

CHARACTERIZATION AND CATALYTIC PROPERTIES OF M₀O₃/V₂O₅/Nb₂O₅ IN THE REACTION OF DECOMPOSITION OF THE ISOPROPANOL

José B. de Paiva Jr¹, Gilberto G. Cortez^{1,*}, Waldinei R. Monteiro², Marisa A. Zacharias², José A.J. Rodrigues². ¹Departamento de Engenharia Química, Faculdade de Engenharia Química de Lorena, Lorena-SP, Brazil. ²Laboratório Associado de Combustão e Propulsão, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista-SP, Brazil.

Abstract. The influence of molybdenum oxide as a promoter on the V_2O_5/Nb_2O_5 system was investigated. A series of $MoO_3/V_2O_5/Nb_2O_5$ catalysts with MoO_3 loading ranging from 1 to 3 wt% MoO_3 and fixed V_2O_5 content (21 wt%), were prepared by impregnation of support by an aqueous solution of ammonium metavanadate and ammonium molybdate. The catalysts were characterized by chemical analysis (atomic absorption spectroscopy), nitrogen volumetry (BET surface area and pore volume), temperature-programmed reduction (TPR), X-ray diffractometry (XRD) and tested in the isopropanol decomposition reaction. The properties acid-basic of the catalyst was investigated by the selectivity during the isopropanol decomposition reaction. The X-ray diffraction results showed the presence of the β -(Nb,V)₂O₅ phase since was added the V₂O₅ on Nb₂O₅. The results of temperature programmed showed that the reducibility of vanadium was affected with the addition of molybdenum up to a loading of 3 wt% MoO₃. The results of catalytic activity for the isopropanol decomposition revealed that the molybdenum oxide, at high loadings, affects the properties acidbase of the V₂O₅/Nb₂O₅ catalyst, providing a decrease in the propylene formation (acid sites) and acetone (basic sites).

Keywords: niobium, vanadium, molybdenum, isopropanol.

1. Introduction

Supported vanadium oxide catalysts have been used in a great number of reactions of selective oxidation (Cortez, et. al. 2003). The catalytic properties of the vanadium oxide are influenced strongly by several variables, such as the preparation method, nature of the support and promoter type. Vanadium and molybdenum oxides are important components of catalysts used for selective oxidation of light alkanes (Lopez Nieto, et al. 1995). The molybdenum has been used frequently as a promoter in V_2O_5 -supported (Satsuma et al. 1991). Dejoz et al. (1999) reported the role of the molybdenum in Mo doped V-Mg-O catalysts during oxidative dehydrogenation of n-butane. Lietti et al. (1999) showed that the V_2O_5 -MoO₃/TiO₂ catalysts could be used in the selective catalytic reduction (SCR) of NO_X In recent years, niobium-based materials have been employed as supports in numerous catalytic applications. The use of Nb₂O₅ as support in catalysts that contain vanadium can represent an alternative synergic, once the two elements besides belong to the same group of the periodic table, present several similar chemical properties (Tanabe, 2003). The catalytic applications of the niobium oxide as support, promoter or a solid with acid properties, have been reported in the last years (Ziolek, 2003). Isopropanol

^{*}To whom all correspondence should be addressed.

Address: Departamento de Engenharia Química de Lorena, FAENQUIL, 12600-000 Lorena, SP – Brazil E-mail: cortez@dequi.faenquil.br

decomposition in the absence of oxygen is used widely as a chemical probe reaction to determine acid-basic properties. In the absence of oxygen the selectivity in the conversion of isopropanol into propylene by dehydration and acetone by dehydrogenation has been employed to determine the balance between surface acidity and basicity (Haffad, et al. 2001). In the presence of oxygen is a measure of the surface redox potential of the catalyst or of its activity as a selective oxidation catalyst (Kulkarni et al., 2002). The reactions oxidation and decomposition reactions of isopropanol are analogous, since the only role of oxygen is to prevent the reduction of the metal oxide surface.

In the present study were prepared and characterized $MoO_3/V_2O_5/Nb_2O_5$ catalysts with MoO_3 contents of 1 and 3 wt.% and with 21 wt.% V_2O_5 loading. The catalytic activity was evaluated in the isopropanol decomposition in the presence of oxygen over the catalysts.

2. Experimental

For this study, the catalyst preparation involves two steps. Prior to impregnation, the Nb₂O₅ was prepared by calcination of hydrated niobium (supplied by CBMM, Brazil HY-340) at 500°C for 6 h. In the first step, the support was added in the aqueous solution heated up to 70°C containing the NH₄VO₃ (Merck) salt. The theoretical amount of vanadium on the support was of 21wt.% of V₂O₅. The mixture was maintained under agitation and vacuous in the temperature of 70°C to remove all the water. Therefore after, the sample was dried at 110°C for 12 h and subsequently calcined at 450°C for 4 h. In the second stage, a theoretical amount (1 or 3 wt.% of MoO₃) of (NH₄)₆Mo₇O₂₄.4H₂O (Mallinckrodt) salt was added to the mixed V₂O₅/Nb₂O₅ catalyst with water in excess in the temperature of 70°C. The mixture was maintained in the same conditions described previously until drying the solid totally. The obtained solid was dried and calcined in the same previous conditions. The final amount of MoO₃ on V₂O₅/Nb₂O₅ was of 1 and 3% wt, respectively. Samples are labeled as *x*Mo/21V/Nb, where *x* is MoO₃ loading with 1 and 3 wt.%.

The elemental composition of the samples was determined by atomic absorption spectroscopy (AAS). The samples were digested with a mixture acid of HNO_3 and HF. The measurements were carried out by standard addition solution method by using a Perkin-Elmer Analyst equipment.

BET surface areas were measured by using a Quantachrome NOVA 1000 instrument by adsorption of nitrogen at -196° C on 150 mg of sample previously degassed at 200°C under high vacuum atmosphere for 2 h.

XDR diffraction patterns were obtained with a SEISERT Isodebyeflex 1001 diffractometer operated at 40 kV and 30 mA by using Ni-filtered CuK α radiation ($\lambda = 0.15418$ nm). The samples in powder form were analyzed without previous treatment after deposition on a quartz sample holder. The identification of crystalline phases was made by using references from the ASTM files.

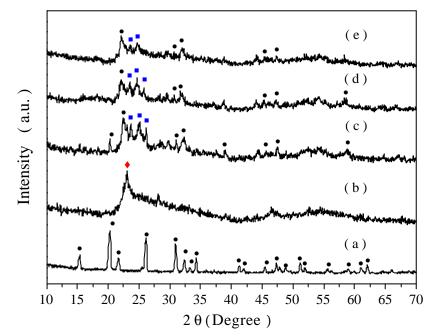
Temperature-programmed reduction (TPR) results were obtained in a Quantachrome Chembet-3000 apparatus loaded with 25 mg of catalyst. The samples were first treated in helium at temperature of 150° C for 1 h. The samples were cooled to room temperature and were subsequently contacted with an H₂/N₂ mixture (H₂/N₂ molar ratio of 0.15 and a total flow of 40 cm³/min) and heated, at a rate of 10° C/min, to a final temperature of 900° C.

The catalytic test of decomposition of isopropanol was realized out in a fixed bed quartz tubular reactor (i.d. 10 mm, length 400 mm) operated at atmospheric pressure and temperature in the range of $170-290^{\circ}$ C. The reactor was equipped with a coaxial thermocouple for catalytic bed temperature profiling. The isopropanol (99.7%, Merck) was injected in the piping of feeding of gases flowing of the reactor with aid of a pump Thermo Separation Product Spectra P100, in the flow rate of 0.05 cm³/min and diluted in a mixture of He and O₂ (molar ratio of 3/1) in the flow rate of 74 cm³/min. Reactants and reaction products were analyzed by on-line gas chromatography (VARIAN 3350), equipped with a thermal conductivity detector (TCD). A Carbowax 20 M on Chromosorb W column was used for separation of products. The catalyst mass was 100 mg, particle size 0.5-0.85 mm and the time contact was 2.4 g.h/mol_{isop}. The conversion was calculated from the reaction product on the basis of the carbon balance: the total molar amount of carbon in the effluent was assumed to be equal to the molar amount of carbon in the isopropanol fed to the reactor.

3. Results and discussion

The results of the chemical composition determined by atomic absorption (AA), BET specific areas and volumes of pores of the samples are presented in Table 1. These results demonstrate that the amounts of V_2O_5 and MoO₃ in the samples are close of the theoretical values. The vanadium presence on the Nb₂O₅ reduces the specific area and the volume of pores being this more pronounced effect when molybdenum is added on the V_2O_5/Nb_2O_5 catalyst. This effect is related to the blockade of the pores of the Nb₂O₅ for the high loadings of V_2O_5 (21 wt.%) and also of MoO₃ (1 and 3 wt.%).

Table 1. Results of chemical composition of V and Mo obtained by AA, BET specific areas						
(Sg _{BET}) and volumes of pores (Vp) of the samples.						
	V_2O_5	MoO ₃	Sg _{BET}	Vp		


Samples	V ₂ O ₅ (wt.%)	MoO ₃ (wt.%)	$\begin{array}{c} Sg_{BET} \\ (m^2.g^{-1}) \end{array}$	$Vp (cm^3.g^{-1})$
Nb ₂ O ₅	0	0	112	0,08
21V/Nb	24,2	0	39	0,04
1Mo/21V/Nb	21,0	1,2	17	0,02
3Mo/21V/Nb	19,2	2,9	6	nd

nd: not determined

Figure 1 presents the XRD patterns of V₂O₅ bulk, Nb₂O₅ support and of the catalysts *x*Mo/21V/Nb calcined at 500⁰C. The profile of XRD of V₂O₅ bulk is represented in Figure 1-a, where the most intense peaks correspond to 20 at 20.3° (100%), 26.1° (90%) and 30.95° (85%). The Figure 1-b presents the profile of XRD of Nb₂O₅ with a most intense peak at $2\theta = 23,14^{\circ}$ corresponding the TT-phase or T-phase of Nb₂O₅. The X-ray diffractograms of the sample calcined, after the addition of V₂O₅ on Nb₂O₅ (Figure 1-c), show the presence of a β -(Nb,V)₂O₅ phase as evidenced by the peaks to 20 at 23.67°, 24.97° and 26.19°. A more intense peak to $2\theta = 22.33^{\circ}$ and other less intense, are characteristic of V₂O₅ dispersed on Nb₂O₅. The absence of peaks of the crystalline phase of MoO₃ for samples containing 1 and 3 wt.% MoO₃ supported on V₂O₅/Nb₂O₅, represented respectively by the Figure 1-d and

1-e, indicates that the molybdenum oxide is present in a state amorphous or highly dispersed on V₂O₅/Nb₂O₅. In previous studies, Ko and Weissman (1990) reported that the forms of the TT and T-phases of Nb₂O₅, when calcined at 500°C, present a profile of X-ray diffraction similar. Other authors (Chary et al. 2002) identified the TT-phase and T-phase of crystalline Nb₂O₅ with different spacing intensities at d = 3,94Å ($2\theta = 22.6^{\circ}$) and d = 3.14Å ($2\theta = 28.42^{\circ}$). The intensity of β -(Nb,V)₂O₅ phase, identified in $2\theta = 23.6^{\circ}$ and 25° , increases with the addition of molybdena (1 wt.% of MoO₃) to the V₂O₅/Nb₂O₅ catalysts and decreases with the increase in molybdenum loading from 2 to 4 wt.%. In this study, this behavior was confirmed in all the samples. In more recent works, Chary et al. (2002) identified the β -(Nb,V)₂O₅ phase to 2θ at 22.5^o (100%) and 28.5^o (90%) for samples containing 10 to 12 wt.% V₂O₅ supported on Nb₂O₅. Watling et al. (1996) also observed the presence of β -(Nb,V)₂O₅ phase for concentration of vanadium around 7 mol-% in vanadia-niobia catalysts.

Fig. 1. XDR patterns of (a) V_2O_5 bulk; (b) N_2O_5 ; (c) 21V/Nb; (d) 1Mo/21V/Nb and (e) 3Mo/21V/Nb. Peaks due to () V_2O_5 phase; (\blacklozenge) TT-phase or T-phase of Nb_2O_5 and () β -(Nb,V)₂O₅ phase.

The temperature programmed reduction (TPR) profiles of V_2O_5 bulk, Nb_2O_5 and catalysts are presented in Figure 2. The TPR profile of pure V_2O_5 shown in Figure 2-a, presents three peaks of reduction at 663^oC, 696^oC and 836^oC. Komandur et al. (2003) obtained the same profile, whose peaks were attributed to the following sequence of reduction of the vanadium oxide: 675^oC ($V_2O_5 \rightarrow V_6O_{13}$), 705^oC ($V_6O_{13} \rightarrow V_2O_4$) and 780^oC ($V_2O_4 \rightarrow V_2O_3$). In the three reduction stages, the vanadium (V^{+5}) is reduced to the species $V^{+4,33}$, V^{+4} and V^{+3} , the measure that the reduction temperature increases.

The profile of reduction of Nb₂O₅, presented in Figure 2-b, shows a peak of reduction around 781°C. The reducibility of Nb₂O₅ is more difficult than of vanadium oxide. The complete reduction of pure niobium with hydrogen is initiated at 800°C. However, the reduction of bulk Nb₂O₅ to Nb₂O₄ happens around 1300°C (20). The

21V/Nb catalyst, presented in Figure 2-c, exhibits four peaks of reduction: a little defined one around 595°C and other three located at 640°C, 680°C and 830°C, being the first three corresponding to the reduction of the vanadium species and the last correspondent the reduction of Nb₂O₅. The profile of reduction of 1Mo/21V/Nb catalyst, presented in Figure 2-d, shows four regions of reduction at 608°C, 644°C, 692°C and 850°C. The presence of MoO₃ in low concentrations (1 wt.%) on V_2O_5/Nb_2O_5 modifies the reducibility of V⁵ species on Nb₂O₅, promoting a significant change in the reduction temperatures for higher values. The profile of reduction of 3Mo/21V/Nb catalyst (Figure 1-e) presents maximum temperatures of reduction at 630°C and 858°C.

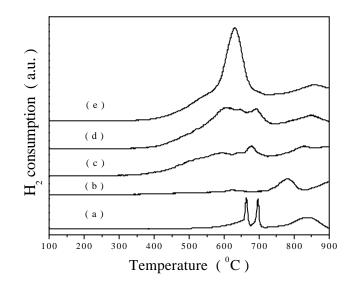
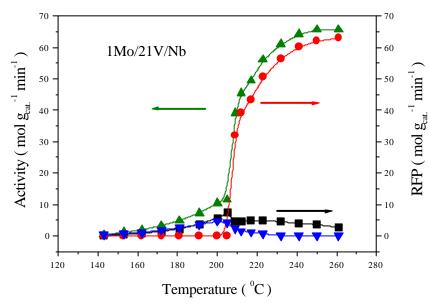


Fig. 2. TPR profiles of (a) V₂O₅ (bulk); (b) Nb₂O₅; (c) 21V/Nb; (d) 1Mo/21V/Nb and (e) 3Mo/21V/Nb.

The modification in the reducibility of V^5 species with the support can be attributed to the addition of molybdenum oxide through the formation of β -(Nb,V)₂O₅ phase, which promote an increase of the maximum temperature of reduction. Other authors (Chary et al. 2002) found that the addition of molybdenum oxide over V₂O₅/Nb₂O₅ catalysts favors the formation of β -(Nb,V)₂O₅ phase up to 3 wt.% MoO₃ loading and increases the reducibility of the catalysts. The reduction of MoO₃ was studied for Grunert et al. (1992). They identified reduced species of Mo⁺⁶, Mo⁺⁵, Mo⁺⁴ and Mo⁺², and a located region around of 630°C was attributed to the formation of metallic Mo. In more recent works, Bhaskar et al. (2001) identified two peaks of pure MoO₃ at 767 and 997⁰C and one minor reduction peak at 797⁰C. The sharp peak at 767⁰C corresponds to reduction of MoO₃ (MoO₃ \rightarrow MoO₂) and the peak at 997⁰C is associated with the reduction of de MoO₂ (MoO₂ \rightarrow Mo). A minor peak at 797⁰C can correspond at Mo₄O₁₁ formed by reduction of MoO₃. In the present work, a reduction peak at 630°C (Figure 2-e) can be attributed to the metallic Mo reduced on V₂O₅/Nb₂O₅.


The acid-base properties of catalysts were compared using the isopropanol test reaction. The results of catalytic activity for the oxidative decomposition of isopropanol as a function of reaction temperature are shown in Table 2. The catalytic activity was evaluated being taken as base the rate of formation of the products (mol g_{cat}^{-1} min⁻¹). The results show that the Nb₂O₅ is only selective to propylene in the temperature of 230°C. The vanadium

addition over niobium produces propylene and acetone in the three temperature intervals, being growing with the increase of this parameter. The addition of 1 wt.% of MoO₃ over 21V/Nb increase the propylene production and reduces the production of acetone, when compared with the catalyst 21V/Nb. Already in the catalysts containing 3 wt.% of MoO₃ on 21V/Nb, the propylene production and of acetone decrease. The results of catalytic activity versus reaction temperature for the isopropanol oxidation of 1Mo/21V/Nb catalyst are shown in Figure 3. The conversion of the isopropanol increases with the rise of temperature and reaches a maximum in the temperature of 260^oC. The propylene formation is favored starting from the temperature of 210^oC, however, the formation of acetone is disfavored starting from this temperature. In works mentioned previously (Wang et al. 1999), the increase of the temperature favors the propylene formation through the dehydration of the isopropanol.

Table 2. Results of catalytic activity of Nb₂O₅ and xMo/21V/Nb at different temperatures, in the isopropanol oxidation reaction.

	RFP - Rate of formation of the products (mol. g_{cat}^{-1} min ⁻¹)					
Catalyst	Propylene			Acetone		
-	210°C	220°C	230°C	210°C	220°C	230°C
Nb_2O_5	0	0	8,1	0	0	0
21V/Nb	38,8	46,6	51,5	14,3	13,0	11,1
1Mo/21V/Nb	33,4	46,9	55,1	4,8	4,7	4,5
3Mo/21V/Nb	5,5	35,8	43,1	4,0	3,0	2,8

Fig. 3. Catalytic results for the isopropanol oxidation of 1Mo/21V/Nb catalyst versus reaction temperature. () Isopropanol; (•) propylene; (•) acetone and () di-isopropylether.

It is known that the decomposition of isopropanol can happen through different mechanisms, which depend of the acid and basic properties of the catalyst (Gervasini et al., 1997). The identification of the acid and basic properties of the catalyst can determine the mechanism more probable in this reaction (Diez et al. 2003). On the

other hand, the reaction of decomposition of isopropanol doesn't supply information to distinguish among of Lewis and of Brönsted acids sites. The presence of redox species in the catalysts can contribute in the dehydration activity and dehydrogenation in the decomposition of isopropanol. Deo et al. (1994) identified the superficial species of vanadium oxide on different metallic oxides. The VO₄ species on γ -Al₂O₃ are detected to low concentrations of vanadium oxide, and still species poliméricas of the type V-O-V happen with the increase of the concentration of vanadium oxide (Cortez et al. 2002). In higher concentrations, the formation of three-dimensional crystals of V_2O_5 is observed in coordination octahedra (Arena et al. 1999). In this work high vanadium concentration was used on Nb₂O₅, and for DRX was possible to identify only the crystalline phase V₂O₅.

The properties acids of Nb₂O₅, V₂O₅ and MoO₃ have been reported in the literature. Jehng et al. (1990) studied the molecular structure-reactivity relationships for supported niobium oxide catalysts by combining Raman spectroscopy structural studies with chemical probes (pyridine) that measured the acidity and reactivity of the surface niobium oxide sites. The results of Raman spectra showed that the highly distorted NbO₆ octahedral possess Nb-O bonds and are associated with Lewis acid sites, presenting located bands between 850cm⁻¹ and 1000 cm⁻¹. The slightly distorted NbO₆ octahedral as well as NbO₇ and NbO₈ groups only possess Nb-O bonds and are associated with Brönsted acid sites. Busca et al. (1989) found acidity of Lewis and Brönsted on V_2O_5 . The formation of the surface vanadia species on the oxide supports is accompanied by a decrease in the number of surface Lewis acid sites and increase in the number of surface Brönsted acid sites (Blasco, et al. 1997). The decrease of Lewis acidity can be associated with the coordination of VO_X species on support, and the increase of Brönsted acidity to the groups V-OH of the species VOH_4^{-2} and $V_2O_7H_2^{-2}$ on support (Ferreira et al., 1999). Some authors (Abello et al., 2001), in studies with TPD of NH₃ adsorption on Mo/γ-Al₂O₃, observed that the addition of Mo on γ -Al₂O₃ increases the number of acid sites that interact with NH₃. This way, the acid force presents an important decrease with the increase of the molybdenum oxide loading, and new acid sites with weak and moderate forces are formation. In previous works, Aramendia et al. (1996) concluded that the activity of dehydration in the reaction of decomposition of isopropanol on MgO is related with the acidity of Brönsted. Similar results were found by Martin et al. (1996) in the catalysts MoO₃/TiO₂.

The results of the present paper confirm that the propeno formation on xMo/21V/Nb catalysts was due the presence of acid sites with weak and moderate forces (Brönsted acid sites), generated in the surface of the catalyst by the presence of V₂O₅ and MoO₃. The formation of acetone was due the presence of basic sites related to the superficial oxygen of VO_x and MO_x species on niobium oxide.

4. Conclusion

The vanadium addition to the Nb₂O₅ support and of molybdenum on the V/Nb system decreases, significantly, the specific area and the volume of pores of niobium oxide, being this more pronounced effect when the content of MoO₃ assumes values of the order of 3 wt.%. In the results of diffraction of ray-X, was verified that the addition of the vanadium on Nb₂O₅ promotes the formation of β -(Nb,V)₂O₅ phase, and the addition of molybdenum on the V/Nb system, alters the intensities of the peaks of this crystalline phase. The addition of

molybdenum, to low concentrations, modifies the reducibility of the vanadium on Nb_2O_5 , increasing the maximum temperature of reduction. The presence of 3 wt.% of MoO_3 on the V/Nb system affected the reducibility of VO_X species in the catalyst.

The results of catalytic activity showed, in the catalyst with low MoO_3 content, a larger selectivity to propylene, fact this related to the presence of Brönsted acid sites in the catalyst with low concentration of MoO_3 . This effect is due to the decrease of strong acid sites (Lewis) and the increase of weak and moderate acid sites (Brönsted) for the addition of MoO_3 .

References

Abello, M.C., Gomez, M.F., Ferretti, O. (2001) Mo/-AbO₃ Catalysts for the Oxidative Dehydrogenation of Propane: Effect of Mo Loading *Appl. Catal. A: Gen. 207*, 421.

Aramendía, M.A., Borau, V., Jimenez, C., Marinas, J.M., Porras, A., Urbano, F.J. (1996) Magnesium Oxides as Basic Catalysts for Organic Processes J. Catal. 161, 829.

Arena, F., Frusteri, F., Parmaliana, A. (1999) Structure and Dispersion of Supported-vanadia Catalysts. Influence of the Oxide Carrier *Appl. Catal. A: Gen. 176*, 189.

Bhaskar, T., Reddy, K.R., Kumar, C.P., Murthy, M.R.V.S., Chary, K.V.R. (2001) Characterization and Reactivity of Molybdenum Oxide Catalysts Supported on Zirconia *Appl. Catal. A: Gen. 211*, 189.

Blasco, T., Galli, A., López Nieto, J.M. Trifiró, F. (1997) Oxidative Dehydrogenation of Ethane and n-Butane on VO_x/Al₂O₃ Catalysts J. Catal. 169, 203.

Busca, G., Ramis, G., Lorenzelli, V. (1989) FT-IR Study of the Surface Properties of Polycrystalline Vanadia J. Mol. Catal. 50, 231.

Datka, J., Turek, A.M., Jehng, J.M., Wachs, I.E. (1992) Acidic Properties of Supported Niobium Oxide Catalysts: An Infrared Spectroscopy Investigation J. Catal. 135, 186.

Dejoz, A., López Nieto, J.M., Márquez, F., Vázquez, M.I. (1999) The Role of Molybdenum in Mo-doped V-Mg-O Catalysts During the Oxidative Dehydrogenation of n-butane *Appl. Catal. A: Gen. 180*, 83.

Deo, G., Wachs, I.E. (1994) Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol J. Catal. 146, 323.

Díez, V.K., Apestegía, C.R., Di Cosimo, J.I. (2003) Effect of the Chemical Composition on the Catalytic Perfomance of Mg_vAO_x Catalysts for Alcohol Elimination Reactions *J. Catal.* 215, 220.

Ferreira, M.L., Volpe, M. (1999) On the Nature of Higly Dispersed Vanadium Oxide Catalysts: Effect of the Support on the Structure of VO_X Species *J. Mol. Catal. 149*, 32.

Cortez, G.G, Fierro, J.L.G., Bañares, M.A. (2003) Role of Potassium on the Structure and Activity of Alumina-Supported Vanadium Oxide Catalysts for Propane Oxidative Dehydrogenation *Catal. Today* 78, 219.

Cortez, G.G., Bañares, M.A. (2002) A Raman Spectroscopy Study of Alumina-Supported Vanadium Oxide Catalyst during Propane Oxidative Dehydrogenation with Online Activity Measurement J. Catal. 209, 197.

Gervasini, A., Fenyvesi, J., Auroux, A. Study of the Acidic Character of Modified Metal Oxide Surfaces Using the Test of Isopropanol Decomposition (1997) *Catal. Letters* 43, 219.

Gooding, W. B., Pekny, J. F., McCroskey, P. S. (1994). Enumerative Approaches to Parallel Flowshop Scheduling via Problem Transformation. *Comput. Chem. Eng.*, 18, 909.

Grünert, W., Stakheev, A.Y., Mörke, W., Feldhaus, R., Anders, K., Shpiro, E.S., Minachev, K.M. (1992) Reduction and Metathesis Activity of MoO₃/Al₂O₃ Catalysts: I. An XPS Investigation of MoO₃/Al₂O₃ J. Catal. 135, 269.

Haffad, D., Chambellan, A., Lavalley, J.C. J. (2001) Propan-2-ol Transformation on Simple Metal Oxides TiO₂, ZrO₂ and CeO₂ Catal. Mol. A. 168, 153.

Jehng, J.M., Wachs, I.E. (1990) The Molecular Structures and Reactivity of Supported Niobium Oxide Catalysts *Catal. Today* 8, 37.

Komandur, V.R.C, Gurram, K, Chinthala, P.K, Guggilla, V. S., Niemantsverdriet, J. W., (2003) Characterization and reactivity of vanadium oxide catalysts supported on niobia *Appl. Catal. A: Gen. 245*, 303.

Komandur, V.R.C., Chinthala, P.K., Kondakindi, R.R., Thallada, B., Taduri, R. (2002) Characterization and Catalytic Properties of MoO₃–V₂O₅/Nb₂O₅ Catalysts *Catal. Comm. 3*, 7.

Ko, E.I., Weissman, J.G. (1990) Structures of Niobium Pentoxide and their Implications on Chemical Behavior *Catal. Today* 8, 27.

Kulkarni, D., Wachs, I.E. (2002) Isopropanol Oxidation by Pure Metal Oxide Catalysts: Number of Active Surface Sites and Turnover Frequencies *Appl. Catal. A. 237*, 121.

Lietti, L., Nova, I., Ramis, G., Dall'Acqua, L., Busca, G., Giamello, E., Forzatti, P. Bregani, F. (1999) Characterization and Reactivity of V₂O₅-MoO₃/TiO₂ De-NOx SCR Catalysts J. Catal. 187, 419.

Lopez Nieto, J.M., Dejoz, A., Vazquez, M.I. (1995) Preparation, Characterization and Catalytic Properties of Vanadium Oxides Supported on Calcined Mg/Al-hydrotalcite *Apll. Catal. A: Gen. 132*, 41

Martin, C., Martin, I., Rives, V., Malet, P. (1996) Alkaline-Metal Doped MoO₃/TiO₂ Systems: Structure of Supported Molybdates J. Catal. 161, 87.

Satsuma, A., Okada, F., Hattori, A., Miyamoto, A., Hattori, T., Murakami, Y. (1991) Promotion Effects of Various Oxides on Oxidation of Benzene Over Vanadium Pentoxide Catalysts *Appl. Catal.*72, 295.

Tanabe, K. (2003) Catalytic Application of Niobium Compounds Catal. Today 78,65.

Wang, J.A., Bokhimi, X., Novaro, O., Lopez, T., Gomez, R. (1999) Effects of the Surface Structure and Experimental Parameters on the Isopropanol Decomposition Catalyzed with Sol-gel J. Mol. Catal. A. 145(1), 291.

Watling, T.C., Deo, G., Seshan, K., Wachs, I.E., Lercher, J.A. (1996) Oxidative Dehydrogenation of Propane Over Niobia Supported Vanadium Oxide Catalysts *Catal. Today* 28, 139.

Ziolek, M. (2003) Niobium-containing Catalysts - The State of the Art Catal. Today 78, 47.

Acknowledgments

To the Laboratory Associated of Combustion and Propulsion (LCP) of the National Institute of Space Researches (INPE/Cachoeira Paulista from São Paulo) for the use of her infrastructure in the preparation and characterization of the catalysts, and, also, to the teachers of FAENQUIL Dr. Paulo Suzuki and Dr. Helcio José Izario Filho, for the analyses of DRX and Atomic Absorption, respectively.