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Abstract

Computations using the Direct Simulation Monte
Carlo method are presented for hypersonic flow
over flat-nose leading edges. The primary aim of
this paper is to examine the geometry effect of
such leading edges on the shock wave structure.
The sensitivity of shock wave shape, shock stand-
off distance, and shock thickness to shape varia-
tions of such leading edges is calculated by using
a model that classifies the molecules in three dis-
tinct classes, i.e., “undisturbed freestream”, “re-
flected from the boundary” and “scattered”, i.e.,
molecules that had been indirectly affected by
the presence of the leading edge. Comparisons
are made between these new blunt configurations
and circular cylinder shape based on shock wave
standoff distance and shock wave thickness. It
was found that the new blunt leading edges pro-
vided smaller shock wave standoff distance and
shock wave thickness, compared to the corre-
sponding circular cylinder.

1 Introduction

The successful design of high-lift, low-drag hy-
personic configurations will depend on the abil-
ity to incorporate relatively sharp leading edges
that combine good aerodynamic properties with
acceptable heating rates. Certain configurations,
such as hypersonic waveriders [1], are designed
analytically with infinitely sharp leading edge for

shock wave attachment. However, for practical
applications, these sharp leading edges must be
blunted for heat transfer, manufacturing, and han-
dling concerns, with associated departures from
ideal performance. Typically, a round leading
edge (circular cylinder) with constant radius of
curvature near the stagnation point has been cho-
sen. Nevertheless, shock detachment distance on
a cylinder, with associated leakage, scales with
the radius of curvature. Certain classes of non-
circular shapes may provide the required blunt-
ness with smaller shock separation than round
leading edges, thus allowing manufacturing, and
ultimately heating control, with reduced aerody-
namic losses.

A typical blunt body, composed of a flat nose
followed by a highly curved, but for the most
part slightly inclined afterbody surface, may pro-
vide the required bluntness for heat transfer, man-
ufacturing and handling concerns with reduced
departures from ideal aerodynamic performance.
This conception is based on work of Reller [2],
who has pointed out that this shape results from
a method of designing low heat transfer bodies.
According to Reller [2], low heat transfer bod-
ies is devised on the premise that the rate of heat
transfer to the nose will be low if the local veloc-
ity is low, while the rate of heat transfer to the
afterbody will be low if the local density is low.

Santos [3] has investigated the effect of the
leading edge thickness on the aerodynamic sur-
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face quantities over these flat-nose leading edges.
The thickness effect was examined for a range
of Knudsen number, based on the thickness of
the flat nose, covering from the transitional flow
regime to the free molecular flow regime. The
emphasis of the work was to compare the heat
transfer and drag of this new shape with those ob-
tained for round leading edge. It was found that
flat-nose leading edges provided lower drag than
round leading edge. Nevertheless, round leading
edge gave smaller stagnation point heating than
the flat nose leading edges for the conditions in-
vestigated.

Based on recent interest in hypersonic wa-
veriders for high-altitude/low-density applica-
tions [4, 5, 6, 7], this paper extends the analy-
sis presented by Santos [3] by investigating com-
putationally the shock wave structure over these
new contours. The primary goal is to assess the
sensitivity of the shock standoff distance, shock
wave thickness and shock wave shape to varia-
tions in the thickness of the leading edge and to
compare them to the round leading edges shape
(circular cylinder). Comparisons based on shock
standoff distance are made to examine the ben-
efits and disadvantages of using these new blunt
shapes over round shapes.

For the transitional hypersonic flow, at high
Mach number and high altitude, the flow de-
parts from thermal equilibrium and the energy
exchange into the various modes due to the vi-
brational excitation and relaxation becomes im-
portant. For the high altitude/high Knudsen num-
ber of interest (Kn > 0.1), the flowfield is suffi-
ciently rarefied that continuum method is inap-
propriate. Alternatively, the DSMC method is
used in the current study to calculate the rarefied
hypersonic two-dimensional flow on the leading
edge shapes.

2 Body Shape Definition

In dimensionless form, the contour that defines
the shape of the afterbody surface is given by the
following expression,

x =
∫ ymax

1

√

yk−1dy (1)

λ∞λ∞
λ∞

Fig. 1 Drawing illustrating the leading edge ge-
ometries.

where x = x/ynose and y = y/ynose.
The flat-nose leading edges are modeled by

assuming a sharp leading edge of half angle θ
with a circular cylinder of radius R inscribed tan-
gent to this wedge. The flat-nose leading edges,
inscribed between the wedge and the cylinder,
are also tangent to them at the same common
point where they have the same slope angle. It
was assumed a leading edge half angle of 10 deg,
a circular cylinder diameter of 10−2m and flat-
nose thicknesses t/λ∞ of 0.01, 0.1 and 1, where
t = 2ynose and λ∞ is the molecular freestream
mean free path. Figure 1 illustrates this construc-
tion for the set of shapes investigated. From geo-
metric considerations, the exponent k in Eq.(1) is
obtained by matching slope on the wedge, on the
circular cylinder and on the body shapes at the
tangency point. For dimensionless thicknesses of
0.01, 0.1 and 1, the exponent k corresponds to
0.501, 0.746 and 1.465, respectively. The com-
mon body height H and the body length L are
obtained in a straightforward manner.

3 Computational Method

The Direct Simulation Monte Carlo (DSMC)
method, pioneered by Bird [8], has become one
of the standard and reliable successful numeri-
cal techniques for modeling complex flows in the
transition regime. The transition regime is the
category of flow that falls between the contin-
uum regime, where the Navier-Stokes equations
are valid, and the free molecular regime, which is
the limit of infinite Knudsen number.

In the DSMC method, a group of represen-
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tative molecules are tracked as they move, col-
lide and undergo boundary interactions in simu-
lated physical space. Each simulated molecule
represents a very much larger number of real
molecules. The molecular motion, which is con-
sidered to be deterministic, and the intermolecu-
lar collisions, which are considered to be stochas-
tic, are uncoupled over the small time step used
to advance the simulation and computed sequen-
tially. The simulation is always calculated as un-
steady flow. However, a steady flow solution is
obtained as the large time state of the simulation.

The molecular collisions are modeled us-
ing the variable hard sphere(VHS) molecular
model [9]. The energy exchange between ki-
netic and internal modes is controlled by the
Borgnakke-Larsen statistical model [10]. Sim-
ulations are performed using a non-reacting gas
model consisting of two chemical species, N2 and
O2. Energy exchanges between the translational
and internal modes are considered. For this study,
the relaxation numbers of 5 and 50 were used for
the rotation and vibration, respectively.

The flowfield is divided into a number of re-
gions, which are subdivided into computational
cells. The cells are further subdivided into four
subcells, two subcells/cell in each coordinate di-
rection. The cell provides a convenient reference
for the sampling of the macroscopic gas proper-
ties, while the collision partners are selected from
the same subcell for the establishment of the col-
lision rate. The linear dimensions of the cells
should be small in comparison with the scale
length of the macroscopic flow gradients normal
to the streamwise directions, which means that
the cell dimensions should be of the order of the
local mean free path or even smaller [8].

The computational domain used for the cal-
culation is made large enough so that body distur-
bances do not reach the upstream and side bound-
aries, where freestream conditions are specified.
A schematic view of the computational domain
is depicted in Fig. 2. Side I is defined by the
body surface. Diffuse reflection with complete
thermal accommodation is the condition applied
to this side. Advantage of the flow symmetry is
taken into account, and molecular simulation is

η

ξ
θ

Fig. 2 Schematic view of the computational do-
main.

applied to one-half of a full configuration. Thus,
side II is a plane of symmetry, where all flow gra-
dients normal to the plane are zero. At the molec-
ular level, this plane is equivalent to a specular
reflecting boundary. Side III is the freestream
side through which simulated molecules enter
and exit. Finally, the flow at the downstream out-
flow boundary, side IV, is predominantly super-
sonic and vacuum condition is specified [8]. At
this boundary, simulated molecules can only exit.

Numerical accuracy in DSMC method de-
pends on the grid resolution chosen as well as the
number of particles per computational cell. Both
effects were investigated to determine the number
of cells and the number of particles required to
achieve grid independence solutions. Grid inde-
pendence was tested by running the calculations
with half and double the number of cells in ξ and
η directions (see Fig. 2) compared to a standard
grid. Solutions (not shown) were near identical
for all grids used and were considered fully grid
independent.

4 Flow Conditions

The freestream conditions and the gas properties
used in the present calculations are those given
by Santos [3] and summarized in Table 1.

The freestream velocity V∞ is assumed to
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Table 1 Freestream conditions and gas properties

Parameter Value Unit

Temperature (T∞) 220.0 K
Pressure (p∞) 5.582 N/m2

Density (ρ∞) 8.753×10−5 kg/m3

Viscosity (µ∞) 1.455×10−5 Ns/m2

Number density (n∞) 1.8209×1021 m−3

Mean free path (λ∞) 9.03×10−4 m
Molecular mass O2 5.312×10−26 kg
Molecular mass N2 4.650×10−26 kg
Molecular diameter O2 4.01×10−10 m
Molecular diameter N2 4.11×10−10 m
Mole fraction O2 0.237
Mole fraction N2 0.763
Viscosity index O2 0.77
Viscosity index N2 0.74

be constant at 3.56 km/s, which corresponds to
freestream Mach number M∞ of 12. The wall
temperature Tw is assumed constant at 880 K. The
overall Knudsen number Knt , defined as the ratio
of the freestream mean free path λ∞ to the leading
edge thickness t, corresponds to 100, 10 and 1 for
flat-nose thicknesses t/λ ∞ of 0.01, 0.1 and 1, re-
spectively. The Reynolds number Ret covers the
range from 0.193 to 19.3, based on conditions in
the undisturbed stream with leading edge thick-
ness t as the characteristic length.

5 Computational Procedure

The problem of predicting the shape and loca-
tion of detached shock waves has been stimu-
lated by the necessity for blunt noses and lead-
ing edges configurations designed for hypersonic
flight in order to cope with the aerodynamic heat-
ing. Also, the ability to predict the shape and lo-
cation of shock waves is of primary importance
in analysis of aerodynamic interference. In addi-
tion, displacement of the shock wave is especially
undesirable in a waverider geometry [1], because
these hypersonic configurations usually depend
on shock wave attachment at the leading edge to
achieve their high lift-to-drag ratio at high-lift co-

Fig. 3 Drawing illustrating the classification of
molecules.

efficient.
In order to study the shock wave structure,

the shape, the thickness and the detachment of
the shock wave are quantified by employing the
following procedure: the flow is assumed to con-
sist of three distinct classes of molecules; those
molecules from the freestream that have not been
affected by the presence of the leading edge are
denoted as class I molecules; those molecules
that, at some time in their past history, have
struck and been reflected from the body sur-
face are denoted as class II molecules; and those
molecules that have been indirectly affected by
the presence of the body are defined as class III
molecules. Figure 3 illustrates the classification
of the molecules.

It is assumed that the class I molecule
changes to class III molecule when it collides
with class II or class III molecule. Class I or
class III molecule is progressively transformed
into class II molecule when it interacts with the
body surface. Also, a class II molecule remains
class II regardless of subsequent collisions and
interactions. Hence, the transition from class I
molecules to class III molecules may represent
the shock wave, and the transition from class III
to class II may define the boundary layer.
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∆

δ

Fig. 4 Schematic of shock wave structure.

A typical distribution of class III molecules
along the stagnation streamline for blunt leading
edges is displayed in Fig. 4 along with the defi-
nition used to determine the thickness, displace-
ment and shape of the shock wave. In this figure,
X is the distance x along the stagnation streamline
(see Fig. 2), normalized by the freestream mean
free path λ∞.

In a rarefied flow, the shock wave has a fi-
nite region that depends on the transport proper-
ties of the gas, and can no longer be considered
as a discontinuity obeying the classical Rankine-
Hugoniot relations. In this context, the shock
standoff distance ∆ is defined as being the dis-
tance between the shock wave center and the nose
of the leading edge along the stagnation stream-
line. As shown in Fig. 4, the center of the shock
wave is defined by the station that corresponds
to the maximum value for fIII . The shock wave
thickness δ is defined by the distance between
the stations that correspond to the mean value
for fIII . Finally, the shock wave shape (shock
wave “location”) is determined by the coordinate
points given by the maximum value in the fIII

distribution along the lines departing from the
body surface, i.e., η-direction as shown in Fig. 2.

The molecule classification that has been
adopted here was first presented by Lubon-
ski [11] in order to study the hypervelocity Cou-
ette flow near the free molecule regime. Lubon-
ski [11] divided the gas into three classes of

molecules: “freestream”, “reflected from the
boundary” and “scattered”. Later, for the pur-
pose of flow visualization, Bird [12] applied the
same scheme of classification by identifying the
classes by colors: blue for class I, red for class II
and yellow for class III molecules.

6 Computational Results and Discussion

The purpose of this section is to discuss and to
compare differences in the shape, thickness and
displacement of the shock wave due to varia-
tions in the leading edge thickness and to com-
pare them to those obtained for the cylinder shape
that generated the blunt shapes.

The distribution of molecules for each class
along the stagnation streamline is demonstrated
in Fig. 5 for cases t/λ∞ of 0.01, 0.1 and 1. In
this figure, fI , fII and fIII are the ratio of the
number of molecules for class I, II and III, re-
spectively, to the total amount of molecules in-
side each cell. For comparison purpose, the dis-
tribution of molecules for the circular cylinder is
illustrated in Fig. 6.

6.1 Shock Wave Standoff Distance

According to the definition shown in Fig. 4, the
shock wave standoff distance ∆ can be observed
in Fig. 5 for the flat-nose shapes and in Fig. 6 for
the circular cylinder. It is apparent from this set
of figures that there is a discrete shock standoff
distance for all cases investigated. The calculated
shock wave standoff distance ∆, normalized by
the freestream mean free path λ∞, is 0.201, 0.346
and 0.753 for t/λ∞ of 0.01, 0.1 and 1, respec-
tively. Compared to flat-nose shapes, the circu-
lar cylinder provides a larger shock detachment,
i.e., ∆/λ∞ of 1.645. This value is about 8.2, 4.8
and 2.2 times larger than the cases correspond-
ing to t/λ∞ of 0.01, 0.1 and 1, respectively. The
results tend to confirm the expectation that the
shock standoff distance for sharp leading edge
is smaller than that for blunt leading edge, i.e.,
it decreases with decreasing the thickness of the
leading edge for the cases investigated.

It is worth mentioning that shock standoff
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λ∞  = 0.01

λ∞  = 0.1

λ∞  = 1

Fig. 5 Distributions of molecules for classes I, II
and III along the stagnation streamline for t/λ∞
of (a) 0.01, (b) 0.1 and (c) 1.

distance becomes important in hypersonic vehi-
cles such as waveriders, which depend on lead-
ing edge shock attachment to achieve their high
lift-to-drag ratio at high lift coefficient. In this
context, the flat-nose shapes seem to be more ap-

Fig. 6 Distributions of molecules for classes I,
II and III along the stagnation streamline for the
circular cylinder.

propriate than the circular cylinder, since they
present reduced shock wave detachment dis-
tances. Nevertheless, smaller shock detachment
distance is associated with a higher heat load to
the nose of the body (Santos [3]).

6.2 Shock Wave Thickness

According to the definition of the shock wave
thickness shown in Fig. 4, the shock wave thick-
ness δ along the stagnation streamline can be ob-
tained in Fig. 5 for the flat-nose shapes and in
Fig. 6 for the circular cylinder. The shock wave
thickness δ, normalized by the freestream mean
free path λ∞, is 0.652, 0.863 and 1.673 for t/λ∞
of 0.01, 0.1 and 1, respectively. The circular
cylinder provides a larger shock thickness, i.e.,
δ/λ∞ of 3.350. Compared to the flat-nose shapes,
this value is about 5.3, 3.9 and 2.0 times larger
than the cases corresponding to t/λ∞ of 0.01, 0.1
and 1, respectively.

6.3 Shock Wave Shape

The shock wave shape, defined by the shock
wave center, is obtained by calculating the po-
sition that corresponds to the maximum f for
class III molecules in the η-direction along the
body surface (see Fig. 2). Figure 7 illustrates the
shock wave shape in the vicinity of the stagnation
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λ∞

λ∞

λ∞

Fig. 7 Shock wave shapes on flat-nose bodies
with thickness t/λ∞ of (a) 0.01, (b) 0.1 and (c) 1.

region for the flat-nose bodies with thicknesses
t/λ∞ of 0.01, 0.1 and 1, respectively. In this set
of plots, X and Y are the cartesian coordinates x
and y normalized by λ∞.

It was pointed out by Lees and Kub-

ota [13] that when the freestream Mach num-
ber M∞ is sufficiently large, the hypersonic
small-disturbance equations admit similarity so-
lutions for the asymptotic shock wave shapes
over power-law bodies (y ∝ xn,0 < n < 1), where
asymptotic refers to the flowfield at large dis-
tances downstream of the nose of the body. The
hypersonic small-disturbance theory states that,
for certain exponent n, a body defined by xn pro-
duces a shock wave of similar shape and profiles
of flow properties transverse to the stream direc-
tion that are similar at any axial station not too
near the nose. At or near the nose, the surface
slope, the curvature, and the higher derivatives
are infinite, and the similarity solutions break
down. In the more general case for 0 < n < 1,
the shock wave grows as xm. When n grows from
zero, m begins by keeping the constant value
m = 2/( j+3), and if n keeps on growing towards
unity, m remains equal to n. Here j takes the val-
ues zero for planar flow and one for axisymmetric
flow.

The flat-nose bodies investigated in this work
are not power-law shapes themselves, by they can
be closely fitted with power-law shapes (∝ xn).
Figure 8(a) depicts the comparison of the flat-
nose shapes and the power-law curve fit shapes.
As would be expected, discrepancies have been
found among the curves in the vicinity of the nose
of the bodies. This behavior is brought out more
clearly in Fig. 8(b), which exhibits details of the
curves near the nose.

By considering the reference system located
at the nose of the flat-nose bodies, X = 0, the
fitting process, which has been performed over
those bodies shown in Fig. 8, approximates the
body shapes by power-law shape of the follow-
ing form,

y = a(x+b)n (2)

where a is the power-law constant of the curve
fit, b is the distance from the nose of the lead-
ing edge, and n is the power law exponent of the
curve fit. The coefficients a and b, normalized,
respectively, by λ1−n

∞ and λ∞, and the exponent n
are tabulated in Table 2.
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λ∞  = 0.01

λ∞  = 1

λ∞  = 0.1

.......  ∼

λ∞  = 1

λ∞  = 0.01

λ∞  = 0.1

.......  ∼

Fig. 8 Comparison of flat-nose shapes with
power-law curve fit shapes for thickness t/λ∞ of
0.01, 0.1 and 1, (a) along the total length L, and
(b) in the vicinity of the nose.

By considering that the flat-nose leading
edges are well represented by power-law lead-
ing edges far from the nose of the leading edges
and by assuming that power-law bodies gener-
ate power-law shock waves in accordance with
hypersonic small-disturbance theory (Lees and
Kubota [13]), the shock location coordinates
shown in Fig. 7 were used to approximate the
shape of the shock wave with a curve fit. A fitting
algorithm was performed over these points to ap-
proximate the shock shape as a power law curve
of the following form,

y = A(x+B)m (3)

where A is the shock wave power law constant, B

Table 2 Dimensionless coefficients a, b and n for
the curve fit power-law bodies.

t/λ∞ a b n

0.01 0.42893 0.04120 0.55
0.1 0.58436 0.13318 0.72
1 1.12387 0.37067 0.79

is the distance from the nose of the leading edge
to the shock wave curve fit along the stagnation
streamline, and m is the shock wave power law
exponent.

In order to compare the shock wave shapes
obtained in this work with those predicted by
Lees and Kubota [13], two forms of the curve fit
were considered in defining the shock shape: (1)
A, B and m were found to provide the best curve
fit solutions, and (2) A and B were found by keep-
ing m = 2/3 for n ≤ 2/3 cases, and m = n for
n > 2/3 cases, where n and m stand for body and
shock wave power law exponents, respectively.

It is important to mention that the fitting pro-
cess was performed over the points yielded by
DSMC simulations located far from the nose re-
gion, say X > 1.0, where it is expected that the
blunt nose effects are not significant. It is im-
portant to recall that the shock wave shape in
the vicinity of the nose is not correctly predicted
by the theoretical solutions, since the hypersonic
slender body approximations are violated close to
or at the nose of the leading edges as explained
above. Moreover, the flat-nose shapes are rep-
resented by power-law shapes far from the nose
region, as displayed in Fig. 8.

Curve fit solutions for shock shape over a flat-
nose body with t/λ∞ = 0.01, which corresponds
to a body power law exponent of 0.79, are dis-
played in Fig. 9(a). In this figure, the solutions
given by m = 0.84 and m = n = 0.79 represent,
respectively, the two forms of the curve fit solu-
tions mentioned above. It is apparent from this
figure that both curve fits match the shock wave
shape obtained by the DSMC simulation. This is
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in qualitative agreement with the Lees and Kub-
ota [13] findings in the sense that the shock wave
shape would follow the shape of the body for
body power law exponent n > 2/3.

Figure 9(b) illustrates the curve fit solutions
for shock shape over a flat-nose body with t/λ ∞
= 0.1, which corresponds to a body power law
exponent of 0.72. It is observed from this figure
that both curve fits match the shock wave shape
obtained by the DSMC simulation. Nevertheless,
the curve fit shock wave given by m = 0.80 yields
a better agreement, specially closer to the nose of
the leading edge.

Shock shape curve fit solutions for the flat-
nose body with t/λ∞ = 1, which corresponds to a
body power law exponent of 0.55, are displayed
in Fig. 9(c). For this body shape, three curve fits
were obtained; in the first case m was set equal to
the body shape, m = n = 0.55; in the second case,
the best fit was found for m = 0.71; in the third
case, m was set equal to 2/3, the exponent that
it is expected that the shock wave would grow,
according to the theory (Lees and Kubota [13]).
Referring to Fig. 9(c), it is noted that the curve
fit given by m = n = 0.55 does not match the
shock wave shape obtained by the DSMC sim-
ulation. In contrast, the two other curve fit solu-
tions, m equal to 2/3 and 0.71 present an excel-
lent agreement with that solution provided by the
DSMC simulation. Once again, the curve-fitted
solution deviates from the DSMC solution close

Table 3 Dimensionless coefficients A, B and m for
the shock wave curve fit.

t/λ∞ A B m

0.01 0.98885 3.10938×10−4 0.79
0.01 0.83933 0.40477 0.84
0.1 1.32255 −0.28812 0.72
0.1 1.01519 0.53395 0.80
1 2.54848 −0.39788 0.55
1 1.55057 1.37132 0.71
1 1.77429 0.87559 0.667

λ∞

λ∞

λ∞

Fig. 9 Shock wave shapes curve fits on flat-nose
bodies with thickness t/λ∞ of (a) 0.01, (b) 0.1
and (c) 1.

to the nose of the leading edge, as would be ex-
pected. For comparison purpose, the coefficients
A and B, normalized, respectively, by λ1−n

∞ and
λ∞, and the exponent m are tabulated in Table 3.
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7 Conclusions

This study applies the Direct Simulation Monte
Carlo method to assess the impact on the shock
wave structure due to variations in the shape of
flat-nose leading edges. The calculations have
provided information concerning the nature of
the shock wave detachment distance, shock wave
thickness and shock wave shape resulting from
variations in the thickness of the flat nose for
the idealized situation of two-dimensional hyper-
sonic rarefied flow. The emphasis of the investi-
gation was also to compare these flat-nose lead-
ing edges with round shape in order to determine
which geometry is better suited as a blunting pro-
files in terms of the shock wave standoff distance.

It was found that the shock wave standoff dis-
tance and the shock wave thickness for the flat-
nose bodies are lower than that for the circular
body with the same tangency to a wedge of spec-
ified oblique angle. In addition, the computa-
tional results indicated that the shock wave shape
grows with power law form (∝ xm), in agreement
with the hypersonic small disturbance theory, for
the flat-nose bodies investigated, which can be
closely fitted with power-law shapes (∝ xn).

References

[1] Nonweiler, T. R. F.,“Aerodynamic problems of
manned space vehicles,” J. of the Royal Aero-
nautical Society, Vol. 63, Sept, 1959, pp.521-
528.

[2] Reller Jr., J. O., “Heat transfer to blunt nose
shapes with laminar boundary layers at high su-
personic speeds”, NACA RM-A57FO3a, 1957.

[3] Santos, W. F. N., “Aerodynamic heating on
blunt nose shapes in rarefied hypersonic flow”,
in 17th International Congress of Mechanical
Engineering COBEM 2003, 10-14 November
2003, São Paulo, SP, Brazil.

[4] Anderson, J. L., “Tethered aerothermodynamic
research for hypersonic waveriders”, in Pro-
ceedings of the 1st International Hypersonic
Waverider Symposium, Univ. of Maryland, Col-
lege Park, MD, 1990.

[5] Potter, J. L. and Rockaway, J. K., “Aerodynamic
optimization for hypersonic flight at very high

altitudes”, in Rarefied gas Dynamics: Space
Science and Engineering, edited by B. D. Shiz-
gal and D. P. Weaver, Vol. 160, Progress in As-
tronautics and Aeronautics, AIAA New York,
1994, pp.296-307.

[6] Rault, D. F. G., “Aerodynamic characteristics
of a hypersonic viscous optimized waverider at
high altitude”, J. of Spacecraft and Rockets, Vol.
31, No. 5, 1994, pp.719-727.

[7] Graves, R. E. and Argrow, B. M., “Aerodynamic
performance of an osculating-cones waverider
at high altitudes”, in 35th AIAA Thermophysics
Conference, AIAA Paper 2001-2960, Anaheim,
CA, 2001.

[8] Bird, G. A.,Molecular gas dynamics and the di-
rect simulation of gas flows, Oxford University
Press, Oxford, England, UK, 1994.

[9] Bird, G. A., “Monte Carlo simulation in an
engineering context”, in Progress in Astronau-
tics and Aeronautics: Rarefied gas Dynamics,
edited by Sam S. Fisher, Vol. 74, part I, AIAA
New York, 1981, pp.239-255.

[10] Borgnakke, C. and Larsen, P. S., “Statistical
collision model for Monte Carlo simulation of
polyatomic gas mixture”, Journal of computa-
tional Physics, vol. 18, No. 4, 1975, pp.405-
420.

[11] Lubonski, J., “Hypersonic plane couette flow
in rarefied gas”, in Archiwum Mechaniki
Stosowanej, vol. 14, No. 3/4, 1962, pp.553-560.

[12] Bird, G. A., “The structure of rarefied gas flows
past simple aerodynamic shapes”, in J. of Fluid
Mechanics, vol. 36, No. 3, 1969, pp.571-576.

[13] Lees, L. and Kubota, T., “Inviscid hypersonic
flow over blunt-nosed slender bodies”, Journal
of Aeronautical Sciences, Vol. 24, No. (3), 1957,
pp. 195–202.

10


