
Determination of eddy currents in the vacuum vessel of
spherical tokamaks

G.O. Ludwig ∗, E. Del Bosco, J.G. Ferreira, L.A. Berni

Associated Plasma Laboratory, National Space Research Institute

12227-010, São José dos Campos, SP, Brazil

1 Introduction
The distribution of currents induced in the vacuum vessel of spherical tokamaks is required for startup
simulations, equilibrium reconstruction and control. To take into account the effect of these eddy currents,
the vacuum vessel is usually modeled as a large collection of conducting rings [1, 2, 3]. Then, given the
measured electromotive force (emf) obtained from a toroidal loop placed near each ring, the current
flowing in the ring is calculated dividing the emf by the ring resistance. This model assumes that the
current in each ring is uniform, requiring the division of the vacuum vessel wall in a large number of
segments, for adequate representation, and the interpolation of the signals obtained from a finite number
of measuring loops. In this way, the coupling between diverse regions of the vacuum vessel and external
sources is not properly taken into account and the method fails at fast time scales. Recently [4, 5], a
new method has been developed that accurately describes the local and non-local fast effects of different
regions of the vessel. The method solves the integro-differential equation that governs the evolution of
the surface current density induced in a thin axisymmetric shell, reducing the problem to a circuit model.
In this paper, the model presented in [5] is improved dividing the vacuum vessel of ETE in three sectors
of different thicknesses, according with the actual fabrication. This allows a better representation of
the jumps in the surface current density for a continuous emf across the discontinuous wall resistance.
Besides, the new formulation provides a link with the usual conducting rings model. The emf calculated
with the new model is compared with the voltage measured in loop voltage sensors placed along the
poloidal perimeter of the vacuum vessel of ETE. Also, the improved calculations are compared with
previously presented measurements of the current distribution on the vacuum vessel wall [4, 5].

2 Formulation of the problem
The toroidal surface current density in a thin axisymmetric shell is related to the poloidal flux function
by Faraday’s law [5]

KT (θ, t) = − σsδs
2πhζ (θ)

∂ΦP (θ, t)

∂t
, (1)

where σs and δs are the local values of the shell conductivity and thickness, respectively. The centerline
of the vacuum vessel wall is modeled by a spectral representation in local curvilinear coordinates specified
by the scale factors hζ (θ) and hθ (θ). In terms of the Green’s function G

¡
θ, θ0

¢
for the axisymmetric

Ampère’s law the evolution of eddy currents in the shell is governed by the integro-differential equation

2πhζ (θ)

σsδs
KT (θ, t) = −µ0

Z 2π

0

∂KT

¡
θ0
¢

∂t
G
¡
θ, θ0

¢
hθ
¡
θ0
¢
dθ0 − ∂ΦP,ext (θ, t)

∂t
, (2)

where ΦP,ext (θ, t) is the poloidal flux function produced on the vessel wall by the external sources only,
and the total toroidal current induced in the shell is

IT (t) =

Z 2π

0

KT (θ, t)hθ (θ) dθ. (3)
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Now, the vacuum vessel wall of ETE is formed by three shells of different thicknesses, joined at the
poloidal angles θ1 = 0.3997 (22.90◦), θ2 = 2.1326 (122.19◦) and their conjugate angles in the spectral
representation. The thicknesses of the external cylindrical wall, the torispherical head wall and the
internal cylindrical wall are δ1 = 4.80mm, δ2 = 6.35mm and δ3 = 1.20mm, respectively. On the six
sectors defined by θ1 and θ2 along the vessel centerline, the surface current density has the following
Fourier series representations:

0 < θ < θ1 : K
(1)
T (θ, t) =

1

2πhθ (θ)

∞X
n=0

I(1)n (t) cos
nπθ

θ1
,

θ1 < θ < θ2 : K
(2)
T (θ, t) =

1

2πhθ (θ)

∞X
n=0

I(2)n (t) cos
nπ (θ − θ1)

θ2 − θ1
,

θ2 < θ < π : K
(3)
T (θ, t) =

1

2πhθ (θ)

∞X
n=0

I(3)n (t) cos
nπ (θ − θ2)

π − θ2
,

π < θ < 2π − θ2 : K
(4)
T (θ, t) = K

(3)
T (2π − θ, t) ,

2π − θ2 < θ < 2π − θ1 : K
(5)
T (θ, t) = K

(2)
T (2π − θ, t) ,

2π − θ1 < θ < 2π : K
(6)
T (θ, t) = K

(1)
T (2π − θ, t) .

(4)

The total current in the vacuum vessel wall becomes

IT (t) =
θ1
π
I
(1)
0 (t) +

θ2 − θ1
π

I
(2)
0 (t) +

π − θ2
π

I
(3)
0 (t) . (5)

For continuous electromotive force the surface current density must satisfy the jump conditions

K
(1)
T (θ1, t)

σ1δ1
=

K
(2)
T (θ1, t)

σ2δ2
,

K
(2)
T (θ2, t)

σ2δ2
=

K
(3)
T (θ2, t)

σ3δ3
,

(6)

which can be used to verify the accuracy of the solution. In principle, these conditions can be used to
eliminate any two Fourier components, reducing the number of circuit differential equations that must be
solved for them. However, imposing these conditions enhances the high order harmonics and introduces
spurious oscillations in the surface current density profile along the vacuum vessel wall, although with a
negligible effect on the loop voltage calculated from all the flux sources. In this paper the calculations
are performed without imposing the jump conditions.
Substituting the Fourier expansions in the integro-differential equation that governs the surface current
density evolution, multiplying the resulting equations by π−1 cos (mπθ/θ1), π−1 cos [mπ (θ − θ1) / (θ2 − θ1)]
and π−1 cos [mπ (θ − θ2) / (π − θ2)] according to the range of validity in the poloidal angle θ, and inte-
grating over the range of validity, one obtains a truncated set of 3 ( + 1) circuit equations for the Fourier
coefficients I(1)n (t), I(2)n (t) and I

(3)
n (t) taking m = 0, 1, 2 . . . and n = 0, 1, 2 . . .

X
n=0

Ã
R(1)mnI

(1)
n (t) + L(1)mn

dI
(1)
n (t)

dt
+M (1,2)

mn

dI
(2)
n (t)

dt
+M (1,3)

mn

dI
(3)
n (t)

dt

!

= − d

dt

Ã
1

π

Z θ1

0

ΦP,ext (θ, t) cos
mπθ

θ1
dθ

!
,

X
n=0

Ã
R(2)mnI

(2)
n (t) + L(2)mn

dI
(2)
n (t)

dt
+M (2,1)

mn

dI
(1)
n (t)

dt
+M (2,3)

mn

dI
(3)
n (t)

dt

!

= − d

dt

Ã
1

π

Z θ2

θ1

ΦP,ext (θ, t) cos
mπ (θ − θ1)

θ2 − θ1
dθ

!
,

X
n=0

Ã
R(3)mnI

(3)
n (t) + L(3)mn

dI
(3)
n (t)

dt
+M (3,1)

mn

dI
(1)
n (t)

dt
+M (3,2)

mn

dI
(2)
n (t)

dt

!
= − d

dt

µ
1

π

Z π

θ2

ΦP,ext (θ, t) cos
mπ (θ − θ2)

π − θ2
dθ

¶
.

(7)
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The resistance coefficients in these equations are defined by

R
(1)
mn =

1

πσ1δ1

Z θ1

0

hζ (θ)

hθ (θ)
cos

mπθ

θ1
cos

nπθ

θ1
dθ,

R
(2)
mn =

1

πσ2δ2

Z θ2

θ1

hζ (θ)

hθ (θ)
cos

mπ (θ − θ1)

θ2 − θ1
cos

nπ (θ − θ1)

θ2 − θ1
dθ,

R
(3)
mn =

1

πσ3δ3

Z π

θ2

hζ (θ)

hθ (θ)
cos

mπ (θ − θ2)

π − θ2
cos

nπ (θ − θ2)

π − θ2
dθ,

(8)

the self-inductance coefficients by

L
(1)
mn =

µ0
2π2

Z θ1

0

"ÃZ θ−

0

+

Z θ1

θ+

!
G
¡
θ, θ0

¢
+

Z θ1

0

G
¡
θ,−θ0¢# cos mπθ

θ1
cos

nπθ0

θ1
dθ0dθ

+
µ0
π2

Z θ1

0

hζ (θ)

·
ln

µ
8hζ (θ)

hθ (θ)

¶
− 1
¸
cos

mπθ

θ1
cos

nπθ

θ1
dθ,

L
(2)
mn =

µ0
2π2

Z θ2

θ1

"ÃZ θ−

θ1

+

Z θ2

θ+

!
G
¡
θ, θ0

¢
+

Z θ2

θ1

G
¡
θ,−θ0¢# cos mπ (θ − θ1)

θ2 − θ1
cos

nπ
¡
θ0 − θ1

¢
θ2 − θ1

dθ0dθ

+
µ0
π2

Z θ2

θ1

hζ (θ)

·
ln

µ
8hζ (θ)

hθ (θ)

¶
− 1
¸
cos

mπ (θ − θ1)

θ2 − θ1
cos

nπ (θ − θ1)

θ2 − θ1
dθ,

L
(3)
mn =

µ0
2π2

Z π

θ2

"ÃZ θ−

θ2

+

Z π

θ+

!
G
¡
θ, θ0

¢
+

Z π

θ2

G
¡
θ,−θ0¢# cos mπ (θ − θ2)

π − θ2
cos

nπ
¡
θ0 − θ2

¢
π − θ2

dθ0dθ

+
µ0
π2

Z π

θ2

hζ (θ)

·
ln

µ
8hζ (θ)

hθ (θ)

¶
− 1
¸
cos

mπ (θ − θ2)

π − θ2
cos

nπ (θ − θ2)

π − θ2
dθ,

(9)
and the mutual inductance coefficients by

M
(1,2)
mn =

µ0
2π2

Z θ1

0

Z θ2

θ1

£
G
¡
θ, θ0

¢
+G

¡
θ,−θ0¢¤ cos mπθ

θ1
cos

nπ
¡
θ0 − θ1

¢
θ2 − θ1

dθ0dθ,

M
(1,3)
mn =

µ0
2π2

Z θ1

0

Z π

θ2

£
G
¡
θ, θ0

¢
+G

¡
θ,−θ0¢¤ cos mπθ

θ1
cos

nπ
¡
θ0 − θ2

¢
π − θ2

dθ0dθ,

M
(2,1)
mn =

µ0
2π2

Z θ2

θ1

Z θ1

0

£
G
¡
θ, θ0

¢
+G

¡
θ,−θ0¢¤ cos mπ (θ − θ1)

θ2 − θ1
cos

nπθ0

θ1
dθ0dθ,

M
(2,3)
mn =

µ0
2π2

Z θ2

θ1

Z π

θ2

£
G
¡
θ, θ0

¢
+G

¡
θ,−θ0¢¤ cos mπ (θ − θ1)

θ2 − θ1
cos

nπ
¡
θ0 − θ2

¢
π − θ2

dθ0dθ,

M
(3,1)
mn =

µ0
2π2

Z π

θ2

Z θ1

0

£
G
¡
θ, θ0

¢
+G

¡
θ,−θ0¢¤ cos mπ (θ − θ2)

π − θ2
cos

nπθ0

θ1
dθ0dθ,

M
(3,2)
mn =

µ0
2π2

Z π

θ2

Z θ2

θ1

£
G
¡
θ, θ0

¢
+G

¡
θ,−θ0¢¤ cos mπ (θ − θ2)

π − θ2
cos

nπ
¡
θ0 − θ1

¢
θ2 − θ1

dθ0dθ.

(10)

The small angle ¿ 1 is introduced in the expressions of the self-inductance coefficients to handle
numerically the singularity in the Green’s function. The resistance and inductance coefficients satisfy the
following symmetry properties:

R
(1)
mn = R

(1)
nm, R

(2)
mn = R

(2)
nm, R

(3)
mn = R

(3)
nm,

L
(1)
mn = L

(1)
nm, L

(2)
mn = L

(2)
nm, L

(3)
mn = L

(3)
nm,

M
(2,1)
mn =M

(1,2)
nm , M

(3,1)
mn =M

(1,3)
nm , M

(3,2)
mn =M

(2,3)
nm .

(11)

The surface current density induced in the vacuum vessel wall can be determined by the circuit equations
in two ways: dividing the wall in a small number of sectors with a relatively large number of Fourier
coefficients representing the current in each sector, as indicated above, or dividing the wall in a large
number of sectors with a small number of coefficients in each sector. In the latter case, taking = 0
corresponds to dividing the wall in a large number of rings with uniform current density, similarly to
the model adopted in previous works [1, 2, 3], though with a precise definition for the coefficients in the
circuit model.
The right-hand side of the circuit equations can be written in terms of the currents circulating in the
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external sources using the appropriate mutual inductance coefficients

− d

dt

Ã
1

π

Z θ1

0

ΦP,ext (θ, t) cos
mπθ

θ1
dθ

!
= −M (1)

m,Ω

dIΩ
dt
−
∞X
n=1

M
(1)
m,Ωn

dIn
dt
−M

(1)
m,TF

dITF (t)

dt
−
X
k

M
(1)
m,k

dIk (t)

dt
,

− d

dt

Ã
1

π

Z θ2

θ1

ΦP,ext (θ, t) cos
mπ (θ − θ1)

θ2 − θ1
dθ

!
= −M (2)

m,Ω

dIΩ
dt
−
∞X
n=1

M
(2)
m,Ωn

dIn
dt
−M

(2)
m,TF

dITF (t)

dt
−
X
k

M
(2)
m,k

dIk (t)

dt
,

− d

dt

µ
1

π

Z π

θ2

ΦP,ext (θ, t) cos
mπ (θ − θ2)

π − θ2
dθ

¶
= −M (3)

m,Ω

dIΩ
dt
−
∞X
n=1

M
(3)
m,Ωn

dIn
dt
−M

(3)
m,TF

dITF (t)

dt
−
X
k

M
(3)
m,k

dIk (t)

dt
,

(12)

where M (s)
m,Ω, M

(s)
m,Ωn, M

(s)
m,TF and M

(s)
m,k are the mutual inductances between the circuit for the Fourier

component of order m of the surface current density in shell (s) and the ohmic heating (OH) system,
the proximity effect current components in the OH system, the eddy currents in the central column of
the toroidal field (TF) coil, and any additional external coils, respectively. The models for the currents
induced in the central column of the TF coil and the proximity effect in the OH system are presented in
detail in a forthcoming paper [6].
The corresponding voltage drop in the OH system is

vΩ (t) = RΩIΩ (t) + LΩ
dIΩ
dt

+
∞X
n=1

Ln
dIn
dt

+
NΩ eff

hΩ

dΦTF
dt

+
X
m=0

Ã
M

(1)
Ω,m

dI
(1)
m (t)

dt
+M

(2)
Ω,m

dI
(2)
m (t)

dt
+M

(3)
Ω,m

dI
(3)
m (t)

dt

!
+
X
k

MΩ,k
dIk (t)

dt
,

(13)

where RΩ and LΩ are the resistance and inductance of the OH system, respectively, neglecting eddy
current and proximity effects, Ln is the internal inductance associated with the proximity effect current
components In (t) in the OH system, ΦTF (t) is the flux associated with eddy currents induced in the cen-
tral column of the TF coil,M (s)

Ω,m =M
(s)
m,Ω are the mutual inductance coefficients between the components

I
(s)
m (t) of the surface current density in shell (s) and the OH system, and MΩ,k is the mutual inductance
coefficient between any additional external coils carrying the current Ik (t) and the OH system. The
parameters NΩ and hΩ refer to the number of turns and height of the OH solenoid, while eff is the total
length of the OH solenoid in series with the internal compensation coils, taking into account end effects.

3 Results
The model was applied to evaluate the currents induced in the vacuum vessel wall of the ETE spherical
tokamak, using up to four harmonics ( = 4), and to calculate the loop voltage produced by the external
sources and eddy currents, including vacuum vessel, central column and proximity effect components.
Figure 1 shows the calculated (continuous lines) and experimental values (disks) of the currents in the
OH system and vacuum vessel for a shot used to compare the loop voltage results. The locations of
the loop voltage sensors around the poloidal perimeter of the ETE vessel are shown in Fig. 2. The
comparison between the loop voltage measurements (disks) and calculations (continuous lines) is shown
in Fig. 3. Pairs of loop voltage sensors placed symmetrically with respect to the equatorial plane produce
practically identical signals represented by gray and black disks in Fig. 3. The agreement with theory and
experiment is very good, with the largest discrepancy occurring at the position of sensor VS3. There, on
the torispherical head, the inductance coefficients vary significantly with the radial distance and a large
number of Fourier components is needed to describe correctly the jump in the surface current density at
the outside corner. Furthermore, the sensor VS3 is not a perfectly axisymmetric toroidal loop, bending
around the large ports on the torispherical head in a way not described by the model. Note that the
signal on the axisymmetric internal loop voltage sensor VI, placed at a position almost symmetrical to
VS3, just slightly farther from the vessel wall, shows a much better agreement with theory. Note also
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that the sensors are placed close to the vessel wall, near the surface current source where the calculation
is most difficult. Hence, the model should provide an excellent evaluation of the loop voltage in the region
inside the vessel filled by the plasma. Now, at the initial peak of the loop voltage in the inner side of
the vessel, the experimental points indicate a slightly faster time scale than the theoretical results. This
is a consequence of the simplified model adopted for the proximity effect components. The geometry of
the model does not take into account the presence, in the square conductor used in the OH system, of a
large circular cooling hole, which leads to a complicated modal structure with faster time scales. Finally,
the same kind of simplification in the geometry of the central column, without including the effects of
insulation and cooling holes, seems to lead to a slight delay in the theoretical results, compared with the
experimental results, on the longer time scale.
The improved model presented in this paper was also used to make comparisons with previously pub-
lished results [5] of the eddy current distribution in sections of the ETE vacuum vessel wall. Again, Fig.
4 shows the currents in the OH system and the vacuum vessel for the current distribution test shot.
Figure 5 shows the sections of the vacuum vessel wall used for measuring the eddy current distribution
using a long, removable Rogowski coil. The comparison between experimental and theoretical results is
shown in Fig. 6. The agreement is quite good, with the larger discrepancies occurring in the signals I2,
I3 and I4, which correspond to the region on the torispherical head most difficult to be reproduced by
the theory, as pointed out before. Moreover, the experimental results were obtained in subsequent shots,
with a discrepancy of 8% in the total current. Indeed, signal I6 in Fig. 6 shows a peak value of 25 kA,
which added to twice the peak value of 8 kA shown by signal I5 gives 41 kA that must be compared to
the peak value of 38 kA in the total current in the vacuum vessel shown in Fig. 4. Now, comparing the
results shown in Fig. 6 with the previously published ones [5], the new results present a much better
agreement. This is partly because of the improvements introduced in the model, but the main difference
arises from the approach taken regarding the equilibrium circuit. Although inactive (banks discharged),
this circuit was present in the model used in reference [5], so that current could flow through the equilib-
rium coil as long as the voltage applied to it by the remaining poloidal circuits had the right polarity for
driving the free-wheeling diode into conduction. However, it was later realized that the equilibrium coil
had been temporarily disconnected for engineering tests during the same shots used for measuring the
distribution of eddy currents and therefore its inclusion in the model was in fact inappropriate, a mistake
which became the main reason for the time lag apparent in some signals of the previous publication.
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Figure 1: Current in the ohmic heating circuit (left) and total current induced in the vacuum vessel wall
(right) for the loop voltage test shot. The continuous line and the disks correspond to calculated and
measured values, respectively.

Figure 2: Cross-section of the ETE vacuum vessel showing the locations of the loop voltage sensors.
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Figure 3: Comparison between the loop voltage measurements (disks) and the electromotive force calcu-
lated with the model (continuous lines).
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Figure 4: Current in the ohmic heating system (left) and total current induced in the vacuum vessel wall
(right) for the current distribution test shot. The continuous line and the disks correspond to calculated
and measured values, respectively.

Figure 5: Sections of the vacuum vessel used for measuring the eddy current distribution. The dashed
lines indicate schematically the removable Rogowski coil used in the measurements.
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Figure 6: Distribution of eddy currents in sections of the ETE vacuum vessel wall. The continuous line
and the disks correspond to calculated and experimental values, respectively.


