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ABSTRACT 

 

Map algebra is a collection of functions for handling spatial datasets where each data 
contains a set of geometries of the same type which bound to a geographical reference. 
The current theory for Map Algebra uses ad hoc operators proposed by Dana Tomlin. 
His proposal has had great practical success, and most GIS implementations provide its 
operations. However, there is a lack of theoretical foundations for the operations 
proposed in Tomlin’s map algebra. This is a limitation for the proposal of international 
standards for map algebra. Specifically, the Open Geospatial Consortium’s proposal for 
handling a map (the coverage data type) lacks a set of functions to manipulate its 
content. To address this problem, our work proposes a specification for an algebra for 
Open GIS® coverages which uses a dimension-extended version of Egenhofer and 
Herring’s 9-intersection predicates to express spatial operations. The proposed coverage 
algebra includes all Tomlin’s functions, as well as operations that are not part of 
Tomlin’s algebra, but are useful in practice. Our proposal could be the basis for setting 
up standards for operations on Open GIS coverages. The use of standards for operations 
in coverages would be a significant advance for increased interoperability of spatial 
data. 
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RESUMO 

 

Álgebra de mapas é uma coleção de funções para a manipulação de dados espaciais 
onde cada dado contém um conjunto de geometrias do mesmo tipo ligado a uma 
referência geográfica. A atual teoria para Álgebras de Mapas utiliza operadores ad hoc 
propostos por Dana Tomlin. Sua proposta obteve um grande sucesso prático, e a maioria 
das implementações de Sistemas de Informações Geográficas disponibiliza essas 
operações. Entretanto, existe uma carência de bases teóricas aos operadores propostos 
na álgebra de mapas de Tomlin. Já a proposta do Open Geospatial Consortium para a 
manipulação de mapas (ou coverages) necessita de um conjunto de funções para 
manipular esse conteúdo. Nosso trabalho propõe a especificação de uma Álgebra de 
Mapas para a coverage do Open Geospatial Consortium que utiliza uma versão 
estendida dos predicados topológicos propostos por Egenhofer e Herring. A álgebra 
para coverages aqui proposta inclui todas as funções propostas por Tomlin, bem como 
operações que não são parte, mas que na prática são úteis. Nossa proposta pode ser uma 
base para o desenvolvimento de um padrão para as operações sobre coverages. O uso de 
padrões para as operações sobre coverages seriam um avanço significativo para o 
avanço da interoperabilidade dos dados espaciais. 
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CHAPTER 1  

INTRODUCTION 

In recent years, there has been a significant effort to standardize the technology of 

geographical information systems (GIS). This effort is motivated by the large diffusion 

of GIS worldwide, the need to share geographical data, and for long-term maintenance 

of geographical archives. Sharing geographical data requires that different institutions, 

using diverse technologies, have access to the same data sets. Long-term archive 

maintenance needs that data outlives both its original media support and the software 

used to build it. Thus, sharing and maintenance of geographical data need 

standardization. The Open Geospatial Consortium (OGC) is developing standards for 

modelling, accessing, storing, and sharing geographical data. The extent of the effort 

involved in OGC’s mandate is significant. Therefore, despite the progress already 

achieved, there are still areas where OGC’s task is not complete. One of the missing 

parts of OGC’s specification is a set of functions for manipulation of coverages, a 

subject commonly referred to as ‘map algebra’. The current version of OGC’s 

specification for coverages (Kottman, 2000) mentions unary and binary operations, and 

does not consider spatial operations. Since there is a literature on map operations 

(Berry, 1987) (Frank, 1987) (Tomlin, 1990), it is important to consider how these 

operations can be used for handling OGC’s coverages. This work will discuss how to 

extend OGC’s coverage data type to create an algebra for coverages. 

The main contribution to map algebra comes from the work of Tomlin (Tomlin, 

1990). Tomlin proposed a set of operations that has proven useful in practice. 

Extensions to Tomlin’s map algebra include the GeoAlgebra of Takeyama and 

Couclelis (Takeyama; Couclelis, 1997) and MapScript, a language that includes 

dynamical models (Pullar, 2001). Extensions of map algebra for spatio-temporal data 

handling are discussed by Mennis et al. (Mennis et al., 2005) and Frank (Frank, 2005). 

All these works use Tomlin’s algebra as a basis for their work. The main problem with 

Tomlin’s algebra and its extensions is their ad hoc basis. There is no foundation for 
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assessing the completeness of his algebra. Thus, there could be other types of operations 

that are missing in his algebra.  

Therefore, one of the open challenges in spatial information science is to 

develop a theoretical foundation for a comprehensive set of operations on coverages. 

We need to find out if Tomlin’s map algebra is part of a more general set. We state 

these questions as: “What is the theoretical foundation for spatial operations on 

coverages?”, “Could this theoretical foundation provide support for a comprehensive 

spatial algebra for coverages?” To respond to these questions, we take the topological 

predicates of Egenhofer and Herring (1991) as a basis for defining an algebra for 

coverages. Using these predicates, we develop a coverage algebra that includes 

Tomlin’s map algebra as a subset.  

In what follows, we briefly review the literature about coverages, map algebra 

and spatial predicates in chapter 2. In chapter 3, we present an algebraic specification of 

an algebra for coverages. In chapter 4, we show the implementation of the algebra in the 

Haskell language, some examples of its use, including some problems that are not 

expressible in Tomlin’s work and the implementation of it into a GUI interface. To 

conclude, in chapter 5 we present our conclusions and point out future lines of research. 
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CHAPTER 2  

LITERATURE REVIEW 

In this chapter, we review the main basis for our work: OGC’s definion of coverages, 

Tomlin’s map algebra, and Egenhofer’s topological operators. 

2.1 The OpenGIS® Coverage 

OGC’s definition of coverage provides a support for the concepts of ‘fields’ and ‘maps’ 

(Kottman, 2000).  A coverage is a spatial representation that covers a geographical area 

and divides it in spatial partitions that may be either regular or irregular and assigns a 

value to each partition. The computer representation of a coverage consists of a 

coverage function over a discrete domain, called the DiscreteC_Function. Its domain is 

a collection of geometries and its range is a set of vectors of attributes. The OGC 

specification describes the DiscreteC_Function as having four operations, shown in 

Figure 2.1: 

• Num: finds the number of geometries in the coverage. 

• Values: finds the possible values of the coverage function. 

• Domain: finds the geometries in the domain of the coverage function. 

• Evaluate: given a geometry, return a vector that represent the values of the 

coverage function for the associated location. 
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Figure 2.1 - The Open GIS discrete coverage function 

Source: (Kottman, 2000) 

An example is the coverage whose domain is the geometries that describe the 

states of a country, and the range is each state’s population in 2004. A second example 

would be a coverage whose domain is a set of regular cells and the range is a set of 

values representing the maximum and minimum yearly temperatures of the region 

covered by the set of cells. OGC considers a set of coverage subtypes, where each 

subtype uses a different spatial data structure to build its domain.  The subtypes include 

polygons, images, TINs, surfaces, and point sets. OGC describes how to evaluate the 

discrete coverage function for different coverage subtypes (Kottman, 2000). 

2.1.1 The Discrete Spatial Domain 

The discrete spatial domain of a DiscreteC_Function may be any geometry or collection 

of geometries. 

The domain can be represented by a raster, i. e., a region composed by a planar-

enforced set of closed homogeneous rectangles (named “pixels”, “cells” or “locations”), 

like an image or a cell space. A coverage with this kind of domain maps from 

“locations” to values.  

Furthermore, a domain can be composed of a collection of homogeneous 

geometries. A geometry can be represented by a point, line or region. A coverage with 

this kind of domain maps from geometries to values. Examples of elements in this 
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domain are rivers and roads, represented by lines, or states and forests, represented by 

polygons. The  Figure 2.2 shows all the subtypes domains that a Coverage Function can 

assume. 

 

Figure 2.2 – Coverage Subtypes 

Source: (Kottman, 2000) 

2.1.2 The Range of a Coverage and the DiscreteC_Function 

The range of a DiscreteC_Function is a set of vectors of attributes. For any geometry 

of the domain, the DiscreteC_Function maps to a vector of attributes. 

DiscreteC_Function: (geometry in spatial domain) → (v1, v2, v3, ... , vn ) 

The DiscreteC_Function can be seen like a set of functions with the same 

spatial domain, where each function maps to a unique attribute range.  

f1 : p→ v1 , ... , fn : p→ vn where p is a geometry in the spatial domain.  

For example, considering that the domain is composed by all states in a country, 

the DiscreteC_Function may assign to each state its population of the years 2004 and 

2005, and the percentage of deforestation area. Besides, considering the domain the 

region of a forest partioned in a discrete way - a set of pixels - for each pixel the 

function may assign its temperature, elevation, dampness, and deforestation value. 

2.2 Topological operators for spatial relations 

The OGC specification describes a set of topological predicates for spatial relations 

between geometries of simple features (Herring, 2006). These predicates use a 
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dimension-extended version of the 9-intersection model proposed by Egenhofer and 

Herring (Egenhofer et al., 1991). The 9-intersection model considers a geometrical 

object (A) as composed by a set of boundary points (∂A), a set of interior points (Aº), 

and a set of exterior points (A-). 

This model allows identifying 512 binary relations in ℜ2. For area-area relations 

the model presents a standard set of seven predicates {‘disjoint’, ‘equal’, ‘touch’, 

‘inside’, ‘overlap’, ‘contains’, ‘intersects’}, as adopted by the Open Geospatial 

Consortium (Figure 2.3). The predicate ‘intersects’ is included for user convenience, 

following OGC’s proposal (OGC, 1998). ‘Intersects’ is defined as  

 intersects(a,b) ⇔ ! disjoint(a,b) 

 

Figure 2.3 – Topological predicates for area-area based on the 9-intersection matrix. 

Adapted from Egenhofer and Herring (1991) 

 For line-area relations, the model proposes the set {‘disjoint’, ‘touch’, ‘within’, 

‘cross’, ‘intersects’}. For point-area relations, the model proposes the set {‘disjoint’, 

‘touch’, ‘within’ }. Other topological relations are described in (Egenhofer et al., 1991). 

The works of Winter (1995) and Winter and Frank (2000) extends the 

Egenhofer’s 9-intersection model to application in raster representations. Application of 
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the Egenhofer’s 9-intersection model is only defined over entities that have a set of 

interior and exterior points. In a discrete raster representation of the geographical space 

its entities don’t satisfy this requirement. Winter and Frank (2000) present a new hybrid 

raster model, where they define a raster element with boundary, interior and exterior 

(Figure 2.4). So, “In this hybrid raster representation, topological relations relate again 

to general topology in Euclidean space, and the four or nine-intersection can be applied 

in full accordance to vector representations.” Winter and Frank (2000). 

 

 

Figure 2.4 – The Hybrid Raster Representation 

Source: (Winter et al., 2000) 

 In what follows, we define that spatial operations in coverage algebra should use 

OGC’s topological predicates. 

2.3 Map Algebra  

The main contribution to map algebra comes from the work of Tomlin. Tomlin’s map 

algebra (1990) includes first-order and higher-order functions for maps. First order 

functions take values as arguments (these are the functions associated to the map 

values). Higher order functions are functions that have other functions as arguments. 

Higher order functions are the basis for map algebra operations (Frank, 1997).  These 

functions apply a first-order function to all elements of map. Tomlin (Tomlin, 1990) 

proposes  three higher-order functions: 

• Local function: produce a new map, whose value in each location p depends only 

of the values in p in the input maps, as in “classify as unsuitable for farming all 

areas with slope greater than 15%”. A local operation is a mapping between the 

ranges of the input and output fields (Figure 2.5). 
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Figure 2.5 – Local Operation 

Source: (Tomlin, 1990) 

 

• Focal function: produce a new map, whose value in each location p depends only of 

the values of a neighbourhood around p in the input map, as in the expression “for 

each county, calculate the average population of its neighbours” (Figure 2.6). Focal 

functions use the condition of adjacency, which matches the spatial predicate touch. 

 

Figure 2.6 – Focal Operation 

Source: (Tomlin, 1990) 

 

• Zonal function: produce a new map, whose value in each location p depends on the 

values of a region in an input map. This region is defined by a restriction on a third 

map, called the reference map. Example is “given a map of cities and a digital 

terrain model, calculate the mean altitude for each city” (Figure 2.7). Zonal 

functions use the condition of topological containment, which matches the spatial 

predicate inside.  
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Figure 2.7 – Zonal Operation 

Source: (Tomlin, 1990) 

We can express Tomlin’s spatial operations using Egenhofer and Herring’s 

(Egenhofer et al., 1991) topological predicates. The focal operation uses the condition 

of adjacency, which matches the spatial predicate ‘touch’. The zonal operation uses the 

condition of containment, which matches the spatial predicate ‘within’. Since ‘touch’ 

and ‘within’ are part of a more general set of predicates, Tomlin’s operations use only a 

subset of all possible topological relations between areas. Tomlin’s algebra uses spatial 

predicates in a limited way.  It applies the ‘touch’ relation (focal function) only over the 

same input map. It also only applies the ‘within’ relation (a zonal operation) over a 

reference map. If we remove the limits of Tomlin’s algebra, we can have a coverage 

algebra based on the full set of topological predicates, whose operations don’t restrict 

the way in which the predicates are used.  
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CHAPTER 3  

A GENERALIZED ALGEBRA FOR COVERAGES 

This chapter presents the design of an algebra for coverages. The proposed algebra 

extends the coverage data type defined by the Open GIS consortium (Kottman, 2000) 

and has nonspatial and spatial higher-order functions. The nonspatial operations are 

Tomlin’s local operations. The spatial operations perform operations on coverages using 

topological predicates. 

3.1 Conventions used in the text 

We define the coverage operations using an algebraic specification of data types. In our 

definitions, we use CASL, the Common Algebraic Specification Language (Bidoit, 

2004). CASL is a general-purpose language for both requirements and design 

specifications. A basic specification in CASL consists of a set of declarations of 

symbols, and a set of axioms and constraints, which restrict the interpretations of the 

declared symbols. For a detailed syntax for CASL specifications, see (Bidoit, 2004). We 

provide examples from the CASL user manual (Bidoit, 2004) to allow the reader to 

better follow our proposal. The first example has a unique sort and a predicate, showed 

in Figure 3.1: 

spec STRICT_PARTIAL_ORDER =  
sort  Elem 

pred __ < __: Elem × Elem 

axioms 
forall  x,y,z: Elem 

·  x  < x      %(reflexive)%  

·  x=y  if x  < y   /\  y  < x           %(antisymmetric)% 

 ·  x  < z  if x  < y   /\  y  < z        %(transitive)% 

Figure 3.1 – Example of CASL sintax 

The STRICT_PARTIAL_ORDER  specification uses a sort Elem and a binary infix 

predicate symbol ‘<’. Argument sorts are separated by the sign ‘×’. CASL uses  ‘__ ‘ 
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(pairs of underscores) as place-holders for arguments. The predicate ‘<’ is associated to 

three axioms: reflectivity, antisymmetry and transitiveness. CASL provides the keyword 

type to shorten declarations of sorts and constructors, as in the example of the Figure 

3.2: 

spec CONTAINER [ sort Elem ] = 
type Container::= empty | insert (Elem: Container) 
pred __inside __: Elem × Container 

axioms 
         ∀ e, e’: Elem; C: Container 

•  ¬(e inside empty) 

• e inside (insert (e’, C)) ⇔ (e = e’ ∨ e inside C) 

end 

Figure 3.2 - Declaration of sorts and constructors in CASL 

3.2 The Coverage Data Type 

This section presents an algebraic specification for an extended version of Open GIS 

coverage. A coverage i/s a discrete c_function:: G→ V over  a finite collection of 

geometries G and a set of attribute values V. Without loss of generality, we will discuss 

the case of coverages where each geometry has only one value. The generalization to a 

coverage that returns a vector of values is simple, but would need a slightly more 

complicated notation. We will assume that Geometry and Value sorts are those used by 

OGC. The reader should refer to (Kottman, 2000) for details. We begin by defining a 

set of auxiliary specifications (Table 3.1–5)  : list (a list of elements), single and 

multiargument functions, comparison predicates and topological predicates. For 

brevity’s sake, we provide a limited list of single and multiargument functions and of 

selection predicates. We can extend these lists of functions if needed. 

Table 3.1 -  Single Function Specification 

spec SINGLEFUNCTION = 
         sort Value 
 ops  

Log: Value → Value 

Exp: Value → Value 

sin:  Value → Value 

sqrt: Value → Value 

    End 
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Table 3.2 - Multiargument Function Specification 

spec MULTIFUNCTION = 
         sort Value 

ops 
sum:  Value × Value → Value 

product:  Value × Value → Value 

maximum: Value × Value → Value 

mean:  Value × Value → Value 

minimum:  Value × Value → Value 

    end 

Table 3.3 - List Specification 

spec LIST [ sort Elem ]  
type List::= empty | cons (Elem; List) 
ops  
       length: List → Integer 

end 

Table 3.4 - Comparision Predicate Specification 

spec COMPPRED = 
         sort Value 
          pred  

__== __:      Value × Value 
__<__ : Value × Value 
__ >__ : Value × Value 
__ != __   : Value × Value 

end 

Table 3.5 - Topological Predicate Specification 

spec TOPOPRED = 
sort Geometry 

          pred  
__within__:      Geometry × Geometry 
__overlap__: Geometry × Geometry 
__disjoint__: Geometry × Geometry 
__equal __: Geometry × Geometry 
__touch__: Geometry × Geometry 
__contains__: Geometry × Geometry 
__cross__: Geometry × Geometry 
__intersects__: Geometry × Geometry 

    end 

Using these definitions, we provide an abstract specification of the Coverage data 

type ( 

 

Table 3.6). It uses the operations defined by OGC (see Figure 2.1 above) and 

includes three constructors, a new predicate and a new operation.  
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Table 3.6 - Abstract specification of the Coverage data type 

spec COVERAGE [sort Geometry, sort Value, sort List ] = 
type Coverage::=  empty  |   

     new (List [(Geometry, Value)]) 

                               subset (Coverage,  List [Geometry]) 

ops   
insert:         Coverage × (Geometry, Value) → Coverage 

evaluate:    Coverage × Geometry → Value 

domain:     Coverage → List [Geometry] 

num:          Coverage → Integer 

values:       Coverage → List [Value] 

pred   

__contains 

__: 
Coverage × Geometry 

 
axioms 
 ∀g, g’: Geometry; v: Value; C: Container 

• contains (C, g) ⇔  g ∈ domain (C)  

• evaluate (C, g) == error ⇔ contains (C, g) == false 

• evaluate (insert (C, (g, v)), g) = v                   

• v = evaluate (C, g) ⇔  v ∈ values (C) 

• num (C)  = length (domain (C)) 

• values (C) = List [ evaluate (C, g), ∀ g ∈ domain (C)] 

• subset (C, List[g]) ⇔ (C1 = empty ())∧  insert (C1,(g, v)), ∀ g ∈ List [g] ∧ v = 

evaluate (C, g) 
end 

 

The first constructor (empty) builds an empty Coverage. The second constructor 

(new) builds a new Coverage by providing a list of (Geometry, Value) pairs.  The third 

constructor (subset) builds a new Coverage by extracting a subset of the original 

locations. The predicate contains verifies if a certain instance of Geometry is in the 

Coverage. Insert includes a new (geometry, value) pair in the coverage. Evaluate takes 

a coverage and a geometry and produces an output value (“give me the value of the 

coverage at location g”). Domain returns the geometries of the coverage’s domain. Num 

returns the number of geometries on the coverage’s domain. Values returns the list of 

values of the coverage’s range. The axioms point to the various restrictions on the 

Coverage specification. The last axiom shows that creating a Coverage from a subset of 
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locations of an existing one is the same as building an empty Coverage and then 

inserting a list of (Geometry, Value) pairs. 

3.3 Coverage operations 

Operations on coverages are operations that produce a new coverage, and include 

nonspatial and spatial ones. For nonspatial operations, the value of a location in the 

output coverage depends on the values of the same location in one or more input 

coverages. They include logical expressions such as “classify as high-risk all areas 

without vegetation with slope greater than 15%” and “find the average of deforestation 

in the last two years”. We consider three types of nonspatial operations: single (single 

argument operations), multiple (multiple argument operations) and select (nonspatial 

selection using a comparison predicate). 

Spatial operations are higher-order functions that use a topological predicate and 

generalize Tomlin’s focal and zonal operations. They include expressions such as 

“calculate the local mean of the coverage values” and “given a coverage of cities and a 

digital terrain model, calculate the mean altitude for each city”.  

Spatial operations take two coverages (the reference coverage and the input 

coverage) and produce a new coverage, which has the same geometries as the reference 

coverage. A spatial operation has two parts: spatial query and composition. The spatial 

query operation starts by finding the matching geometry in the reference coverage for 

each location p in the new coverage. Then it applies a topological predicate between 

that geometry and all geometries of the input coverage. The result of the spatial query is 

a new (temporary) coverage containing the input geometries that match the predicate.  

The composition operation then applies a function to the values on the new coverage to 

produce the result (Figure 3.3).  

Take the expression “given a coverage of cities and a coverage of altitudes, 

calculate the mean altitude for each city”.  In this expression, the input coverage is the 

altitude one and the reference coverage is one with cities. To evaluate the expression, 

we first select the terrain values within each city. This uses the selection operator with 
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the within predicate. Then, we calculate the average of each set of these values. This 

uses the composition operator with the mean function.  

 

 

Figure 3.3 – Spatial Operations (selection + composition).  

Adapted from (Tomlin, 1990) 

To provide the abstract specification for the coverage operations, we distinguish 

between nonspatial and spatial operations. For spatial operations, we define two 

auxiliary functions (query and compose). We use the CASL ‘local … within’ construct 

for such needs. This construct distinguishes between operations which are visible 

outside the specification and auxiliary functions.  

Table 3.7 - Abstract specification for the coverage operations 

spec COVERAGE_OPERATIONS  

[sort Geometry, sort Value, sort Coverage, sort SingleFunction, sort MultiFunction, sort List,  

sort CompPred sort TopoPred]  

 

ops 

single: SingleFunction × Coverage  → Coverage 

multiple:    MultiFunction × List[Coverage] → Coverage 

select: Coverage × CompPred × Value  → Coverage 

local ops 

sp_query:     Coverage × TopoPred  × Geometry  → Coverage 

compose :         MultiFunction × Coverage → Integer 

within op 
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spatial:       MultiFunction ×  Coverage × TopoPred × Coverage 

→ Coverage 
 

axioms 

∀g, g1: Geometry; v, v1: Value; C, C1, C2: Container, topo: TopoPred,   

comp: CompPred,  fs: SingleFunction, fm: MultiFunction 

• single (fs, C) = new (List[g, v]),  

 ∀ (g, v) |  g ∈ domain (C)    ∧  v = fs (evaluate (C, g)) 

• multiple (fm, C1, C2, …, Cn) = new (List[g, v]),   

 ∀ (g, v) |  g ∈ (domain (C1)∩ domain (C2) …∩ domain (Cn))  ∧   

         v = fm (evaluate (C1, g), evaluate (C2, g),…, evaluate (Cn, g))) 

• select (C , comp, v1) = subset (C, S), where  

                          S = List [g | g ∈ domain (C) ∧ comp (evaluate (C, g), v1)]  

• sp_query (C, topo, g1) = subset (C, S), where  

                          S = List [g | g ∈ domain (C) ∧ topo (g, g1)]  

• compose (fm, C) = fm (values (C)) 

• spatial (fm, C1, topo, C2) = new (List[g, v]),  

∀ (g,v) |  g ∈ domain (C2)  ∧  v = compose (fm, sp_query(C1 , topo, g)) 

 

end 

The first axiom describes the single operation, which applies a function to all values of 

the input. The second axiom describes the multiple operation, which applies a 

multivalued function to all values of the input.  The third axiom describes the nonspatial 

selection operation. The fourth axiom shows that the spatial query selects a subset of 

the original coverage whose geometries satisfy a topological predicate (“select all 

deforested areas within the state of Amazonas”). The fifth axiom describes the 

composition operation.  

The last axiom describes the spatial function. It builds a new coverage by 

providing a list of (Geometry, Value) pairs. The geometries of the new coverage are the 

same as those of the reference coverage. We get the values of the new coverage by 

combining a spatial query and a composition. In the next section, we show how these 

operations for coverages are enough for a comprehensive algebra.  
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3.4 Expressiveness of Topological Operators for Coverage Algebra 

All coverage subtypes proposed by OGC are implemented as discrete geometrical 

spatial data structures. Thus it is important to consider what extent the topological 

operators can cover the spatial relations between these coverage subtypes. As discussed 

in section 3.3, spatial operations have two parts: a spatial query and a composition on 

the values selected by the query. The expressive power of the spatial query is limited by 

the capacity of computing them it in each spatial data structures. Based on OGC’s 

proposal for coverage subtypes (Kottman, 2000), we can distinguish different types of 

discrete data structures for coverages: 

• 2,5D structures: TIN coverages.  

• 2D Area-based structures: grid coverages, images, polygon coverages, surfaces.   

• 1D Line-based structures: segmented line coverages, line string coverages. 

• 0D point-based structures: discrete point coverages, nearest neighbor coverages, 

lost area interpolation. 

Since the dimension-extended version of the 9-intersection model only handles 2D, 

1D and 0D data structures, the proposed coverage algebra cannot be used for TIN 

coverages. Also, consider that a spatial query operation involves two coverages: the 

reference and the input coverages (see Section 3.2). Thus, application of topological 

operators depends on the geometries of the reference and the input coverages, as 

outlined in Table 3.1. 

Table 3.8 – Topological operators applicable to spatial operations on coverages 

Input coverage  

type 

Reference  

coverage type 

Operators 

area area {‘disjoint’, ‘equal’, ‘touch’, ‘within’, 

‘overlap’, ‘contains’, ‘intersects’} 

area line {‘disjoint’, ‘touch’, ‘intersects’, 

‘contains’} 

area point {‘disjoint’, ‘touch’, ‘contains’} 

line area {‘disjoint’, ‘cross’, ‘touch’, ‘within’, 
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‘intersects’} 

line line {‘disjoint’, ‘equal’, ‘touch’, ‘within’, 

‘overlap’, ‘intersects’} 

line point {‘disjoint’, ‘touch’, ‘contains’} 

point area {‘disjoint’, ‘touch’, ‘within’} 

point line {‘disjoint’, ‘touch’, ‘within’} 

point point {‘disjoint’, ‘equal’} 

 

3.5 Examples of Coverage Algebra 

To provide examples of the proposed coverage algebra, we propose a shorthand 

notation for the operations, as follows: 

Table 3.9 – Convenience shorthand for non-spatial operators 

new_cov:= single singlefun in_cov;  %  single value functions% 

new_cov:= multiple multifun [in_cov]; % multivalued functions% 

new_cov:= select in_cov comp_pred value; % selection% 

new_cov:= spatial multifun in_cov topo_pred ref_cov; %for spatial 

operations% 

The parameters for the operations are: 

• new_cov is the coverage with the new values. 

• singlefun is a single argument function as given in section 3.2. 

• multifun is a multiargument function as given in section 3.2.  

• in_cov  is the input coverage.  

• [in_cov] is a list of input coverages. 

• comp_pred is a comparison predicate.  

• value is the comparison value.  

• topo_pred is a topological predicate (section 3.2)  

• ref_cov is the reference coverage used as a basis for applying the topological 
predicate. 

The examples of the Table 3.10 show the use of non-spatial operators applied to 

coverages. Table 3.11 shows examples of spatial operations.  

Table 3.10 – Examples of non-spatial operators 

Informal description Coverage Algebra Expression 
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“Find the square root of the 

topography” 
topoSqrt:= single sqrt 

topography; 

“Find the square root of the 

cities’ population”  
popSqrt := single sqrt  

cityPop; 

“Find the average of 

deforestation in the last two 

years” 

defAve := multiple mean 

(defor2004, defor2003); 

“Select areas higher than 

500 meters” 
highM := select 

topography > 500; 

“Select the cities with the 

population higher than 

50.000” 

highPop := select cityPop 

> 50000; 

Table 3.11 – Examples of Spatial Operations 

Informal description Coverage Algebra Expression 

“Given a coverage of cities and 

one of states, find the total 

population for each state” 

statePop := spatial sum 

cityPop within 

statePop; 

“For each cell, calculate the 

average deforestation of its 

neighbours” 

fsum := spatial sum  

defor touch fsum; 

“Given a coverage of rivers and 

one of  cities with population, find 

the number of people that live 

along each river”. 

riversPop:= spatial sum 

cityPop intersects 

rivers; 

 

“Given a coverage of cities and 

one of deforestation, find the 

average deforestation of each 

city”. 

ave_city_defor:= 

spatial average defor 

within city; 

“Given a coverage containing 

roads and a one of deforestation, 

calculate the mean deforestation 

along each road”. 

defRoads:= spatial mean 

defor intersects roads; 

Consider the operation: “For each cell, calculate the average deforestation of its 

neighbors”. In Tomlin’s algebra, this is a focal operation (Figure 2.6). Considering the 
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deforestation coverage (defor) as input and the focal sum coverage (fsum) as output, 

we state the operation as shown in Figure 3.4. 

 

 

 

 

fsum := spatial sum defor 

touch fsum; 

Figure 3.4 – Focal  sum of deforestation 

Note one interesting feature: the result (fsum) is also the reference coverage for 

the spatial predicate (defor touch fsum). This syntax may seem odd at first sight, 

but it follows from the generality of the proposal. By taking the reference coverage and 

the new coverage to be the same, we ensure the outcome satisfies the condition (“local 

mean”). Had we used a third coverage as a reference, the result would be different if this 

coverage would not have the same spatial partitioning as the output coverage.   
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CHAPTER 4  

PROGRAMING ENVIROMENT 

This chapter shows how the proposal map algebra was implemented using the Haskell 

functional language and integrated with a spatial database using TerraLib. A graphical 

interface was build to help the users to write and maintains his programs. We also show 

some examples of its use and compare our proposal to Tomlin’s map algebra. 

4.1 TerraHS 

To make our algebra useful was necessary to implement it in a computer language. The 

implementation was made in the Haskell functional language (Jones, 2002), (Peyton 

Jones et al., 1999) and (Thompson, 1999). Functional programming is a programming 

paradigm that considers that computing is evaluating mathematical functions. 

Functional programming languages are convenient to translate algebraic specifications 

into testable code (Frank e Kuhn, 1995; Frank e Medak, 1997) and functional languages 

express the semantics of abstract data types directly, an essential property for formal 

specification languages (Frank e Kuhn, 1995). The Haskell report describes the Haskell 

language as: 

“Haskell is a purely functional programming language incorporating many 

recent innovations in programming language design. Haskell provides 

higher-order functions, non-strict semantics, static polymorphic typing, 

user-defined algebraic datatypes, pattern-matching, list comprehensions, a 

module system, a monadic I/O system, and a rich set of primitive datatypes, 

including lists, arrays, arbitrary and fixed precision integers, and floating-

point numbers” (Jones, 2002). 

 TerraLib is a spatial database programming environment that provides support to 

storage and retrieve spatial data (Câmara et al.). TerraHS (Costa et al, 2006) was 

created as an application that enables developing geographical applications in the 

Haskell functional language using data stored in a spatial database manipulated with 

TerraLib. 
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4.2 Haskell Implementation  

The Haskell implementation of the algebra was presented in (Costa, 2006). In this 

section we will show this implementation, concentrating in how to translate the data 

storage in a TerraLib database to coverages and in the syntax language that a user will 

use to write his programs. 

4.2.1 Data Type 

Based on the Coverage specification on section 3.2, in TerraHS was defined the type 

class Coverages in Haskell, described in Table 4.1: 

Table 4.1 - Type class Coverages 

class Coverages cov where  

 evaluate :: (Eq a, Eq b) => cov a b → a → Maybe b  

 domain :: cov a b → [a]  

 num :: cov a b → Int  

 values :: cov a b → [b]  

 new_cov :: [a] → (a → b ) → (cov a b)  

 fun :: (cov a b) → (a → b)  

The functions of type class Coverages are parameterized on the input type a and the 

output type b.  

• evaluate is a function that takes a coverage and an input value a and 

produces an output value. 

• domain is a function that takes a coverage and returns the values of its 

domain. 

• num returns the number of elements of the coverage’s domain. 

• values returns the values of the coverage’s range.  

• new_cov, a function that returns a new coverage, given a domain and a 

coverage function.  

• fun:  given a coverage, returns its  coverage function. 
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 The instance of the type class Coverages to the Coverage data type is 

shownTable 4.2:  

Table 4.2 - Instance of type class Coverages 

instance Coverages Coverage where  

new_cov a f = (Coverage (f, a))  

evaluate f o  

| (elem o (domain f)) = Just ((fun f) o)  

| otherwise = Nothing  

domain (Coverage (f, a)) = a  

num f = length (domain f)  

values f = map (fun f) (domain f)  

fun (Coverage (f,_)) = f  

 TerraHS provides support to the object-set data type storage in TerraLib. Object-

set in TerraLib database is represented by a layer of geo-objects in a vector 

representation and a table of attributes. Where each object of the layer is linked with 

one line of the table. When we map an object set to a Coverage Function, we can take 

the layer as the domain of the function and the range of one column of attribute as the 

range of the function. The mapping of the function is given by the relationship of the 

object and its attribute. The Figure 4.1 shows an example of retrieving and storing a 

coverage. 

  



 

 40 

-- db connection 

host = "localhost"; 

dbname =  "tedbteste"; 

user = "root"; 

password = ""; 

db = database ( dbname, host, user, password, MySQL )  

 

-- layers and attributes 

layer_def = "def_cel"; 

ldef = layer (db, layer_def) 

att_def  = attr (ldef , "luc_def") 

 

layer_def_out = "def_cel_out"; 

ldef_out = layer (db, layer_def_out) 

 

main:: IO () 

main = do 

 cov_def <- loadMap att_def 

 let cov_def_sqrt = (single fsqrt cov_def) 

 saveMap cov_def_class "FSQRT" ldef_out 

 Figure 4.1 - Retrieving and storing a coverage 

 

As showed in the example, to retrieve and store the information from a TerraLib 

database we need to inform the host, dbname, user name and password to make the 

connection with the database.  

 The loadMap function connects to the database, loads the geo-object set, 

converts these geo-objects into a coverage, and return it as output. The saveMap 

function converts a coverage to a geo-object set that will be saved in the database. If the 

column of attribute name does not exist in the layer, it will be created. 

4.2.2 Operations 

We use a generic type class for the coverage algebra operations (Table 4.3).  
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Table 4.3 - Generic type class Operation 

class (Coverages cov) => CoverageOps cov where  

single :: (b → c) → (cov a b) → (cov a c)  

multiple :: ([b]→c) → [(cov a b)] → (cov a b)→(cov a c)  

 select :: (cov a b) → (a → c → Bool) → c → (cov a b)  

compose :: ([b] → b) → (cov a b) → b  

 spatial :: ([b] → b) → (cov a b) → (a → c → Bool)  

→ (cov c b) → (cov c b)  

 The implicit assumption of these is that the geographical area of the output 

coverage is the same of the reference coverage.  

 The instantiation of the coverage operations is provided by Table 4.4.  

Table 4.4 - Instantiation of the Operations 

instance CoverageOps Coverage where  

-- non-spatial operation on a single coverages  

single f1 c = new_cov (domain c) ( f1 . (fun c))  

 

-- non-spatial operation on multiple coverages  

multiple fn clist c = new_cov (domain c)  

(\x -> fn (faux clist x))  

 

-- spatial selection  

select cov pr o = new_cov sel_dom (fun cov)  

where sel_dom = [l | l <- (domain cov) , (pr l o)]  

 

-- spatial composition  

compose f cov = (f (values cov))  

 

-- spatial operation : selection + composition  

spatial fn c1 predic cref = new_cov (domain cref)  

(\x -> compose fn (select c1 predic x))  

The single function has two input arguments: a coverage (input_cov) and a 

first-order function (f1), and produce a new coverage as output (new_cov). Its 

general syntax is:  

let new_cov = single f1 input_cov  

 

 The word “let” is a keyword of the language, and the word “ single” is used 
to specify the kind of operation.  

The multiple function has three input arguments: a multivalued function (fn), a 

coverage list, and a reference coverage (ref_cov), and produces a new coverage as 

output. Its general syntax is: 
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let new_cov = multiple fn [input_cov1, input_cov2, …, 

input_covN] ref_cov 

 

 The spatial selection has three input arguments: an input coverage, a predicate 

(predicate) and a reference element (geo), and generates a new coverage as 

output.  Its general syntax is: 

 let new_cov = select input_cov predicate geo 

The composition function has two input arguments, an input coverage and a 

multiple arguments function and generates a single value as output. Its general syntax 

is:  

compose fn input_cov 

 The spatial function has three input arguments, a reference coverage, a 

multivalued function and a select predicate, generating a new coverage as output. Its 

general syntax is: 

let new_cov = spatial fn input_cov predicate ref_cov  

 

4.3 Integration into GUI software 

A graphical interface was developed to the create and edit of the TerraHS programs. 

This graphical interface was integrated with TerraView (Câmara et al.) as a plugin. 

4.3.1  Main Window 

The main window has a text box that allows the edition of the programs (Figure 4.2). 

When the user creates a new program, the text starts with the includes necessaries to 

compile and run the Haskell program, and also sets the variables necessaries to the 

database connection, according to the database connection opened in the TerraView. 
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Figure 4.2 – The main window 

 The interface presents two buttons relatives to the program generation; these 

buttons assist the user to insert a coverage and to insert a operation in the program, 

respectively Insert Coverage and Insert Operation. We also place three buttons to 

compile and run a program. The Clear button is used to delete the intermediate files 

generated by previous compilation of the program. The Build button is used to compile 

the program and to generate an executable file. The RUN button executes the program. 
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4.3.2 Algebra Interfaces 

The sort of windows showed above are used to Insert a Coverage, Insert a Single 

Argument Function, Insert a Multiple Argument Function and Insert a Spatial Function. 

When we conclude the procedure of insertion, it generates the correspondents code of 

the operation and inserts this text in the text box of the Main Window. 

The window of the Figure 4.3 is used to insert a Coverage. To insert a coverage 

we select the layer and the attribute; after this we give a name to the coverage. 

 

Figure 4.3 – Insert Coverage 

To insert a single argument function we need to select the output coverage, the 

single argument function and the input map (Figure 4.4). 
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Figure 4.4  - Insert Single Argument Function 

To insert a multiple argument function we need to select the output coverage, the 

multiple argument function and the list of input coverages (Figure 4.5). 

 

Figure 4.5 - Insert Multiple Arguments Function 

To insert a spatial function we need to select the output coverage, the multiple 

argument function, the input coverage, the spatial predicate and the reference coverage 

(Figure 4.6). 
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Figure 4.6 – Insert Spatial Function 

4.4 Examples 

The examples use INPE’s database of deforestation of the Brazilian Amazonian 

(Aguiar, 2006). We selected a data set from the central area of the Pará state, composed 

of three coverages: deforestation (grid cells of 25 x 25 km2), roads (lines), and  

protected areas (polygons), as shown in Figure 4.7. 

 

Figure 4.7 – Deforestation,  protected areas and roads (Pará State, Brazil) 

 The Figure 4.10 shows the main header of the program used for all the programs 

of the examples below.  
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module Main(main) where 

 

--import 

… 

 

-- db connection 

 

host = "localhost"; 

dbname =  "tedbteste"; 

user = "root"; 

password = ""; 

 

db = database ( dbname, host, user, password, MySQL ) 

 

-- layers and attributes 

 

layer_def = "def_cel" 

ldef = layer (db, layer_def) 

att_def  = attr (ldef , "luc_def") 

 

layer_roads = "roads_lin"; 

lroads = layer (db, layer_roads) 

att_roads = attr (lroads, "object_id_3") 

 

layer_pa = "pa_pol"; 

lpa = layer (db, layer_pa) 

att_pa = attr (lpa, "object_id_1") 

 

-- MAIN 

 

main:: IO () 

main = do 

 

 cov_def <- loadMap att_def 

 cov_roads <- loadMap att_roads 

 cov_pa <- loadMap att_pa 
 

Figure 4.8 - Main header of the TerraHS programs 

The three main coverages of the example are instanced: 

• cov_def: the deforestation coverage 

• cov_roads: the roads 

• cov_ap: the protection areas 
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The first example considers the expression: “Given a coverage of deforestation and 

a classification function, return the classified coverage”. The input is the deforestation 

coverage and the output is a classified coverage (cov_def_class) The classification 

function defines four classes: (1) dense forest; (2) mixed forest with agriculture; (3) 

agriculture with forest fragments; (4) agricultural area. This function is: 

 classify :: Value → Value 

 classify v  

      | v < 0.2                   = "1" 

      | ((v >= 0.2) && (v < 0.5))  = "2" 

      | (v >= 0.5) && (v < 0.8)    = "3" 

      | v >= 0.8                   = "4" 

We get the classified map (Figure 4.9) using the expression 

let cov_def_class = single classify cov_def 

 

 

Figure 4.9 – Resulting coverage with classified deforestation 

As a second example, take the expression: “Calculate the mean deforestation for 

each protection area”. The inputs are: the deforestation coverage (cov_def), a spatial 

predicate (within), a multivalued function (mean) and the coverage of protected 

areas (cov_pa). The output is a coverage of the protected areas (cov_def_prot) 

with the same objects as the reference coverage (cov_pa) and the deforestation 

average for each area (Figure 4.10). The final expression is: 

let cov_def_prot = spatial mean cov_def within cov_ap 
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Figure 4.10 – Deforestation mean by protection area 

The third example is the expression: “Given a coverage containing roads and 

one with deforestation, calculate the mean of the deforestation along each road”. We 

have as inputs: the deforestation coverage (cov_def), a spatial predicate 

(intersect), a multivalued function (mean) and a road map (cov_roads). The 

product is a roads coverage with one value for each road. This value is the mean of the 

cells that intercept this road (Figure 4.11). The expression for this operation is: 

let cov_def_roads = spatial mean cov_def intersect 

cov_roads 
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Figure 4.11 – Deforestation mean along the roads 

Table 4.5 presents a comparison between the spatial operators as expressed in 

our proposal and in Tomlin’s map algebra. The examples show that the proposed map 

algebra expresses the focal and zonal functions of Tomlin’s map algebra, using the 

‘touch’ and ‘within’ topological predicates. Operations involving ‘overlap’, 

‘contains’ and ‘intersects’ predicates are part of our proposed coverage algebra 

and are not directly expressible by Tomlin’s algebra. This shows that the proposed 

algebra is richer than Tomlin’s, as well as having a solid conceptual basis. 

Table 4.5 – Comparison of spatial operators with Tomlin’s map algebra 

Informal Description Generalized Map Algebra Tomlin 

“Focal mean of 
topography” 

fmean:= mean topo 

touch fmean 

FOCALMEAN OF 

TOPOGRAPHY 

“Given a coverage of cities 
and one of topography, 
find the mean altitude for 
each city.” 

altcit:= mean topo 

within city 

ZONALMEAN OF 

TOPOGRAPHY WITHIN 

CITIES     

 
“Given a coverage of 
national forests, get the 
deforestation at the edges 
of each forest” 

defBord:= sum defor 

overlaps forests 

(no equivalent) 

“Calculate the mean of the 
deforestation along the 
road”  

defRoad:= mean defor 

intersects road 

(no equivalent) 



CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

Map algebra is a fundamental class of operations for spatial data sets. Most of the 

current implementations of map algebra use Tomlin’s Map Algebra (Tomlin, 1990) 

proposal for local, focal and zonal operations. However, Tomlin’s proposal uses ad hoc 

concepts and lacks a sound theoretical basis. This work addresses this problem, by 

proposing a new foundation for operations involving coverages. We have designed a 

coverage algebra that uses topological predicates to express spatial operations and that 

includes Tomlin’s algebra as a subset.  

There is one important set of operations on coverages that is not part of our 

proposal nor of Tomlin’s: convolution operators. A convolution operation requires two 

coverages C1 and C2 and produces a third coverage C3. The value of each point p of C3  

is the integral of the product of C1 and C2, when C2  is shifted so that its central point is 

coincident with p. From a conceptual point of view, convolutions are not part of map 

algebra, since the geometrical support for the second coverage C2 (also called a mask) 

changes for each point of the output coverage. Convolution does not involve topological 

relations, but rather the definition of an integral function.  

Our proposal points to a situation where all modeling of topological relations in 

two-dimensional spatial datasets can be handled by the 9-intersection model 

(dimension-extended), both for simple features and for coverages. Spatial data sets of 

higher dimensions (e.g., TIN coverages) need a different foundation. The foundation for 

handling spatial relation of higher dimensions requires topological operators that 

operate on 3D surfaces (Egenhofer, 2005). Convolution operations are a special case 

and need to be handled separately. A possible extension to our algebra would be to 

consider directional relations (Frank, 1992), which would be useful to express 

operations such as “find the population of all cities north of the river”.  
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The development of the coverage algebra application using TerraHS in the 

Haskell Language enabled it faster, easy and precise implementation. The use of this 

implementation in real problems demonstrate the usability of the algebra. It is desirable 

that in the future the implementation of coverage algebra can manipulate all kinds of 

geographical data available at TerraLib. 

Another possible future work is to extend our algebra to the spatiotemporal 

domain. Examples of the proposal spatiotemporal algebras are presented in (Güting; 

Schneider, 2005), which defines an algebra for moving objects and (Medak, 2001), 

which proposes an algebra for modeling change in socio-economical units. To do this 

we need to extend the geographical elements of the coverage to spatiotemporal domain, 

extend our algebra operations and extend the topological predicates to include temporal 

predicates. 

Even considering the limitations, the expressiveness of the proposed coverage 

algebra is considerable. Given that it is based on a solid foundation, it could be 

considered as the basis for setting up standards for operations on Open GIS coverages. 

The use of standards for operations in coverages would be a significant advance for 

increasing interoperability of spatial data. 
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