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ABSTRACT 

Eigenstructure techniques allow to detect and isolate 
faulty components in a dynamic process, such as sensor 
biases, actuator malfunctions, changes in dynamic 
parameters due to leaks and deterioration. Fault detection is 
the first step to achieve fault tolerance, but for this the 
redundancy has to be included in the system. This 
redundancy can be either by hardware or by software. In 
situations in which it is not possible to use hardware 
redundancy only the software redundancy can be used. 

Therefore using eigenstructure techniques, for the 
fault detection and isolation, the tests can be done through 
the angle between the residue vector direction and the fault 
direction vector. By this way, we can reduce false alarm and 
the alarm loss rates due to the noise and changes in system 
parameters. 

INTRODUCTION 

In several cases, the fault in a component can be 
catastrophic if the control does not have any redundancy 
degree, physical or analytical. Therefore, it is important to 
implement a control system with redundancy and capacity 
to identify faults in the components as fast as possible, such 
a way, that it can reconfigure the use of the remaining 
components or even the control law with faults to an 
alternative control law. 

A detection and isolation technique is an algorithm 
to detect and isolate (locate) faulty components in a 
dynamic process, such as sensor biases, actuator 

malfunctions, leaks and equipment deterioration. Fault 
detection is the first step to achieve fault tolerance, but for 
this the redundancy has to be included in the system. The 
redundancy can be either by hardware (physical 
redundancy) or by software (analytical redundancy). 
Hardware redundancy, e.g., an extra sensor or extra 
actuator, can produce several problems associated with: 
cost, space, weight and complexity of the system. Besides, it 
has been observed that redundant components tend to have 
similar functioning expectancies; so the event that causes 
one component to fail probably could cause its redundant 
components to fail soon. There are even situations in which 
it is not possible to use hardware redundancy; in this case, 
only the analytical redundancy approach can be used. 
Analytical redundancy uses a mathematical model of the 
system, so this approach only needs some computational 
resources of the system. 

Eigenstructure techniques make use of analytical 
redundancy approach based on the system mathematical 
model. Through these techniques we can see that a single 
fault in one component of the system has one specific 
direction (signature) independent of its amplitude changes. 
So, the fault detection and isolation is done through the test 
of the vector directions instead of their amplitudes. By this 
way, we can reduce false alarm and the alarm loss rates due 
to the sensor noises and changes in system parameters. 
Another advantage is the implementation feasibility of the 
analytical redundancy since nowadays the control systems 
are design with an appreciable process capacity. The main 
stages of these techniques are: 1) observer dynamic 
definition; 2) residual generations using the mathematical 
models; 3) signature fault generation; and 4) signature tests 



 2 

for detection and isolation. 

This paper presents some eigenstructure techniques 
for fault detection and isolation that can be applied in 
aerospace or automotive system. For results evaluation, it is 
presented some examples using an aerospace vehicle model 
for inclusion of instrument fault detection (IFD). 

BASIC CONCEPTS 

FAULT – Fault can be defined as a malfunction of 
any component of a system, causing since a loss of 
performance up to a total stop of its functions. According to 
[1] the faults can be divided in: 
• Abrupt Fault: fault that suddenly occurs and persists 

in a component. 

• Incipient Fault: fault that develops slowly at a 

component. 

The early detection of an incipient fault can help to 
avoid a total breakdown of the system or even catastrophes 
that could result in loss of significant amount of material or 
serious personal injury. So, it is desired to have a fault 
tolerant system, that is, a system that can continue to do its 
task, even when there are hardware faults or software errors. 
But the implementation of such system is not easy to do. 

We will use the word fault because strictly speaking, 
the term failure suggests complete breakdown, while fault 
may connote something tolerable. 

According to the terminology used in [2], the fault 
detection and diagnosis consist of the following tasks: 
• Fault Detection: detection that something is wrong in 

the system. Special emphasis is laid upon incipient 

faults rather than abrupt faults because incipient 

faults are harder to detect. 

• Fault Isolation: determination of the fault origin. 

• Fault Identification: determination of the gravity of 

the fault. 

Other relevant aspects, in fault detection and isolation, 
are the problems relative to the false alarm and alarm loss. 
False Alarm is the indication of the occurrence of a fault 
when the system is operating in its normal condition. Alarm 
Loss, on the other hand, is the indication that the system is 
operating normally, when it is in a faulty condition. The 
decision threshold between the fault state and normal state 
of operation should be chosen in such a way to minimize 
these two wrong and conflicting indications. 

A wide class of fault detection and isolation methods 
makes explicit use of the system mathematical model, such 
as the model-based methods, which are based on the idea 
of the analytical redundancy [3]. In contrast with the 
physical redundancy, where measurements of different 
sensors are compared, in the analytical redundancy the 

measurements supplied by a sensor are compared with the 
respective variable value obtained through the mathematical 
model. Such value is obtained through calculations that use 
current and/or previous measurements of another variable 
and the mathematical model that describes their 
relationships. The idea can still be extended only for the 
comparison of the values generated analytically, each of 
them being obtained through different calculations. In both 
cases, the resultant differences are called of residues. 

The residues have zero value in ideal situations but in 
practice this rarely happens. The deviations of this value 
are a combined result of the noise, parameters change 
and/or faults. If the deviations are negligible, the residues 
for eigenstructure technique can be analyzed directly for the 
direction of the fault. In the presence of significant 
deviation it is necessary to do a statistical analysis. In both 
cases the directions are generated, indicating which 
direction can be considered for each fault. Such directions 
are called fault directions. 

RESIDUES – For approaching studies on residues 
where the deviations are negligible, according to [4], some 
definitions are necessary: A Residual (Parity Vector) r(t) is 

a scalar or vector that has null or very small values, in the 

faults absence, and has values different from zero when a 

fault occurs. The residual is, therefore, a vector in the 

parity space. This definition implies that a residual r(t) has 

to be independent of, or at least, insensitive to system states 

and unmeasured disturbances. 

In case of linear systems, a general structure of a 

linear residual generator can be described as in the 

Figure 1. The transfer function from the fault matrix F(t) to 

the residual matrix R(t) is given by: 

R(s) = Hy(s) Gf(s) F(s)   (1) 

The condition, for the system to be able to detect a 

fault in the residual, is based on the detectability definition. 

Detectability is the capability to detect the i
th
 fault that 

corresponds to the i
th
 column of the response matrix R(s) 

that is different from zero. 

This condition, however, it is not enough in some 

practical situations. Assume that we have two residual 

generators as presented in the Figure 1. And in occurrence 

of a fault the residuals behave as in Figure 2. Here we see 

that we have a fundamentally different behavior between 

r1(t) and r2(t), because r1(t) only reflects transitions on the 

faulty signal while r2(t) has approximately the same shape 

of the faulty signal. Thus, r1(t) can not be used in a reliable 

IFD application even though it is clear that R1(s) ≠ 0. 

The difference between the two residuals in this 

example is the values of R(s=0). Clearly we can see that the 

residual 1 has R1(s=0) = 0 while the residual 2 has 
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R2(s=0) ≠ 0. This leads to the definition of strong 

detectability. The ith fault is said to have strong 

detectability if and only if: 

Ri(s=0) ≠ 0    (2) 

 

 
Figure 1 – General structure of a linear residual 

generator. 

 

Figure 2 – Residuals examples. 

EIGENSTRUCTURE – The eigenstructure approach 
is a closed-loop observer based method aiming to make the 
residuals, not the estimated state, insensitive to disturbances 
or to have a desired direction. It can easily be extended to 
residual generator to facilitate fault isolation. The 
eigenstructure of a matrix A is the set {λì, vi}i=1,…,n, where λi 
are the eigenvalues an vi are the eigenvectors. 

FIXED DIRECTIONS RESIDUALS – According to 
[4], this conception is the base of the fault detection filter 

where the residual vector get a specific direction depending 

on the fault that is acting upon the system. Figure 3 gives a 

geometrical representation of this type of residual when a 

sensor fault has occurred. The most probable fault can be 

determined by finding the fault vector is approximately 

parallel to the residual. 

 

Figure 3 – Fixed direction residual. 

ROBUSTNESS REQUIREMENTS – According to 
[4], a problem to be considered is that unmeasured signals 

and modeling error are always present in the system. This 

makes it hard to keep the false alarm rate at an appropriate 

level. If it is known how the uncertainties influence the 

process, these uncertainties are denominated structured 

uncertainties. This information can be used to reduce or 

even eliminate their influence on the residuals. If it is not 

known how disturbances act upon the system, there is a 

little that can be done to decouple these influences. 

Actually we have not designed any robustness, the best than 

we can do is to maximize the sensibility to the faults and to 

minimize the sensibility to the disturbances over all 

operation points. 

However it is possible to increase the robustness in 

the fault evaluation stage by using adaptive threshold levels 

or statistical decoupling in the step of decision threshold 

selection. This is called passive robustness. It is not likely 

that one method can solve the entire robustness problem; a 

likely solution is one where disturbance decoupling is used 

side by side with adaptive thresholds. 

MODEL BASED STRUCTURE 

In this paper, a model of a linear system, with time 
invariant parameters, represented in continuous time state 
space is given by: 

(t)(t)(t)

(t)(t)(t)

uDxCy

uBxAx

+=

+=&
   (3) 

where A is a n x n system dynamic matrix; B is a n x r 
control matrix; C is a p x n output matrix; D is a p x r direct 
feedthrough matrix; x(t) is a n x 1 state vector; u(t) is a r x 1 
control vector; and y(t) is a p x 1 output vector. 

We considered three types of general of faults: 
1. Sensor Fault: modeled here as an additive fault of 

the plant output signal; 
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2. Actuator Fault: modeled as an additive fault of 
the input signal in the system dynamics, and 

3. Component Fault: modeled as a multiplicative 
fault, i. e., any distribution matrix that is added to 
the system dynamics matrix. 

We used the following fault cases for studies [5]: 
• Zero: when the sensor (actuator or component) 

begins to supply only the zero value, that is, the 
sensor has an abrupt variation to the value zero; 

• Maximum Value: when the sensor begins to 
supply only the maximum value in module, that is, 
the sensor has an abrupt variation to its maximum 
or minimum value; 

• Constant: when the sensor begins to supply the 
last measurement made before the fault occurs; 

• Offset Drift: when the value of the offset alters the 
measurement in function of time, and 

• Scale Factor Drift: when the scale factor of the 
sensor alters the measurement in function of time. 

There are also uncertainties about the model and 
unmeasured inputs in the process. If these uncertainties are 
structured, that is, it is known how they enter in the system 
dynamics; this information can be incorporated into the 
model. 

In case of linear model with structured uncertainties, 
based on [4], the complete model can be represented by: 

)()()()(

)()()]()([)()(

tttt

tttttt a

s

c

fuDxCy

dEfHfuBxAx

++=

++++=&
 (4) 

where fa(t) denotes actuator faults, fc(t) is for component 
faults, fs is for sensor faults, d(t) is for disturbances acting 
upon the system, H is the distribution matrix for 
components fault and E is the distribution matrix for 
disturbances acting upon the system. 

RESIDUAL GENERATOR – The residual generator 
is based on a straightforward state estimator observer [7] 
represented by: 

)t()t(ˆ)t(ˆ

)]t(ˆ)t([)t()t(ˆ)t(ˆ

DuxCy

yyLBuxAx

+=

−++=&
 (5) 

To facilitate the description of the equations, the terms 
that indicate functions of t will be omitted; and bold letters 
will identify the matrices and vectors. 

Considering xxe ˆ−=  we get the estimation error 
dynamics as: 

sca LfEdHfBfeLCAxxe −+++−=−= )(&̂&&    (6) 

and the residual is formed by: 

DuxCfDuCxyyr −−++=−= ˆˆ
s  

r = Ce+ fs             (7) 

Robust Residual Generator – The robust residual 
generator is formed by premultiplying the output estimation 
error to achieve insensitivity: 

sw WfWCeyyWr +=−= )ˆ(   (8) 

This residual in the frequency domain is represented 
by: 

sscaow )()(ss WfLfEdHfBfAIWCR +−++−= −1)(   (9) 

where Ao = A – LC 

The disturbance decoupling condition can now easily 
be seen as: 

G(s) = WC(sI – Ao)
-1
E= 0  (10) 

It is easy to see that the actuator faults can also be 
thought as unmeasured disturbances that enter into the 
system dynamics through the matrix B. To achieve actuator 
fault decoupling we can enlarge the matrix E with the 
columns of matrix B that contain the fault that we need to 
decouple. Components faults can be considered of the same 
way. For sensor faults we have another approach: since the 
observer is driven by sensor measurements, we only need to 
skip the feedback from the sensor whose fault we want to 
decouple. The problem is now how to find the matrices W 
and L that fulfills the equation above. 

Before we proceed and describe a method to find W 
and L to achieve disturbance decoupling, we need some 
additional mathematical tools regarding eigenstructure, i. e., 
eigenvalues and eigenvectors. The eigenvalues and 
eigenvectors of the closed-loop observer matrix can be 
chosen to provide disturbance decoupling or a desired 
direction. In the continuous-time case an asymptotic form of 
robust fault monitor can be designed whilst in the discrete-
time case the dead-beat observer can be designed directly 
through assigning p zero-value eigenvalues corresponding 
to p sensor channels. With this information we can 
determine what will be the direction of the fault in order to 
design the detection filter. 

Lemma 1 – According to [4] if a matrix A has 
eigenvalues {λi}i=1,…,n then AT has the same set of 
eigenvalues. This is equivalent to say that the left and right 
eigenvectors of a matrix have the same set of eigenvalues. 

Lemma 2 – According to [4] assume A has right 
eigenvectors {vi}i=1,…,n and left eigenvectors {li}i=1,…,n, 
corresponding to the eigenvalues {λi}i=1,…,n. As noted in 
Lemma 1, left and right eigenvectors have the same set of 
eigenvalues. Then a given left eigenvector li is always 
orthogonal to the right eigenvector vj, i. e.: 
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





λ= λ≠

λ ≠ λ=

ji

ji

j
T
i  

 if,0

 if ,0
vl   (11) 

Proof – By definition we have: 

λi vi = A vi   (12) 

λi li
T = li

T A   (13) 

By post multiplying eq. (13) by vector vj we get: 

λi li
T vj = li

T A vj = λj li
T vj 

(λi – λj ) li
T vj = 0 

which ends the proof.    ■ 

The residue dynamics (sI – Ao)
-1, originated from the 

state estimator observer dynamics, can be expanded in 
several ways, resulting in different design methods for the 
residual generators. 

Lemma 3 – According to [4], the resolvent (sI –A)
-1 

can be expanded as: 

LL ++++=−
+

−
1m

m

2

1

sss
)s(

AAI
AI   (14) 

The proof can be found in [4]. 

Applying Lemma 3 to eq. (10), the decoupling 
condition becomes: 

W C A
i
 E = 0; i = 1 … n-1 (15) 

W C E = 0    (16) 

Note that i only goes up to n-1, as a direct 
consequence of Cayley-Hamilton’s theorem as showed 
below. 

Theorem 1 – A square matrix satisfies its own 
characteristic equation: 

det (λI - A) = An +  a1 A
n-1+ … + an-1 A + an = 0    (17) 

Proof: If we right multiply the characteristic equation 
by its respective eigenvector we get: 

(λi
n +  a1 λi

n-1+ … + an-1 λi + an)vi = 0 

From Lemma 2 we have: A vi = λi vi, so 

λi
2
 vi = λi λi vi = λi A vi = A λi vi = A2 vi 

Using the same considerations for all terms we get: 

A
n +  a1 A

n-1+ … + an-1 A + an = 0 

A
n
 = -a1 A

n-1- … - an-1 A - an 

Therefore we conclude that any matrix of order n or 
higher can be written as a linear combination of 
{Ai}i = 1...n - 1, which ends the proof.         ■ 

So it is possible to find L and W in such a way that the 
rows of WC are left eigenvectors of Ao and, at the same 
time, keeps WCE=0. Then, decoupling the disturbances 
from faults according to eqs. (15) and (16), may be 
achieved. 

Lemma 4 – According to [4], the resolvent (sI – A)-1 
can also be expanded on its eigenstructure as: 

∑
=

− =−
n

1i

T
i1)s(
i-s

 

λ
lv

AI i

  (18) 

where vi and li are the right and left eigenvectors 
corresponding to the eigenvalues λi. vi and li must be scaled 
so that vi

T
 li = 1; and n is the order of matrix A. The proof 

can be found in [4]. 

Theorem 2 – According to [4], if WCE = 0 and all p 
rows of matrix WC are left eigenvectors of Ao then eq. (15) 
is satisfied, where p is the dimension of the residual. 

Proof. According to [4], the rows of matrix WC are left 
eigenvectors of Ao, i. e.: 

[ ]TT
p

T
2

T
1 lllWC L=  

The decoupling condition given by equation (15) can 
be represented by: 

∑
=

=
n

i i

T
ii

s-ρ
1

0
 

E
lv

WC  

According to Lemma 2, and since all rows of WC are 
the left eigenvectors, li for i=1 … p, we get WCvi=0 for 
i=p+1 … n. The decoupling condition above can be written 
as: 

0E
lv

WC i =
ρ∑

=

p

i

T
i

1 i-s

 
 

But as it was assumed that WCE=0, i. e., li
T
E=0, 

i=1, …, p, which yields 

WC(sI-Ao)
-1
E=0 

ending the proof.     ■ 

Eigenstructure Assignment Details – Patton [1] shows 
that the observer feedback eigenstructure assignment 
problem can be handled through a transformation into the 
dual control form. As we have many methods available to 
compute accurately the feedback gains for either the full 
state feedback or the output feedback control problems we 
can extend theses techniques to the observer design case. 
The dual control problem can be solved by substituting B 
for CT, A for AT and K for LT in the methods for compute 
the feedback gains. So, by this consideration we will present 
the project in the dual control form. Based in Moore [8] we 
have the necessary and sufficient conditions for a general 
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state feedback matrix to exist, which satisfies the standard 
control problem. These equations in the dual control form is 
given by: 

(AT-CT
L

T)li=ρi li; i=1, …, n  (19) 

The necessary and sufficient conditions to find a real 
observer gain matrix L satisfying eq (19) are: 
1. The li ∈ C

n are linearly independent vectors 
2. li=lj

*, whenever ρi=ρj
* 

Patton [1] shows that the subspace where the 
eigenvectors can be assigned are completely determined by 
the eigenvalue (and the system). To derive a base for the 
subspace we first need to make some definitions, with each 
eigenvalue ρi associated to two matrices: Q(ρi) and S(ρi): 

Q(ρi) = (ρiI – A
T
 | C

T
) ∈ ℜℜℜℜn x (n + p)

 

S(ρi) = [P(ρi)   T(ρi)]
T ∈ ℜℜℜℜ(n + p) x p 

where the columns of S(ρi) forms a basis for the null space 
of Q(ρi), i. e.: 

Q(ρi)S(ρi)=0   (20) 

If we post multiply eq. (20) by one vector ei of length 
p and perform the matrix multiplication we get: 

Q(ρi)S(ρi)ei = (ρiI-A
T|CT) [P(ρi)   T(ρi)]

T ei 

= (ρiI-A
T) P(ρi) ei + CT T(ρi) ei = 0     (21) 

We can rewrite eq. (19) as: 

(ρiI-A
T) li - C

T
L

T
li= 0   (22) 

Comparing eqs (21) and (22) we get: 

li=P(ρi) ei   (23) 

L
T
li = T(ρi)ei = zi   (24) 

We can see in eq (23) that li is spanned by the columns 
in P(ρi) and through eq (24) we can calculate the observer 
gain matrix L. 

The problems now are how to find the S(ρi), given 
Q(ρi), and how to find ei given the desired eigenvectors. As 
noted earlier S(ρi) is a basis for the null space of Q(ρi). 
There are several ways to find a null space basis for a 
matrix, several of them use invertion of matrices that may 
lead to numerical problems. Patton [1] shows a procedure 
based on Singular Value Decomposition (SVD). Applying a 
SVD to Q(ρi) we get: 

}

T
r

pn

n

1

l

0

0

ρ UUQ
















=) M

4484476

O

σ

σ

ι(   (25) 

As Ur is an orthogonal matrix, the last p columns of 

the product Q(ρi)Ur will be 0. It should be noted that the 
product Ur

T
Ur results in a diagonal matrix. So we have 

found a null space of Q(ρi) with the p last columns of Ur as 
a basis, i. e., S(ρi) consists of the last p columns of Ur. This 
method has the advantage that the existing poles of the 
open-loop system or values near to them may still be chosen 
as eigenvalues for the observer, since these values leads to a 
stable observer. 

Now we need to find ei that yields the corresponding 
eigenvector li that is closest to the desired value. Since the 
eigenvector corresponding to a desired eigenvalue must lie 
in an allowable subspace spanned by the columns of P(ρi). 
This subspace is determined by the plant matrix A, the 
output matrix C and the desired eigenvalue. As normally, 
the desired eigenvector is not possible, so, we must find an 
allowable eigenvector in the subspace, which is closest to 
the desired vector. 

As only a few components of the desired vector li
d are 

usually specified, remain components may be chosen 
arbitrarily. Ordering the rows through a transformation 
matrix R we get: 

iii

C
i

d
i )ρ(

x

x

l

l e
R

R
eRPR 








==





















=
2

1

M
 ; i=1,… ,p  (26) 

where li
C are the specified components due the constraint 

and x are free componentes. 

Lemma 5: According to [9], the least square solution 
to an inconsistent system Ax = b of n equations and p 

unknowns (n>p) satisfies bAxAA TT = . If the columns of 
A are linearly independent, then AT

A is invertible and 

bAAAx
TT 1)( −= . The projection of vector b onto the 

column space of A is therefore bAAAAxAp
TT 1)( −== . 

The proof can be found in [9]. 

According to [1] and applying Lemma 5 to eq (23) we 
get: 

ei= [R1
T
R1]

-1 R1
T
 li

C   (27) 

We can verify if one vector lies in the subspace 
through its projection on this subspace. Applying Lemma 5, 
if p=b then the vector lies in the subspace otherwise it 
doesn’t lie. 

The remain vectors (i = p+1, …, n) are calculated in 
the same way, but remembering that there are no constraints 
for them. 

Now, considering that Ll={li}i=1...n is a non singular 
matrix we can determine the observer gain L from eq. (24) 
as: 
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L
T
Ll =Z ⇒ L = (ZLl

-1)T  (28) 

The procedure to find W and L can be summarized as: 
1. Compute W so that WCE=0. This determines the left 

eigenvectors of the observer dynamics in dual control 
form, according to Lemma 2. 

2. Define the desired behavior of the residuals, i. e., 
where the observer’s poles should be placed. 

3. Find the corresponding L that generates the desired 
eigenstructure, i. e., the L that generates the matrix Ao 
with the desired eigenvalues and eigenvectors. 

Note: the right eigenvector of the observer dynamics 
in dual control form is the observer dynamics left 
eigenvector. 

Eigenvector Direction Design – This approach can be 
done through the Beard and Jones methodology. Eqs. (6) 
and (7) are used considering fc=fs=d=0 and that fai is one 
right eigenvector vi of Ao, which represents a single fault in 
one actuator, so we get: 

nio veAe +=&        (29) 

Cer =         (30) 

Solving this equation in frequency domain we get: 

E(s)=(sI-Ao)
-1
vi N(s)   (31) 

R(s)=C(sI-Ao)
-1
vi N(s)  (32) 

From Lemma 3 we have: 

)()(
12

sN
sss

s ir

r

v
AAI

E 









++++=

+
LL  

)(         
12

sN
sss r

i
r

ii











++++=

+
LL

vAAvv
    (33) 

Applying Lemma 2 to eq. (33) 

)s(
sss

)s( i1r

r
i

2

i NvE 









++++=

+
LL

ρρ1
 

Returning to time domain we get: 

ne i
i ve

ρ=    (33) 

ne i
i vCr

ρ=    (34) 

Eqs. (34) and (35) show that, for the case where the 
fault fai=vi, the residual vector has a fixed direction Cvi 
independently of n(t) values. So this direction is associated 
to the fault in the ith actuator. 

Now it is necessary to calculate the L matrix to get the 
matrix Ao with the desired eigenstructure. From Lemma 2 
we have: 

Aovi = (A-LC)vi = ρivi 

so 
(ρiI-A)vi + LCvi = 0  (36) 

Solving eq. (36) we get: 

LCvi=(A-ρiI)vi 

and finally, 

L=[LCv1, LCv2, ..., LCvr](CF)
-1  (37) 

Modified Detection Filter for Sensor Faults – In this 
technique, we design the eigenvector of the observer 
dynamics to have the same directions of the fault that we 
need to detect. This method is based on the Detection Filter 
developed by Beard (1971) and Jones (1973) for detecting 
and identifying faults in Linear Time Invariant Control 
Systems; and later modified by Mello (1991), and extended 
and consolidated by Souza and Mello (1997). 

The main idea of the modified detection filter is to do 
a similarity transformation of the mathematical model of the 
system and make a projection of the residue to the plane 
orthogonal to the main axis of the sensor fault. Applying the 
nonsingular similarity transformation matrix T to the model: 
xt=Tx, At=TAT, Bt=TB, Ct=CT; we get: 









=

22

1211

0 t

tt
t

A

AA
A   (38) 

Ct = [Ip   0] 

where At11 ∈ ℜℜℜℜ
p x p, At12 ∈ ℜℜℜℜ

p x (n-p), At21 = 0 ∈ ℜℜℜℜ
(n-p) x p

, 

At22 ∈ ℜℜℜℜ
(n-p) x (n-p), Ct11 = Ip ∈ ℜℜℜℜ

p x p and Ct12 = 0 
∈ ℜℜℜℜp x (n-p). 

Lemma 6 – The canonical form according to [10] can 
be obtained by: 
1. T has the form T = [C   W]T and T-1 = [P   Q], which 

define P and Q. 
2. W is defined by (n-p) left eigenvectors of A that 

complete a set of n linearly independent rows in T. 
The proof can be found in [10]. 

Lemma 7 – At22 is diagonal submatrix and it is formed 
by the (n-p) eigenvalues ρj correspondent to the (n-p) row 
eigenvectors wj included in W. The proof can be found in 
[10]. 

Theorem 3 – Let the p sensor faults distribution matrix 
be represented by: 









=








==

000

vvv

0

I
fffF

L

L
L pt2t1tp

p21 ][     (39) 

The matrix Lt, called observer gain matrix, is designed 
considering that fi is a right eigenvector of Aot = [At - LtCt], 

Formatado

Formatado
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corresponding to its eigenvalues ρi. The eigenvalues shall 
be chosen to keep the observer filter stable. If e(0) = 0 and 
if one unknown single fail fi in the i

th sensor starts at t0, e(t) 
will have a corresponding and normally distinct direction 
given by: Lti = ρifi + FAt11

i, where At11
i is the ith column of 

At11r(t) will stay in a plane spanned by CLti and vti. If 
e(0) ≠ 0 then r(t) will converge asymptotically to a plane 
spanned by CLti and vti. The proof can be find in [10]. 

Additional Considerations – The final step of the 
procedure is to compare the direction of the residue vector 
against the fault directions patterns with the objective of 
detect and isolate the fault. 

A general IFD scheme based on analytical 
redundancy, basing in [4], can be illustrated as in Figure 4. 
A block with measurements and control signals as input and 
a fault decision as output represents it. 

Figure 4 – Structure of an IFD system. 

Once the fault is detected and isolated, the control law 
can be reconfigured, i. e., the fault signal can be changed 
for another redundant signal (in a Instrument Fault 
Detection, Isolation and Reconfiguration System – IFDIR 
system). In case where there is more than one redundant 
signal, it should be selected that which presents better 
information quality for the desired signal. 

MODEL OF STUDY 

BIBLIOGRAPHICAL REVISION – Following there 
are some revisions of good references for a SVL such as 
[5], [6],[13], [16]. The detail project for a fault detection 
and isolation system using product of two error functions 
can be found In [5], [6] and [13]. The structure of the 
control system used in the Brazilian VLS, with focus in 
description of the algorithms used in its control system, can 
be found in [16], where there are indications of several 
references for this vehicle. Several methods for fault 
detection and isolation in dynamic systems can be found in 
[1], [2], [3], [4], [11], [12], [14]. The mathematical model 
to describe the longitudinal motion of a satellite launcher 
vehicle can be obtained in [15]. The method used for the 

observers' design using eigenstructure can be found in [1], 
[4] and [10]. The detection and isolation of actuators and 
sensors faults, using the modified fault detection filter, can 
be found in [13]. 

DESCRIPTION – The mathematical model used for 
this study is a simplified model of longitudinal motion of 
the satellite launcher vehicle (SLV) describe in [13]. As 
these types of vehicles are unstable, the fault in a sensor can 
be catastrophic if the control system doesn't have any 
redundancy degree, physical or analytical. The detailed 
description of the basic model used can be found in [13] 
and complemented in [5]. To this model we added the row 

zz =&  to the system dynamic matrix and the measure 
yw = w+z to the measurement matrix keeping the system 
completely observable and ease apply the eigenstructure 
method. With the above consideration the following model 
was used to the system longitudinal model: 

uDxy +

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
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      (40) 

where D = 0, w denotes the linear velocity along the z axis 
in the vehicle system, denominated normal velocity; q is the 
pitch-rate velocity, that is, the angular velocity around the y 
axis in the vehicle system; θ is the pitch attitude, that is, the 
angle of the attitude around the y axis in the vehicle system; 
z is the state added for illustration of the method; βZ is the 
deflection angle of the actuator around the y axis in the 
vehicle system; Zw, Zq, Mw, Mq, Zβz e Mβz are the 
aerodynamics derivatives of the satellites launcher vehicle, 
obtained in wind tunnel tests; U0 is the module of the linear 
velocity of the vehicle, and g is the local gravity 
acceleration. 

Table 1 – Parameters used in the model and gains of 
the control law. 

Parameter Value 
Zw [s

-2] -0,0968 
Zq [s

-2] 0,1631 
Mw [m

-1s-1] 0,0096 
Mq [s

-1] 0,0568 
Zβz [m s-2] 19,3761 
Mβz [s

-2] 7,2769 
U0 [m s-1] 544,46 
g [m s-2] 9,7886 

Design 1 – Applying the Robust Residual Generator 
methodology, where we need a robust residual generator 
insensitive to actuator fault with the following eigenvalues 
ρρρρ = [-7; -5; -4; -3], to keep the observer dynamics stable and 

Control signals 
Outputs 

Actuators 
Dynamic 

Process 
Sensors 

Detection and 
Isolation System 

Actuator faults 
Component faults 

Sensors faults 

Disturbances 

Fault origin 
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faster than system dynamic. The plant eigenvalues are: 

λ = [-2.3160; 2.2587; 0.017958; 1.0000] 

The pair (A, C) is completely observable, so from eq. 
(16), we get: 









=+

=+

=+

07.276919.376

07.276919.376

07.276919.376

3231

2221

1211

ww

ww

ww

 

From Theorem 2 we get: 









=−

=−

=−

0

0

0

4313

4212

4111

ll

ll

ll

   (41) 

So the similarity transformation matrix is: 



















=

1000

0100

1-001

007.276919.376

T  

According to [4], the desired eigenvectors li
T 

(i=1, …, 3) were chosen as the row in WC. The l4 vector 
was chosen from one of the columns of P(-3). So we got: 



















−

−

−

=

001658.0017024.099979.00055904.0

9227.011679.31898.1

0100

97406.000168.3133.1

T
lL  

Note that the constraints from eq. (41) are only 
approximately fulfilled, as mentioned in [1]. 

From eq. (28) we got the observer gain: 



















−

−−

−−

=

955.30895.94639.35

510

054352.02997.308161.0

78,342.612979.23

L  

Finally we got the following observer dynamic Ao and 
W matrix: 



















=−=

34.659-30.955-94.89535.639-

05-00

0.081610.0543523.2429-0.09121

23.97924.99271.578-23.882

LCAAo  

















−

−

=

11679.31898.1

100

00168.3133.1

W  

Desing 2 – Applying the Modified Detection Filter 
methodology, where we need that the eigenvector of the 
observer dynamics has the same direction of the fault that 
we want to detect. The plant eigenvalues and left 
eigenvectors are: 

λ = [-2.3160; 2.2587; 0.017958; 1.0000] 











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
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


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0017662.010040755.0

001872.010043245.0

lV  

The pair (A, C) is completely observable, so we need 
to do one similarity transformation. To compound the 
matrix T we will use the left eigenvector 
W = [-0.0043245   1   –0.018272   0] from the matrix Vl, 
corresponding to eigenvalue λ1 = -2.316. So we get: 


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
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
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
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CTCt  

Let 



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







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





=

000

100

010

001

tF  be the set of p sensor faults to be 

used in the design of the Modified Detection Filter. 
Choosing the Observer eigenvalues ρ1=ρ2=ρ3=ρ and 
applying Theorem 3 we get: 











 +−
=

0
11
i
ti

i

ρ Av
l  where i

t11A  is the ith column of the 

matrix At11. As ρ1=ρ2=ρ3=ρ we can use: 
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

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So we get: 
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Calculating the residue dynamics in frequency domain 
we get: 
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Now determining the vectors direction for single fault 
in the sensors using eq. (7) in frequency domain and 
considering fa=fc=d=0 we get: 

iiti sN
ρs
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The vector direction for fault at sensor 1 is: 

















+

















 −

















−
−

=

0

0

1

)(

0

0

0

1

0100

0010

0001
)(

1 sN

ρ

ρs

sN
R  

















+














 −

−
=

0

0

1

)(

0

0

1
)(

1 sN

ρ

ρs

sN
R  

The vector direction for fault at sensor 2 is: 
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The vector direction for fault at sensor 3 is: 
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FAULT CASE STUDY – To see the performance of 
the IFD system we used the Simulink Simulation 

Environment, version 5.0, from MatLab, version 6.5.0. We 
discarded the fault fc and the disturbance d, presented in 
eq. (4). To facilitate the visualization of the result for a 
single fault we used the unit step function for the fault 
functions fa(t) and fs(t). We used the integration method 
“ODE5 – Dormand-Prince” from MATLAB for simulation. 

For design 1 we considered a step fault in the actuator 
at 1s and a step fault in one sensor at 5s. In Figure 5 is 
presented the actuator and the w sensor fault signals applied 
to the system. In Figure 6 we can see that the system is 
insensitive to actuator fault. 
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Figure 5 – Fault signals applied to the system. 
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Figure 6 – Residuals due the faults applied. 

In Figure 7 we have the residue vector for the actuator 
and w sensor faults. The solid lines represent the amplitude 
of the residue. In this case the residue vector has only one 
direction and lies on the plane XY. 

In Figure 8 we have the residue vector for the actuator 
and p sensor faults. For a graphical representation we used 
the axis X to represent the component Res X from the 
residual vector, axis Y for Res Y and axis Z for Res Z. The 
solid lines represents the residual during the simulation, 
where one extremity of the residue pass by the origin and 
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the other has a interpolation line for visualization of the 
vector variation. In this case the residual lies on the plane 
approximately perpendicular to the plane XY. Note that Z 
values are very small in comparison with X and Y values. 
The dots are for the vector amplitude projection to the plane 
XY. 
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Figure 7 – Residue vector for actuator and w sensor 

faults. 
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Figure 8 – Residue vector for actuator and p sensor 
faults. 

In Figure 9 we have the residue vector for the actuator 
and θ sensor faults. Note now that Z values have 
approximately the same magnitude as X and Y values. The 
dots show that the residuals do not lie on a plane. 

For design 2 we considered only a step fault in one of 
the sensors for each simulation at 1s. The solid lines 
represents the residual during the simulation, where one 
extremity of the residue pass by the origin and the other has 
a interpolation line for visualization of the vector variation. 
The dots are for its projection to the plane perpendicular to 
the main residual axis. For a graphical representation we 
used the axis Res X as a main axis for w sensor fault, axis 

Res Y for p sensor fault and axis Res Z for θ sensor fault. 
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Figure 9 – Residue vector for actuator and θ sensor 
faults. 

In Figure 10 we have the residue for a fault in the w 
sensor. Note that in this case the residue vector is parallel to 
the Res X axis, i. e., it is a case where the residual lies on 
line as mentioned before. So in this case its projection on 
the plane perpendicular to this axis is null and the residual 
must be tested with the X axis. 
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Figure 10 – IFD System response for a step fault in w. 

In Figure 11 we have residue for a fault in the p 
sensor. The residue vector forms a plane that contains the 
Y-axis. Note in this case the difference of magnitude 
between the X-axis and the others axes. It can be difficult to 
determine the angle in noise presence to isolate a fault in the 
w sensor. 

In Figure 12 we have residue for a fault in the θ 
sensor. The residue vector also form a plane but now 
contain the Z axis. 
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Figure 11 – IFD System response for a step fault in p. 
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Figure 12 – IFD System response for a step fault in θ. 

COMMENTS AND CONCLUSIONS 

It should be considered in the observers design that 
they should be considered the case that initial conditions the 
plant are not null and it can cause a false alarm indication 
for all sensors when the process is initiated. 

This method detection and isolating the fault based on 
fault direction vectors presents the advantage of being able 
to detect fault since when there is parameters variation of 
the plant or in presence of noise in the measure. For the 
Robust Residual Generator it has the advantage that the 
residual can be insensitive to unknowns inputs. In case of 
the method of the Modified Detection Filter it has the 
advantage that it has strong fault detectability [4] to indicate 
sensor fault but it is not applicable for actuators, 
components or disturbance to the plant. 

For the methodology presented it was noticed that the 
IFD system has a good performance to detect and isolate 
abrupt faults type but its performance decrease in cases of 

intermittent fault due to the time response of the observer 
designed. 
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