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Amplitude and phase synchronization due to multiscale interactions in chaotic saddles at the onset of

permanent spatiotemporal chaos is analyzed using the Fourier-Lyapunov representation. By computing

the power-phase spectral entropy and the time-averaged power-phase spectra, we show that the laminar

(bursty) states in the on-off spatiotemporal intermittency correspond, respectively, to the nonattracting

coherent structures with higher (lower) degrees of amplitude-phase synchronization across spatial scales.
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Chaotic saddles are nonattracting coherent structures
responsible for temporary chaos ubiquitous in spatially
extended systems such as the advection-reaction-diffusion
systems, excitable media, complex networks, and turbulent
shear flows [1]. Experimental evidence of chaotic saddles
has been obtained in lasers [2] and pipe flows [3].
Numerical simulations of turbulent shear flows have ob-
served a turbulent flow behaving as a chaotic saddle coex-
isting with a laminar flow separated by an edge of chaos
[4]. The transition to permanent spatiotemporal chaos
(STC) via quasiperiodicity is of general interest in non-
linear problems such as drift waves in plasmas, cardiac
cells, and ionization fronts [5]. Before the onset of perma-
nent STC, the system is regular in space; at the onset of
permanent STC, the spatial order is destroyed. Temporally
and spatiotemporally chaotic saddles are the origin of
transient and intermittent dynamics of the resulting spatio-
temporal intermittency [6].

In this Letter, we investigate the physical mechanism of
on-off intermittency at the onset of permanent STC and
show that it arises from the amplitude and phase synchro-
nization associated with multiscale interactions in chaotic
saddles embedded in the chaotic attractor. The analysis of
amplitude-phase synchronization is performed using both
Fourier and Lyapunov representations. In particular, we
identify the signature of blowout bifurcation typical of
on-off intermittency at the transition from the temporally
chaotic attractor to the spatiotemporally chaotic attractor.

The regularized long-wave equation that describes non-
linear long-waves in a dispersive medium such as channel
flow and seashore, and nonlinear drift waves in magnetized
plasmas [6–9], is given by

@tuþ c@xuþ fu@xuþ a@txxu ¼ ��u� " sinð�x��tÞ;
(1)

where " is the driver amplitude, c ¼ 1, f ¼ �6, a ¼

�0:287, � ¼ 0:1, � ¼ 1, and � ¼ 0:65 [6,8,9]. Periodic
boundary conditions are imposed, uðx; tÞ ¼ uðxþ 2�; tÞ.
Equation (1) is solved numerically using the pseudospec-
tral method by expanding the wave variable uðx; tÞ in a
Fourier series uðx; tÞ ¼ PN

k¼�N ûkðtÞ expðikxÞ, where

ûkðtÞ ¼ ð1=NÞPN
k¼�N uðx; tÞ expð�ikxÞ denotes the com-

plex Fourier coefficients, k is normalized as k ¼ 2�n=L,
n ¼ �N; . . . ; N, and L ¼ 2�. Since uðx; tÞ is a real func-
tion, û�kðtÞ ¼ ûkðtÞ, only k > 0 need to be considered. We
set N ¼ 32. For each Fourier coefficient, we define its

amplitude jûkðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ûkðtÞû�kðtÞ

p
and phase �kðtÞ ¼

arctanfIm½ûkðtÞ�=Re½ûkðtÞ�g. In the parameter regime with
which we are working, this definition can capture the
difference between the degree of phase synchronization
of temporally and spatiotemporally chaotic saddles. In
general, a more rigorous definition such as the phase based
on the curvature of an arbitrary trajectory must be used
[10]. To avoid aliasing numerical errors, only 20 Fourier
modes are kept. In this Letter, we study multiscale inter-
actions resulting from nonlinear coupling across spatial
scales represented by Fourier modes.
As the control parameter " is varied, Eq. (1) exhibits a

transition from a spatially regular pattern to permanent
STC via the Ruelle-Takens route [5,6]. At the onset of
permanent STC, the time series of energy EðtÞ ¼R
2�
0 ½uðtÞ2 � auxðtÞ2�dx=4� displays on-off intermittency

shown in the upper panel of Fig. 1, with alternating regime
switching from the laminar (on) state to the bursty (off)
state. In the Fourier representation, we quantify the degree
of amplitude synchronization related to multiscale inter-
actions by the Fourier power spectral entropy SAk ðtÞ ¼�PN

k¼1 pðûkðtÞÞ ln½pðûkðtÞÞ�, where pðûkðtÞÞ ¼ jûkðtÞj2=PN
k¼1 jûkðtÞj2 is the relative weight of the Fourier mode k

[6]. The middle panel of Fig. 1 shows the time series of
SAk ðtÞ. The degree of phase synchronization due to multi-

scale interactions can be quantified by the Fourier phase
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spectral entropy S�k ðtÞ ¼ �P
N
k¼1 Pð��kðtÞÞ ln½Pð��kðtÞÞ�,

where P denotes the probability distribution function of the
Fourier phase differences ��kðtÞ ¼ �kþ1ðtÞ ��kðtÞ [11]
and can be determined by constructing a normalized his-
togram of phase differences Pð��kÞ ¼ ni=N, where ni is
the number of times ��k falls into the ith bin of the
distribution. The lower panel of Fig. 1 shows the time

series of S�k ðtÞ. In Fig. 1 the gray (red) lines denote time

averaging over t ¼ 1256 to facilitate the visualization of
the on-off states. The duality of amplitude and phase
synchronization in the on-off spatiotemporal intermittency,

confirmed by SAk ðtÞ and S�k ðtÞ, is demonstrated in Fig. 1.

The aims of this Letter are twofold: to probe the origin of
this duality and the nature of amplitude-phase synchroni-
zation in the on-off spatiotemporal intermittency.

It has been shown that the on-off states in the time series
of spatiotemporal intermittency at the onset of permanent
STC are linked to chaotic saddles embedded in the chaotic
attractor [6]. We choose a Poincaré map defined by
Refû1ðtÞg ¼ 0 and dRefû1ðtÞg=dt > 0, then apply the
stagger-and-step method [12] to find chaotic saddles, be-
fore and after the transition to permanent STC. Figure 2
shows a three-dimensional projection of the Poincaré map
defined by (Refû2g, Imfû2g, Refû3g). At " ¼ 0:199, before
the transition to a spatiotemporally chaotic attractor
(STCA), there is a spatiotemporally chaotic saddle
(STCS) shown in Fig. 2(a) which is responsible for tran-
sient dynamics before the trajectory converges asymptoti-
cally to a temporally chaotic attractor (TCA). The TCA is
of small size and localized in a sheetlike phase space, as
shown in Fig. 2(b). In contrast, the STCS in Fig. 2(a) is of
large size and fills up an extended spherelike phase space.
At "� 0:2, a crisis [9] occurs whereby TCA loses its
stability and is converted to a temporally chaotic saddle
(TCS), as seen in Fig. 2(c) for " ¼ 0:200 05; STCS is ro-
bust and persists after crisis, also superposed in Fig. 2(c).

At the onset of permanent spatiotemporal chaos, TCS
becomes coupled to STCS through the coupling unstable
periodic orbits to form a STCA, as seen in Fig. 2(d), which
occupies almost the same region of phase space as the
precrisis STCS and TCA. The postcrisis dynamical system
has the ability to keep the memory of its precrisis struc-
tures, as evidenced in the postcrisis STCA wherein the
phase-space structure of the precrisis sheetlike TCA can
still be recognized, which corresponds to TCS of Fig. 2(c).
The STCA of Fig. 2(d) corresponds to the time series
of the on-off spatiotemporal intermittency of Fig. 1, and
TCS (STCS) in Fig. 2(c) corresponds to the on state (off
state) of Fig. 1. Figures 2(b) and 2(d) indicate the occur-
rence of a blowout bifurcation [13] at the transition from
TCA to STCA, and an inverse blowout bifurcation at the
transition from STCA to TCA. Prior to the blowout bifur-
cation, trajectories of TCA are confined to a synchroniza-
tion manifold represented by the sheetlike structure of
Fig. 2(b), which is transversely stable. At the onset of the
blowout bifurcation, trajectories near this sheetlike struc-
ture lose their transverse stability owing to the unstable
periodic orbits in STCS and traverse across the sheetlike
region, permeating the spherelike phase space seen in 2(d).
Next, we employ the Lyapunov spectrum to characterize

the chaotic properties of motion [14], based on the
Lyapunov vectors �ujðtÞ, j ¼ 1; . . . ; 2N, which denote

linear perturbations of the real vector uðtÞ ¼
ðuR1 ðtÞ; uI1ðtÞ; . . . ; uRNðtÞ; uINðtÞÞ constructed from the real

and imaginary parts of the complex Fourier coefficients
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FIG. 2 (color online). Poincaré plots of (a) STCS at " ¼ 0:199,
(b) TCA at " ¼ 0:199, (c) STCS and TCS at " ¼ 0:200 05,
(d) STCA at " ¼ 0:200 05.
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FIG. 1 (color online). Time series of E, SAk , and S�k for on-off
spatiotemporal intermittency at " ¼ 0:200 05. The red lines
denote averaged curves.
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ûkðtÞ ¼ uRk ðtÞ þ iuIkðtÞ. The Lyapunov exponents are deter-
mined by the method of Gram-Schmidt orthogonalization
and ordered as �j � �jþ1. Since we keep N ¼ 20 Fourier

(k) modes, the number of Lyapunov (j) modes is 2N ¼ 40.
The positive Lyapunov exponents of chaotic attractors and
chaotic saddles, before (" ¼ 0:199) and after (" ¼ 0:21)
the onset of permanent STC, are plotted in Fig. 3(a),
normalized by H ¼ Pq

j¼1 �j (�q > 0, �qþ1 � 0), which

is known to be an upper bound or close to the
Kolmogorov-Sinai entropy. For TCA before the transition
and TCS after the transition, only one Lyapunov vector has
a positive Lyapunov exponent, whereas for STCS before
the transition, and STCA and STCS after the transition, 14
Lyapunov vectors have positive Lyapunov exponents.
Figure 3(a) shows that the Lyapunov spectrum of STCS
before the transition is very close to the Lyapunov spec-
trum of STCA (and STCS) after the transition, which
confirms that the precrisis STCS can be used to predict
the postcrisis dynamics of STCA [6].

In the Fourier-Lyapunov representation, we quantify the
degree of amplitude and phase synchronization due to
multiscale (k, j) interactions, respectively, by the time-

averaged Lyapunov power spectral entropy hSAj ðtÞi ¼
h�P

N
k¼1 pð�ûjkðtÞÞ ln½pð�ûjkðtÞÞ�i, and the time-averaged

Lyapunov phase spectral entropy hS�j ðtÞi ¼
h�P

N
k¼1 Pð��j

kðtÞÞ ln½Pð��j
kðtÞÞ�i, where hi represent

time averaging of asymptotic solutions, �ûjk denotes the

kth Fourier component of the jth Lyapunov vector, each

Lyapunov vector is normalized as
P

N
k¼1 j�ûjkj2 ¼ 1 for

each j, and ��j
kðtÞ ¼ ð�kþ1ðtÞ ��kðtÞÞj denotes the

Fourier phase differences of the jth Lyapunov vector.
Figures 3(b) and 3(c) show the variation of hSAj ðtÞi and

hS�j ðtÞi, respectively, as a function of j for STCA and the

embedded STCS and TCS after the onset of permanent
STC for " ¼ 0:21. It is seen that for all j the degree of
amplitude and phase disorder of TCS is lower than both

STCA and STCS. The above results of hSAj ðtÞi and hS�j ðtÞi
are in agreement with H and the Kaplan-Yorke dimension
D ¼ pþPp

j¼1 �j=j�pþ1j, p ¼ maxfmjPm
j¼1 �j � 0g

computed from the Lyapunov spectrum in Fig. 3(a) [14],
which yield H ¼ 0:38 (0.06) and D ¼ 36:15 (22.23) for
STCS (TCS). The numerical values of H and D for STCA
are very close to the respective values of STCS.
In the Fourier-Lyapunov representation, the time-

averaged power spectrum is defined as hj�ûjkj2i ¼hjð�uRk þ i�uIkÞjj2i and the time-averaged phase spectrum

is defined as h��j
ki ¼ hð�kþ1 ��kÞji. Figure 4 gives an

overview of the time-averaged Fourier-Lyapunov power
and phase spectra at " ¼ 0:21 after the onset of permanent
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STC, for STCA and the embedded STCS and TCS, re-
spectively. Contour levels are indicated in the scales at the
bottom.

Figure 4(c) shows that for TCS the energy is localized at
small k and j indicated by the red patch near the origin, in
agreement with Fig. 3(a) which shows that for TCS only
one Lyapunov vector is growing whereas all other
Lyapunov vectors are damped. In contrast, Fig. 4(b) shows
that for STCS the energy that is injected into the � ¼ k ¼
1mode spreads to higher k and j, and according to Fig. 3(a)
14 Lyapunov vectors are growing; similar energy spread-
ing is seen in STCA in Fig. 4(a). The above behaviors of
the time-averaged Fourier-Lyapunov power spectra of
TCS, STCS, and STCA are consistent with the amplitude
dynamics quantified by hSAj ðtÞi in Fig. 3(b). The left side

panels of Figs. 4(a)–4(c) show the corresponding time-
averaged Fourier power spectra, which confirm that the
energy bandwidth of TCS is much narrower than for STCS
and STCA. Note that for both STCA and STCS the energy
is confined in a narrow inverted-V region in the k-j space,
distinct from the Gledzer-Ohkitani-Yamada shell model of
fully developed turbulence where the energy is confined in
a narrow V region [14]. This distinction arises from the
difference in energy injection and dissipation of the two
models.

The phase dynamics of STCA, STCS, and TCS at " ¼
0:21 in Figs. 4(d)–4(f) is in full accord with the amplitude
dynamics in Figs. 4(a)–4(c). Figure 4(f) shows that for
TCS the phase differences are small (dominance of green
over yellow) across all k at j� 1, associated with a higher
degree of amplitude synchronization resulting from energy
localization at small k and j seen in Fig. 4(c). In con-
trast, Fig. 4(e) shows that for STCS the phase differences
are large (dominance of yellow over green) across all k and
j, associated with a lower degree of amplitude synchroni-
zation resulting from energy spreading to higher k and j
seen in Fig. 4(b). The time-averaged Fourier phase spectra
in the right side panels of Figs. 4(e) and 4(f) confirm that
on average the phase differences across spatial scales k in
TCS are smaller than in STCS. A comparison of Figs. 4(d)
and 4(e) shows that across all k and j on average the phase
differences for STCS are larger than for STCA (dominance
of yellow over green), implying a lower level of phase
synchronization in STCS in relation to STCA; a com-
parison of Figs. 4(a) and 4(b) shows that across all k and
j the pattern of Fig. 4(b) is less homogeneous than that of
Fig. 4(a), displaying fewer smooth curves and more patchy
patterns, implying a lower level of amplitude synchroniza-
tion in STCS in relation to STCA. These features are
manifestations of the combined contributions of the co-
existing TCS and STCS in STCA.

In conclusion, we demonstrated the duality of amplitude
and phase synchronization in an on-off spatiotemporal

intermittency. The on state related to a temporally chaotic
saddle is characterized by a high degree of amplitude-
phase synchronization, narrow bandwidth, and only one
positive Lyapunov exponent, whereas the off state related
to a spatiotemporally chaotic saddle is characterized by a
low degree of amplitude-phase synchronization, broad
bandwidth, and 14 positive Lyapunov exponents. We
showed that the amplitude-phase synchronization related
to multiscale interactions (Figs. 1, 3, and 4) is the origin
of nonattracting coherent structures [STCS and TCS in
Fig. 2(c)] embedded in the spatiotemporally chaotic attrac-
tor [STCA in Fig. 2(d)]. The methods developed in this
Letter are applicable to simulated and experimental data in
physical, biological, and chemical systems [5] including
fully developed fluid and plasma turbulence [14,15].
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