographical Information Systems,
v. 11, n. 1, p. 73-91

Thompson, S. Haskell:The Craft of Functional Programming. Harlow, England:
Pearson Education, 1999.

Tomlin, C. D. Geographic Information Systems and Cartographic Modeling.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

Winter, S. Topological Relations between Discrete Regions. In: Egenhofer, M.;
Herring, J. (Ed.). Advances in Spatial Databases—4th International Symposium,
SSD ‘95, Portland, ME. Lecture Notes in Computer Science, v. 951. Berlin: Springer-
Verlag, 1995, p. 310-327.

Winter, S.; Frank, A. Topology in Raster and Vector Representation. GeoInformatica,
v. 4, n. 1, p. 35-65

