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Development of airglow temperature photometers with cooled-CCD detectors
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We have developed three airglow temperature photometers with cooled-CCD detectors. The photometers
measure rotational temperatures using the airglow emissions of OH and O2 near the mesopause region (altitude:
80–100 km). The photometers also measure six other airglow and auroral lines at wavelengths of 557.7, 630.0,
777.4, 589.3, 427.8, and 486.1 nm. The CCD detectors are used to distinguish the emission lines in these airglow
bands, similarly to those used by the Spectral Airglow Temperature Imagers (SATI). In this paper, we describe
the configuration of the photometers, their calibration, the data processing to extract rotational temperatures
and emission intensities from the measured airglow spectra, as well as the initial deployment at Platteville,
Colorado (40.2◦N, 255.3◦E), when their observations were compared with the concurrent and nearly collocated
observations by a sodium lidar. We obtain a good correlation and some systematic difference of temperatures
from the photometers and the lidar, and discuss possible causes of the temperature difference.
Key words: Airglow temperature photometers, airglow emissions, rotational temperature, cooled CCD,
mesopause region.

1. Introduction
Mesospheric temperature is an important parameter in

the dynamics and chemistry of the middle atmosphere. The
temperature can indicate short-term dynamical variations
by planetary waves, tides, and gravity waves in the mid-
dle atmosphere, as well as long-term cooling of the middle
atmosphere associated with the global warming of the tro-
posphere. Sodium lidars and airglow photometers are two
major remote-sensing techniques to measure absolute val-
ues of the temperatures in the middle atmosphere. The for-
mer gives accurate absolute temperatures with their height
profiles in the sodium layer at ∼80–105 km (e.g., She et
al., 2000). The latter gives temperatures averaged over the
airglow emission layers. The airglow photometer is a com-
pact, low-cost instrument and can be easily automated.

The airglow photometers have used the hydroxyl (OH(v′,
v′′)) and molecular oxygen (O2b(0,1)) airglow band emis-
sions to measure the temperatures through rotational lines
(e.g., Chamberlain, 1961; Meriwether, 1975; French et al.,
2000; Takahashi et al., 2002; Gavrilyeva and Ammosov,
2002; Slanger et al., 2003; Sigernes et al., 2003; Cho et al.,
2004; Taori et al., 2005). Figure 1 shows the relative line
intensities of the OH(6,2) Meinel Q- and P-branches and
the O2(0,1) Atmospheric band system (b1�+

g → X3�−
g )

Copyright c© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

at a temperature of 200 K (Langhoff et al. (1986) for OH;
Krupenie (1972) for O2). The relative line intensities vary
depending on the temperature of the emitting molecules. It
is believed that the OH rotational level populations are in
a thermodynamic equilibrium with the ambient gas at least
for the lower rotational levels (Pendleton et al., 1993). The
lifetime of the O2b (v = 0) state (> 10 s) seems to be suf-
ficient to reach a thermodynamic equilibrium with the am-
bient atmosphere. By measuring the intensities at several
rotational lines, one can measure the temperature of the at-
mosphere. The OH and O2 bands have emission layers near
the mesopause region with peaks at ∼86 km and ∼94 km,
respectively, and thicknesses of ∼8–10 km (e.g., Zhang et
al., 1993; Zhang and Shepherd, 1999).

A highly sensitive cooled-CCD camera was originally
used as a detector of the airglow photometer named “Meso-
spheric Oxygen Rotational Temperature Imager (MORTI)”
for the measurement of the O2 band (Wiens et al., 1991).
The Spectral Airglow Temperature Imager (SATI) was sub-
sequently developed as a revision of MORTI, measuring ro-
tational temperatures of both the OH and O2 bands (Wiens
et al., 1997; Sargoytchev et al., 2004). SATI has been
widely introduced in Spain, Japan, and Canada (e.g., Won
et al., 2003; López-González et al., 2004; Shiokawa et al.,
2004; Cho and Shepherd, 2006).

As described by Sargoytchev et al. (2004), SATI uses a
cooled-CCD detector to image airglow lines as concentric
circles with spectral scanning in the radial direction and sky
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Fig. 1. Relative line intensities of (a) OH(6,2) band Q- and P-branches
and (b) O2(0,1) band at a temperature of 200 K based on the theoretical
transition probabilities by Langhoff et al. (1986) (OH) and Krupenie
(1972) (O2).

azimuth in the azimuthal direction. It has an annular field
of view in the sky, with a radius in zenith angles of 26.32◦–
33.55◦. The temperature and intensity of airglow emission
are obtained for 12 azimuthal directions. The narrow-band
filters of SATI work as a Fabry-Perot etalon to make the
spectral scanning in the radial direction on the CCD. The
rotational temperatures can be determined with a standard
deviation of 1.7 K for an exposure time of 2 min.

In this paper, we report the details of three airglow tem-
perature photometers with cooled-CCD detectors. The pho-
tometers have a basically similar optical configuration to
that of SATI. However, three revisions have been made.
One is that the new photometer measures OH(6,2) P-
branches instead of Q-branches of SATI. The OH(6,2) P-
branches have been widely used in previous photometers
and their transition probabilities have been well investigated
(e.g., Greet et al., 1998; French et al., 2000 and references
therein). SATI used Q-branches mainly because it is easier
to fit the Q-branch spectra into a limited CCD size, since
the spectral width of the Q-branch is narrower than the P-
branch, as shown in Fig. 1. However, the rotational tem-
perature measurement through OH(6,2) Q-branches con-
tains possible systematic errors, irrespective of the specific
choice of the Einstein coefficients, as pointed out by Pendle-
ton and Taylor (2002).

The second revision is that the new photometer has a
small aperture (28.7 mmφ) at the top of the optics without
a conical mirror. The conical mirror introduced by MORTI
and SATI makes it possible to measure the horizontal prop-

shutter
field stop D=28.7mm

glass dome 55mm

Fresnel lens
f=50mm, D=69mm

filter, D=50mm
max incident angle:16 degree

Canon F0.95 lens
f=25mm, D=26.3mm

cooled-CCD camera
512x512 pixel
12.288mm square

OH

O2

Fig. 2. Schematic illustration of the optics of the airglow temperature
photometer.

agation of gravity waves by setting the field of view as
a circular shape in the sky with zenith angles of 26.32◦–
33.55◦. However, because of this conical mirror and asso-
ciated complicated structure at the top of the optics, it was
difficult to make a spectral calibration through the entire
optics of SATI. The simple optics with a small aperture of
the new photometer allows us to fully calibrate the spectral
response of the optics.

The third revision is that the three new photometers have
two identical filters (six filters in total) for both OH and O2

bands to facilitate cross calibrations between the filters and
to monitor for possible degradation of a specific filter during
long-term measurements.

2. Optical Configuration
Figure 2 shows the optical system of the airglow temper-

ature photometer. We use a thinned and back-illuminated
cooled CCD with 512 × 512 pixels made by the Hama-
matsu Photonics (model: C4880-30-24A). The CCD has a
quantum efficiency of more than 90% in the visible wave-
lengths and more than 60% at 850 nm. The size of one pixel
is 24 µm, giving a CCD size of 12.288 × 12.288 mm. In
order to reduce the relative read-out noise, we use 4 × 4 on-
chip binning of the CCD. Thus, the CCD output image is 64
× 64 large pixels. The CCD surface is cooled down to less
than −60◦C using a thermoelectric cooler. The dark noise is
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Table 1. Filter specifications of the airglow temperature photometers.

Channel Center Band Peak Refractive Exposure Species
wavelength width transmission index time

(nm) (nm) (%) (s)
1 847.2 0.7 > 45 1.45 60 OH(6,2) P1(2,3,4)
2 847.2 0.7 > 45 1.45 60 OH(6,2) P1(2,3,4)
3 867.7 0.25 > 35 2.05 60 O2b(0,1)
4 867.7 0.25 > 35 2.05 60 O2b(0,1)
5 558.5 1.0 > 50 2.05 10 OI(557.7 nm)
6 630.9 1.0 > 55 2.05 10 OI(630.0 nm)
7 778.5 0.5 > 60 2.05 20 OI(777.4 nm)
8 590.1 0.5 > 50 2.05 10 Na(589.3 nm)
9 428.4 1.0 > 25 1.45 60 N+

2 (1NG, 427.8 nm)
10 486.8 1.0 > 45 2.05 60 Hβ(486.1 nm)
11∗ 878.3 0.3 > 50 2.05 60 OH(7,3) R1(1,2,3)

∗Photometer 1 only.

less than 1 electrons/pixel/s, while the read-out noise (root-
mean-square) is ∼10 electrons.

The basic interference optics consist of the 50-mmφ filter
and the Canon F0.95 lens. The light rays that pass through
the narrowband interference filter with incident angles of
0◦ and 19.1◦ (= tan−1(12.288 mm ×√

2 / 2 /25 mm)) are
focused on the center and the four corners of the CCD, re-
spectively. The center wavelength of the narrowband in-
terference filter shifts toward a shorter wavelength with an
increasing angle of the incident light. The wavelength shift
is given as,

λ = λ0

(
1 − µ2

0

µ2
sin2 θ

)1/2

, (1)

where λ, λ0, θ , µ0, and µ are the shifted wavelength, origi-
nal wavelength, incident angle, and refractive indices of the
external medium (µ0 = 1.0 for air) and the filter, respec-
tively. Typical values of µ are 1.45 or 2.05 for interference
filters. In the case of λ0 = 840 nm, the incident angle of
10◦ gives wavelength shifts of 3 and 6 nm for µ = 2.05 and
1.45, respectively. For OH and O2 airglow bands, several
emission lines exist in the range of this wavelength shift,
as shown in Fig. 1. For the OH measurement, we took
the lower refractive index of 1.45 for the filter, so the wide
wavelength range of OH(6,2) P(2), P(3), and P(4) lines can
be put into a CCD image. As a result, the output image
on the CCD shows concentric fringes, each of which cor-
responds to an emission line, as shown in Fig. 2. By tak-
ing the intensity ratio of these fringes, one can measure the
rotational temperature of the emitting molecules. By this
method, the CCD gives the advantage of two-dimensional
imaging in the wavelength range. The MORTI and SATI
put a conical mirror at the location of the top field stop to
obtain azimuthal information of the sky.

The Fresnel lens (focal length: 50 mm, diameter: 69 mm)
is introduced to smear out the structures in the sky, such as
stars and airglow structures by gravity waves. If the Fres-
nel lens is removed, these sky structures would be projected
on the CCD together with the interference fringes, thereby
preventing accurate measurement of the line intensities. Us-
ing the Fresnel lens, the sky is completely defocused and
the image at the 28.7-mmφ field stop at the top of the op-
tics is projected onto the CCD. The incident light passes

through the filter with a maximum angle of 16◦. This angle
is determined by the field stop at the top of the optics (16◦

= tan−1(28.7 mm/2/50 mm)) and corresponds to the field
of view of the photometer. Thus, the photometer measures
rotational temperatures and airglow emission rates averaged
over a zenith area with zenith angles less than 16◦. These
configurations are basically identical for the three photome-
ters, although the shutter of Photometer 1 is given by a
wheel above the Fresnel lens.

The 50-mmφ interference filter is on a wheel, which can
mount a maximum 12 filters in it. Table 1 lists the speci-
fications of the narrowband interference filters used for the
three photometers. The three photometers have ten filters
with identical specifications. For the rotational temperature
measurements of OH and O2, two filters with identical spec-
ifications are used in each photometer in order to make a
cross calibration and to monitor possible degradation of the
filters during a long-term measurement. Photometer 1 has
an extra filter to measure the OH(7,3) R-branches for an ex-
perimental purpose. The filters for 557.7, 630.0, 777.4, and
589.3 nm are for the measurement of mid- and low-latitude
airglow emissions. The filters of 427.8 nm (N+

2 (1NG, 0-1))
and 486.1 nm (Hβ) are for atmospheric emissions associ-
ated with energetic particle precipitation from the terrestrial
ring current (e.g., Tinsley et al., 1984). The narrowband
filters of channels 3, 4, and 11 are made with two cavities,
while other filters are made with three cavities.

The exposure time of each channel is also listed in Table
1. The filter sequence can be set by a program. Usually
we take exposures of channels 1–8 sequentially for five
times and then take exposures of channels 9–11 and dark
images. Such a sequence gives time resolutions of 5.5 min
for channels 1–8 and 32.5 min for channels 9–11.

3. Calibration
The output count Ni at the i th pixel of the photometer is

given as

Ni = ai t
∫

I (λ)Ti (λ)dλ + Nd , (2)

where ai , t , λ, I (λ), Ti (λ), and Nd are absolute sensitivity,
integration time, wavelength, intensity of the incident light
(in Rayleigh/nm), spectral transmission, and dark count, re-
spectively. In order to calculate rotational temperature and
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Airglow Temperature Photometer 2 

Fig. 3. Relative transmissions for 10 filters of Photometer 2 measured by
using a monochromatic light source from an 8-inch integrating sphere.
The transmission images are averaged over the azimuthal direction.
The abscissa is the radial distance from the center of the interference
fringes. The numbers near the peak of the curves indicate wavelengths
of incident light in unit of nm.

intensity of airglow from the fringe image of the photome-
ter, we need to obtain the two parameters, spectral transmis-
sion Ti (λ) and absolute sensitivity ai , through the calibra-
tion. Assuming an azimuthal symmetry, we integrate the
fringe images in the azimuthal direction. Thus, the pixel
number i indicates radial distance from the center of the
fringe. The dark count Nd can be obtained by taking an
image with the shutter closed.

To obtain the spectral transmission function Ti (λ), we
used a monochromatic light with a wavelength width of
0.1 nm generated by a grating spectrometer of the National
Institute of Polar Research (NIPR). Because the CCD is
focused to the 28.7-mmφ hole on the field stop at the top
of the photometer (Fig. 2), we need to illuminate the hole
uniformly by the monochromatic light. For that purpose
we introduced an integrating sphere with a diameter of 8
inches. The monochromatic light from the grating spec-
trometer is put into the integrating sphere. The sphere has
a 2-inch (50.8 mmφ) window at the 90◦ location from the
light input. The window is set to the 28.7-mmφ hole of the
photometer to put the monochromatic light into the pho-
tometer uniformly. This process can be done because of the
small aperture of the photometer. For SATI and MORTI,
this calibration was difficult because of their large apertures
and the conical mirror on the top of the optics.

For the spectral calibration, the output count Ni,k for
the monochromatic light input with a wavelength of λk is
expressed as,

Ni,k = ai t I (λk)Ti (λk)�λk + Nd , (3)

where �λk = 0.1 nm for the present case. From Eq. (3),
the spectral transmission function Ti (λk) is obtained as,

Ti (λk) = Ni,k − Nd

ai t I (λk)�λk
. (4)

Because we do not know ai and the absolute intensity I (λk)

of the monochromatic light, the transmission function can
be obtained as relative values normalized by a maximum
transmission at i0 and k0. We consider the dependence of
the spectrometer irradiance I (λk) on wavelength λk , which
is basically the variation of the irradiance of the tungsten
lamp.

Figure 3 indicates the spectral transmission Ti (λk) ob-
tained by the above calibration for the ten filters of Pho-
tometer 2 as a function of λk and radial distance i from
the center of the fringes. These curves are normalized by
the maximum transmission of all the radial distances i and
λk . The Ti (λk) curves are indicated every 1 nm in this fig-
ure, while the calibration is done for every 0.1 nm. As the
wavelength decreases, the transmission peak shifts outward
as expected from Eq. (1). The width of the transmission
becomes narrower for shorter wavelengths (larger incident
angles).

The curves in channels 5 and 9 are slightly distorted at
shorter wavelengths. This distortion can happen with three-
cavity filters, which have a square-shape transmission for 0◦

incident angle. These distortions do not affect the measure-
ments, since we fit these transmission functions directly to
the observed airglow spectra to obtain the airglow emission
rate.

To obtain the absolute sensitivity ai in Eq. (2), we used
a panchromatic (white) light source with a known intensity,
provided by an integrating sphere with a diameter of 2 m at
NIPR. The 28.7-mmφ hole on the field stop at the top of the
photometer is illuminated uniformly by this panchromatic
light source. For the absolute-sensitivity calibration, the
output count Ni from a known light source I (λ) (R/nm) is
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Fig. 4. Azimuthally-averaged distribution of output count per CCD pixel obtained by putting the panchromatic uniform light from the 2-m integrating
sphere to Photometer 2. The images are averaged over the azimuthal direction, similarly to that of Fig. 3.

given by writing Eq. (2) in summation form as,

Ni = ai t
∑

k

I (λk)Ti (λk)�λk + Nd . (5)

Thus, the absolute sensitivity ai can be obtained as

ai = Ni − Nd

t
∑

k I (λk)Ti (λk)�λk
. (6)

The transmission function Ti (λk) (Eq. (4)) normalized by
the maximum transmission can be used in Eq. (6) to calcu-
late ai .

Figure 4 shows the azimuthally-averaged distribution of
output counts per pixel obtained by putting the panchro-
matic uniform light from the 2-m integrating sphere into
Photometer 2. The dark counts Nd have been subtracted
from these data. There is a significant limb-darkening from
the center to the edge of the images for all channels. The
uniform light at the top of the optics becomes significantly
non-uniform with counts less than 40% at the edge of the

image compared to that at the center. This limb-darkening
is mainly caused by the Canon F0.95 lens, and it may cause
a systematic error of the output rotational temperatures if
the optics are not properly calibrated.

Figure 5 indicates the absolute sensitivities ai (count/R/s)
for ten channels of Photometer 2, calculated by Eq. (6)
using the data in Figs. 3 and 4. The sensitivity ranges
from 0.5 to 2.5 count/R/s, giving an estimate that a 60-s
exposure of 100 R airglow would produce 3,000–15,000
counts. The sensitivity is lower in channels 3 and 4 because
the narrower bandwidth of the filter (0.25 nm) results in
lower transmission.

4. Synthetic Spectra
In the actual observation of the sky, the airglow emission

rate is proportional to the peak counts of the fringes. How-
ever, if several emission lines with a small wavelength dif-
ference, like those in Fig. 1, are included in one fringe im-
age, they contaminate each other, because the spectral trans-
mission functions have certain widths, as shown in Fig. 3.
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In order to take this spectral contamination into account,
we need to fit synthetic spectra to the observed fringes. The
synthetic spectra are defined as follows.

If there are several emission lines with intensities of I1,
I2, ..., In (Rayleigh) at wavelengths of λ1, λ2, ..., λn , the
output count Ni (count/pixel) at the i th radial distance of
the photometer is given from Eq. (2) as

Ni = ai t (I1Ti (λ1) + I2Ti (λ2) + ...

+InTi (λn) + Ib

∑
k

Ti (λk)�λk) + Nd , (7)

where Ib (R/nm) is the intensity of background continuum
emission from the sky. Equation (7) can be rewritten as

yi = t (Si Ir + Bi Ib), (8)

where
yi = Ni − Nd , (9)

Si (T ) = ai

(
I1

Ir
Ti (λ1) + I2

Ir
Ti (λ2) + ... + In

Ir
Ti (λn)

)
,

(10)
Bi = ai

∑
k

Ti (λk)�λk . (11)

Si (T ) (count/R/s) is the synthetic spectra, which can be de-
termined on the basis of the calibrations described in the
previous section. Si (T ) depends on the temperature T (K)
of the atmosphere because the relative intensities of rota-
tional airglow bands I1/Ir , I2/Ir , ..., In/Ir are theoretically
determined for each temperature from the transition prob-
abilities, as shown in Fig. 1. The reference line of the
OH(6,2), OH(7,3), and O2(0,1) bands are taken at wave-
lengths of 846.5555, 877.8271, and 866.0595 nm, respec-
tively. In the present study, the OH(6,2)-band line intensi-
ties were calculated using the molecular constants given by
Coxon and Foster (1982) with the Einstein transition prob-
ability given by Langhoff et al. (1986). For the calculation
of the O2(0,1) band spectrum, we followed the calculation
form given by Meinel (1950) with the molecular constants
given by Krupenie (1972). The synthetic spectra for the
background continuum emission Bi (count nm/R/s) can be
also determined from the calibrations.

For each atmospheric temperature, we fit the linear rela-
tion of Eq. (8) to the observed airglow spectra for the pa-
rameters of Ir and Ib. The fitting is done by a least-square
method to minimize the square of the residuals χ2, which is
given as

χ2 =
∑

i

1

σ 2
i

(yi − t Si Ir − t Bi Ib)
2, (12)

where σ 2
i is the square of the random error of the output

count Ni and Nd and is basically given by the addition of
these counts, assuming that they follow the Poisson distri-
bution. The read-out noise of the CCD is usually larger than
the random noise from the dark count and should be also
taken into account as an error of Ni . For the error of Ni , we
need to consider the total count obtained by the integration
to the azimuthal direction. Namely, σ 2

i from Ni is given by
σ 2

i = Ni/mi , where mi is the number of pixels averaged
in the azimuthal direction. By this fitting, we obtain the Ir

and Ib that make χ2 minimum for each temperature. This
procedure is repeated for all the temperatures from 100 K
to 300 K every 1 K, and finally we obtain the three parame-
ters T (K), Ir (R), and Ib (R/nm) that minimize the residual
χ2. For airglow line emissions without temperature varia-
tions (channels 5–10), we simply fit Eq. (8) to the observed
spectra to obtain Ir and Ib.

Figure 6 indicates synthetic spectra Si (thick solid curves
counts/R/s) for airglow emissions and synthetic spectra Bi

(thick dashed curves in count nm/R/s) for background con-
tinuum emissions for Photometer 2. The thin solid curves
for banded emissions in Figs. 6(a)–6(d) and 6(h) indicate
the contribution from individual emission lines. The syn-
thetic spectra Si are the summation of the contributions
from these lines. For OH and O2 band emissions, the neigh-
boring lines contaminate each other. Thus, it is not appro-
priate to take just a peak intensity of each fringe to estimate
the line intensity, which is the reason why we use the fitting
of the synthetic spectra to the observed fringes to estimate
the line intensities correctly. The sodium D-line emission
in Fig. 6(h) has two lines at 588.9951 and 589.5924 nm,
respectively.

5. Data Processing
Using the three photometers, we made a test mea-

surement of the airglow at Platteville, Colorado (40.2◦N,
255.3◦E) from September 23 to November 7, 2003. Fig-
ure 7 shows examples of the airglow fringe images obtained
by Photometer 2 at Platteville on September 25, 2003. A
fringe image of OH(7,3) R-branches obtained by Photome-
ter 1 is also shown. As described in the previous sections,
concentric fringes are obtained for each filter, correspond-
ing to individual airglow lines. From these fringe images,
we took the following four data processing steps to calcu-
late rotational temperatures and airglow emission rates.

(1) Cosmic ray removal: The CCD-detector has white
spots in the image due to the incidence of cosmic rays. We
identify the white spots by checking pixels in which count
differences with neighboring pixels exceed a certain thresh-
old and then replace the count of the cosmic-ray pixels by
that of the neighboring pixels.
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(a) ch.1
OH-1

(b) ch.2
   OH-2

(c) ch.3
   O2-1

(d) ch.4
O2-2

(e) ch.5
557.7nm

(f) ch.6
630.0nm

(g) ch.7
777.4nm

(h) ch.8
589.3nm

(i) ch.9
427.8nm

(j) ch.10
486.1nm

Fig. 6. Synthetic spectra Si (thick solid curves, in unit of count/R/s) for airglow emissions and synthetic spectra Bi (dashed curves, in unit of count
nm/R/s) for background continuum emissions for Photometer 2. The synthetic spectra for OH and O2 bands are obtained for a temperature of 200 K.
The thin solid curves indicate contribution from each airglow line in the banded emission.

(2) Dark count subtraction: The dark images of the CCD,
which are necessary to determine the dark counts Nd , are
taken every 32.5 min by closing the shutter with the same
exposure times as those of the airglow images.

(3) Fringe center determination: To make azimuthal in-
tegrations of the concentric fringes, we need to determine
the center of the fringes. We first take 12 representative
images, sampled by an equal interval from one night of ob-
servations. We then make an average image of these 12 im-
ages. The fringe center is determined for this average image
as the location where the peak height of the azimuthally-
integrated fringes becomes maximum. In other words, if
the tentative center is not at the same position as the fringe
center, the azimuthal integration would cause reduction of
the peak height. We make this fringe-center search for
every 0.2 pixels and obtain (x, y) coordinates where the
azimuthally-integrated fringe peak becomes maximum. A
similar method has been adopted by SATI. We also tried to
determine the fringe center by fitting a Gaussian function to
the horizontal and vertical cross sections of the fringe im-

ages. However, the former method gives a more stable and
reliable center location.

(4) Filter temperature drift: In the initial analysis of the
photometer data, we found that the peak locations of the
fringes are slightly different between the synthetic spectra
and the observed spectra. This is because the transmission
function Ti (λk) drifts with changing temperature of the fil-
ter. The drift of the center wavelength of a bandpass filter
is typically ∼0.02 nm/◦C due to variations in the filter tem-
perature. The photometer has a sheet heater just below the
filter wheel that attempts to keep the filter temperature at
35◦C. However, since we cannot put the heater directly on
the filter, the filter temperature varies slightly according to
changes in the outside temperature. Because we fully cali-
brate the wavelength dependences of the transmission func-
tion as described in Section 3, we can calculate synthetic
spectra for the cases when the center wavelength of the filter
is shifted by the filter temperature variation. Using a linear
interpolation, we calculate synthetic spectra for wavelength
shifts of every 0.01 nm for a range of ±0.4 nm from the cal-
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COUNT500 4000 COUNT500 5000

Airglow Temperature Photometer 2 at Platteville   September 25, 2003

ch.1(OH-1) 03:0031UT   60s ch.2(OH-2) 0301:36UT   60s ch.3(O2-1) 03:0241UT   60s

ch.4(O2-2) 03:0346UT   60s ch.5(557.7nm) 03:0451UT  10s ch.6(630.0nm) 03:0506UT  10s

ch.7(777.4nm) 03:0521UT 20s ch.8(589.3nm) 03:0546UT 10s ch.9(427.8nm) 03:2231UT 60s

ch.10(486.1nm) 03:2336UT 60s ch.11(OH-R) 03:2441UT  60s

Fig. 7. Examples of the interference fringes for ten filters (ch.1–10) of Photometer 2 and 1 filter (ch.11, OH-R) of Photometer 1. These fringes were
obtained at Platteville, Colorado, on September 25, 2003. The channel number, start time of the exposure, and exposure time are indicated at the top
of each panel.

ibration data. We fit these synthetic spectra to the observed
spectra using Eq. (8) and obtain a best-fit wavelength shift.
For OH and O2 spectra, we assume a rotational temperature
of 200 K to obtain the best-fit synthetic spectra.

After these four data processing steps, we fit the syn-
thetic spectra to the observed spectra using Eq. (8) to ob-
tain the rotational temperatures and airglow emission rates.
Figure 8 shows examples of the fitting of the synthetic spec-
tra to the observed fringes shown in Fig. 7. The images in
Fig. 7 are averaged over the azimuthal direction. The thick
and thin curves are the observed and the fitted spectra, re-
spectively. Crosses and vertical dashed lines indicate the
data points and the range, respectively, which are used for
the spectral fitting.

For OH(6,2) emissions in channels 1 and 2, we fit the
synthetic spectra for the two ranges, including the P1(2)

(near pixel 50) and P1(4) (near pixel 16) peaks, and do
not use the peak at P1(3) (near pixel 38). This is because
the P1(3) line is contaminated by other airglow emissions
(e.g., Greet et al., 1998). For O2(0,1) emissions in chan-
nels 3 and 4, we take the fitting range where the emission
lines are bunched together between the lines of 865.91 and
867.07 nm. The two major oxygen emissions in channels 5
(557.7 nm) and 6 (630.0 nm) are clearly fitted, while the
third oxygen emission in channel 7 at 777.4 nm is very
weak and significantly contaminated by the three airglow
lines in the OH (9,4) Q-branches (Q1(1), Q(2) and Q(3)).
The sodium D emissions in channel 8 are also very weak
on this night. Since Platteville is at midlatitude, we cannot
expect the N+

2 (1NG) auroral emission at 427.8 nm in chan-
nel 9, while a weak emission is identified in the Hydrogen
Balmer β in channel 10. For OH(7,3) R-branches in chan-
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Fig. 8. Cross sections of the interference fringes shown in Fig. 7 (thick curves) and fitted synthetic spectra (thin curves). The images in Fig. 7 are
averaged over the azimuthal direction, similarly to that of Figs. 3–6. Crosses and vertical dashed lines in each panel indicate the data points used for
the spectral fitting.

nel 11 of Photometer 1, we fit the synthetic spectra to the
whole range of the three lines.

Figures 9 and 10 indicate the nocturnal variations of air-
glow emission rates Ir (R) and rotational temperatures T
(K) of OH (solid curves) and O2 (dashed curves) emissions
obtained by the three photometers at Platteville on Septem-
ber 25 and 29, 2003, respectively. The background con-
tinuum intensity Ib (R/nm), fitting error (% of maximum
count) averaged for all the fitted pixels, and wavelength
shift due to the variation of the filter temperature are also
shown. Since the three photometers have two filters each
for OH and O2 emissions, six solid and dashed curves are
overplotted in this figure. The parameters obtained by the
OH(7,3) R-branch filter of Photometer 1 are indicated by
small crosses.

The six filters of OH and O2 emissions give similar air-
glow emission rates in Figs. 9(e) and 10(e) with a differ-
ence of less than ∼20 R. The differences in temperature are
mostly less than 10 K, while channels 1 (OH) and 3 (O2) of
Photometer 1 give systematically higher temperatures for
both nights, with a difference of ∼15–20 K, compared with
the temperatures from other filters. The O2 temperature sig-
nificantly increases at dawn because of the contamination of
twilight. We continue the observation in the twilight until
the zenith angle of the Sun becomes larger than −12◦.

The fitting errors in Figs. 9(b) and 10(b) are the average
difference between the observed and synthetic spectra (in
percentage) compared with the peak counts of the fringes
and are mostly less than 1%, indicating that the fitting of
the synthetic spectra goes well. The wavelength shift due to
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Airglow Temperature Photometer at Platteville  September 25, 2003 
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Fig. 9. From top to bottom: (a) wavelength shifts for fitting, (b) average fit-
ting errors (in %) from the maximum count, (c) background intensities,
(d) and (e) rotational temperatures, and (f) line intensities, measured by
the three airglow temperature photometers at Platteville, Colorado, on
September 25, 2003. Six curves are overplotted for OH and O2, since
the three photometers have two each filters for both the OH and O2 mea-
surements. The parameters obtained by the OH(7,3) R-branch filter of
Photometer 1 are indicated by small crosses. The crosses and squares
indicate temperatures obtained by a sodium lidar at Fort Collins, Col-
orado and are averaged over 82–90 km and 90–98 km, respectively.

the filter temperature variation in Figs. 9(a) and 10(a) ranges
between 0.0 and 0.2 nm, suggesting that the temperatures of
the filter during the observation are ∼0–10◦C higher than
those at the calibration. The large crosses and squares in
Figs. 9(d), 9(e), 10(d), and 10(e) indicate the temperatures
obtained by a sodium lidar, which we discuss in the next
section.

Figures 11 and 12 show airglow emission rates at wave-
lengths of 557.7, 630.0, 777.4, 589.3, 427.8, and 486.1 nm
(channels 5–10), as well as the background continuum in-
tensities and fitting errors obtained by the three photome-
ters at Platteville on September 25 and 29, 2003, respec-
tively. Three curves are overplotted for each airglow line.
The three photometers give fairly consistent intensities for
these emissions for both nights. The sodium emission inten-
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Airglow Temperature Photometer at Platteville  September 29, 2003 

OH-3(7-3R) (at 877.8271 nm)
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Fig. 10. From top to bottom: (a) wavelength shifts, (b) average fitting er-
rors, (c) background intensities, (d) and (e) rotational temperatures, and
(f) line intensities, measured by the three airglow temperature photome-
ters at Platteville, Colorado, on September 29, 2003, in the same format
as that in Fig. 9.

sity at 589.3 nm shows a slight difference of ∼5 R between
the photometers. The fitting errors in the top panels are
also highest for the sodium emission in two photometers.
For auroral lines at 427.8 and 486.1 nm, the noise level of
the photometers is very low, indicating that the photometers
can measure weak emissions associated with energetic par-
ticle precipitation from ring current during magnetic storms
at midlatitudes (e.g., Tinsley et al., 1984). The 486.1-nm
emission in the evening of both nights may correspond to
the geocorona.

6. Comparison with a Sodium Lidar
Sodium lidar can measure the absolute value of the tem-

perature in the middle atmosphere. It gives accurate abso-
lute temperatures with a typical measurement precision of
∼0.6 K and ∼5 K near the peak (92 km) and edges (81 and
107 km) of the sodium layer (She et al., 2000). The location
of our test measurement, Platteville, was selected to make a
comparison with the sodium lidar operated by the Colorado
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Fig. 11. From top to bottom: (a) average fitting errors (in %) from the
maximum count, (b) background intensities, (c) intensities at wave-
lengths of 427.8 and 486.1 nm, (d) intensities at wavelengths of 630.0
and 777.4 nm, and (e) intensities at 557.7 and 589.3 nm, measured by
the three airglow temperature photometers at Platteville, Colorado, on
September 25, 2003. Three curves are overplotted for all the parameters.

State University (CSU) at Fort Collins (40.6◦N, 254.9◦E),
Colorado. The sodium lidar is located ∼60 km northwest
of Platteville. The lidar has a northward and an eastward
beam, which crosses the mesopause region about 100 km
NNW and 50 km NNE from Platteville, respectively. The
field-of-view (16◦) of the photometers corresponds to a cir-
cular area with a diameter of ∼50 km at the altitudes of the
OH and O2 airglow layers. The relative locations of Plat-
teville, CSU, and the lidar beams were shown by She et
al. (2004). Several researchers have used the mesospheric
temperature data from the CSU lidar for comparison with
the temperatures from airglow photometers and spectrome-
ters (e.g., She and Lowe, 1998; Melo et al., 2001; Taylor et
al., 2001).

The large crosses and squares in Figs. 9(d), 9(e), 10(d),
and 10(e) indicate temperatures obtained by the CSU
sodium lidar with a time resolution of 15 min. The temper-
atures are averaged for the two beams and altitude ranges of
82–90 km and 90–98 km, which correspond to the typical
airglow layers of OH and O2 emissions, respectively. The
variations of the rotational temperatures obtained by the
photometers are similar to the variations of the lidar tem-
peratures. However, the absolute values of the photometer
temperatures are systematically higher than the lidar tem-
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Fig. 12. From top to bottom: (a) average fitting errors (in %) from the
maximum count, (b) background intensities, (c) intensities at wave-
lengths of 427.8 and 486.1 nm, (d) intensities at wavelengths of 630.0
and 777.4 nm, and (e) intensities at 557.7 and 589.3 nm, measured by
the three airglow temperature photometers at Platteville, Colorado, on
September 29, 2003, in the same format as that in Fig. 11.

peratures with differences of 20–30 K for both OH and O2

emissions for both nights.
To investigate the temperature difference between the

photometers and the lidar more systematically, we made a
statistical comparison of the temperatures using eight nights
(September 23 and 25–29 and October 1 and 5, 2003) of si-
multaneous observations by the photometers and the lidar.
The results are shown in Fig. 13, which is the correlation
of the temperatures obtained by the photometers and by the
sodium lidar. The lidar temperatures are averaged over al-
titudes of 82–90 km for comparison with the OH temper-
atures and 90–98 km for comparison with the O2 temper-
atures. The solid lines indicate the linear regression lines
of

Tlidar(K) = aTphotometer(K) + b. (13)

For all 13 filters of the three photometers plotted in Fig. 13,
the photometer temperatures are linearly correlated with the
lidar temperature. The correlation coefficient r is mostly
larger than 0.8 except for channels 1 and 11 of Photometer
1 (r ∼ 0.7). The correlations for the O2 temperatures are
generally better than those for the OH temperatures. The
photometer temperatures are systematically lower than the
lidar temperatures for all the channels.
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Fig. 13. Correlations of temperatures obtained by the three airglow temperature photometers at Platteville and by a sodium lidar at Fort Collins. The
lidar temperatures are averaged over altitudes of 82–90 km for comparison with the OH temperatures and 90–98 km for comparison with the O2
temperatures. The solid lines are the linear fitting lines. r , a, b, and σT are correlation coefficient, gradient and zero-crossing of the linear fitting
lines, and standard deviation from the linear fitting lines, respectively.

The correlation coefficient r , gradient a, and zero-
crossing b (K) of the linear fitting lines, and the standard
deviation σT (K) from the linear fitting lines are listed in
Table 2. The lidar temperatures are averaged over ±4 km
and ±2 km from the typical altitudes of emission peak at 86
km for the OH emissions and 94 km for the O2 emissions.

The correlation coefficient r is clearly larger for the lidar
temperatures averaged over ±4 km for all channels. The
correlation coefficient r for temperatures from the OH(7,3)
R-branch (channel 11 of Photometer 1) is lower than those
for temperatures from the OH(6,2) P-branch (channels 1
and 2). As shown in the values of σT , we can convert the ro-
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Table 2. Correlations and linear fitting parameters of temperatures be-
tween the sodium lidar and the airglow temperature photometers. Better
correlation is obtained for the lidar temperatures averaged over 82–90
km and 90–98 km.

Photometer Channel Correlation a b σT

(K) (K)

Lidar altitude: OH:82–90 km, O2:90–98 km

1 1 (OH-1) 0.714 0.592 64.7 5.4

1 2 (OH-2) 0.809 0.721 44.9 4.5

1 3 (O2-1) 0.859 0.729 24.9 5.9

1 4 (O2-2) 0.889 0.762 25.7 5.2

1 11 (OH-3) 0.705 0.964 0.0 3.9

2 1 (OH-1) 0.815 0.764 36.3 4.4

2 2 (OH-2) 0.812 0.735 41.8 4.4

2 3 (O2-1) 0.905 0.797 22.4 4.8

2 4 (O2-2) 0.849 0.800 20.6 5.9

3 1 (OH-1) 0.834 0.796 28.0 4.2

3 2 (OH-2) 0.808 0.754 35.9 4.5

3 3 (O2-1) 0.868 0.737 35.5 5.6

3 4 (O2-2) 0.854 0.764 29.7 5.8

Lidar altitude: OH:84–88 km, O2:92–96 km

1 1 (OH-1) 0.636 0.630 56.1 7.1

1 2 (OH-2) 0.742 0.789 30.2 6.1

1 3 (O2-1) 0.826 0.756 18.6 7.0

1 4 (O2-2) 0.860 0.795 18.5 6.3

1 11 (OH-3) 0.685 1.271 −63.5 5.5

2 1 (OH-1) 0.749 0.833 21.8 6.0

2 2 (OH-2) 0.749 0.805 27.1 6.0

2 3 (O2-1) 0.872 0.829 15.6 5.9

2 4 (O2-2) 0.819 0.832 13.6 6.9

3 1 (OH-1) 0.776 0.880 10.2 5.7

3 2 (OH-2) 0.748 0.830 19.9 6.0

3 3 (O2-1) 0.845 0.774 27.6 6.5

3 4 (O2-2) 0.824 0.795 23.1 6.8

tational temperatures obtained by the photometers to the li-
dar temperatures using these parameters with Eq. (13) with
standard deviations of 4–6 K.

In the above comparison with the lidar data, we sim-
ply averaged the lidar temperatures for the given altitude
ranges. To obtain the altitude averages, we also tried to use
a Gaussian weighting function for the given altitude ranges
with standard deviations of the half width of the altitude
ranges. The results were almost the same as those from the
simple averages. The differences in temperatures in Figs. 9
and 10 were mostly less than 5 K. The differences in corre-
lation coefficients in Table 2 were less than 0.03.

Figure 14 shows a comparison of the temperatures ob-
tained by the photometers and the lidar. The photometer
temperatures are corrected using Eq. (13) with the parame-
ters listed in the upper part of Table 2 (average for ±4 km).
All the temperatures in six curves and small crosses from
the three photometers fit well with the lidar temperatures,
which are indicated by large crosses and squares. The tem-
peratures are temporally different at 02-03 LT in Fig. 14(c)
and at 20-21 LT, 01-02 LT, and 04-05 LT in Fig. 14(d).
These differences may be because of the height variation of
the airglow emissions associated with gravity waves. The
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Fig. 14. Comparison of the temperatures obtained by the sodium lidar
(squares and large crosses) and by the three airglow temperature pho-
tometers (solid curves and small crosses) for the nights of September 25
and 29, 2003. The temperatures of the photometers are corrected by the
linear fitting parameters listed in Fig. 13 and Table 2. Six solid curves
are overplotted in each panel.

significant increase in photometer temperatures at 05-06 LT
in Fig. 14(c) is because of contamination by twilight. We
did not include the time interval of the twilight observations
in the correlation analyses in Fig. 13 and Table 2.

7. Discussion
The absolute temperatures obtained by the three pho-

tometers are systematically higher than the temperatures
obtained by the near-collocated sodium lidar, as shown in
Figs. 9, 10, and 13. Here we discuss the possible causes of
this temperature difference.

The temperature of the interference filter drifts according
to the variations in the outside temperature. As a result, the
interference fringes shift in radial direction. As discussed
in data processing step (4) of Section 5, we correct this
fringe drift by calculating the best-fit synthetic spectra. This
correction may cause a systematic offset of the absolute
temperature.

The drift of the fringe corresponds to a shift of less than
0.2 nm in wavelength range, as shown in Figs. 9(a) and
10(a). This wavelength shift of the filter causes a fringe shift
of less than 1 pixel in radial distances. On the other hand,
the transmission of the optics decreases with increasing ra-
dial distance, as shown in Figs. 3 and 4. This decrease is
roughly about 1% per pixel. Thus, if we calibrate the wave-
length shift of the filter incorrectly, it may cause a maxi-
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mum of a 1% difference in the estimation of peak intensity
of airglow emission. For OH(6,2) rotational temperatures
at T = 200 K, the 1% difference of the peak intensity ra-
tio of P1(4)/P1(2) corresponds to the rotational temperature
difference of only ∼2 K. From these estimations, we con-
clude that the filter wavelength drift does not significantly
affect the estimation of the absolute temperature. The av-
erage fitting errors shown in Figs. 9(b) and 10(b) are also
less than 1%, corresponding to a random error of rotational
temperatures of less than ∼2 K.

After the calibration of the photometers we noticed a pos-
sibility that the wavelength of the monochromatic calibra-
tion source, which is a grating spectrometer, might shift dur-
ing the calibration due to a temperature change of the grat-
ing plate. Using another grating spectrometer, we found
that the wavelength of the spectrometer shifted ∼0.3 nm
during a few hours due to heat flux from the halogen lamp
that was used as the light source. This shift can be moni-
tored by using emission lines from a mercury lamp. How-
ever, we did not know how much the wavelength of the
spectrometer was shifted during the calibration of the pho-
tometers, since we did not conduct frequent calibration of
spectrometer wavelengths during the calibration of the pho-
tometers. Thus, we made a model calculation for those
cases where the wavelength of the spectrometer shifts ±0.5
nm from the used values. The differences of the output
temperatures between the non-shifted and shifted calibra-
tion data for the data of September 25, 2003 were less than
2 K for both OH and O2 temperatures, except for the cases
that the fitting failed because of too much shift. Thus, we
conclude that the wavelength shift of the grating spectrome-
ter used for the calibration does not cause a significant error
to the output temperatures.

Osterbrock et al. (2000) have shown high-resolution air-
glow spectra obtained by the Keck astronomical facility at
Mauna Kea, Hawaii. The wavelengths of OH and O2 emis-
sion lines in their high-resolution spectra are slightly dif-
ferent from the theoretical spectra used in the present study
(Fig. 1) and are in order of 0.01 nm. Thus, considering the
above analysis of the possible wavelength shift of the filter
and the grating spectrometer, this inaccuracy of the wave-
lengths of airglow lines would also not cause significant er-
rors in the output temperatures.

The transition probabilities which are used to calculate
the rotational temperatures from the observed intensity ra-
tio of rotational lines contain some ambiguity. Greet et
al. (1998) showed in their Table 2 that the temperature cor-
rections using the transition probabilities of Langhoff et
al. (1986) (used in this paper) is −14 K for the OH(6,2)
P1(2)/P1(4) ratio. French et al. (2000) estimated the dif-
ferences in OH rotational temperatures to be ∼11 K for
three transition probabilities by Mies (1974), Langhoff et
al. (1986), and Turnbull and Lowe (1989), respectively.

The other possible reason for the high rotational temper-
atures compared with the lidar temperatures is the assump-
tion of thermodynamic equilibrium for the rotational lev-
els. Pendleton et al. (1993) have shown that for high rota-
tional quantum numbers, the OH rotational populations can
strongly deviate from the thermodynamic equilibrium val-
ues. If the rotational levels are not in thermodynamic equi-

librium, the estimated temperature would become higher
than the atmospheric temperature.

Despite the large difference in absolute temperatures, the
linear regression parameters listed in Table 2 (averaged over
82–90 km and 90–98 km) correct the photometer tempera-
tures to the lidar temperature very well, with differences
of 4–6 K in standard deviation. This difference is possi-
bly because of the height variation of the airglow layers.
The peak height of the airglow layers can vary a few kilo-
meters over time because of gravity waves and tides (e.g.,
Zhang et al., 1993; Zhang and Shepherd, 1999; Fujii et al.,
2004). It should be noted that Zhao et al. (2005) have made
a similar comparison of lidar and photometer temperatures
using data collected during 16 nights at Hawaii (20.8◦N,
156.2◦W). They found that the tides or long-period grav-
ity waves can cause a systematic decrease in the altitudes
of both OH and O2 emission layers by up to several kilo-
meters. This effect caused differences of temperature up
to ∼10 K in their comparison. The linear regression lines
obtained by the present analysis should contain ambiguities
due to this effect of tidal forcing to the airglow layer height.

8. Concluding Remarks
In this paper, we report in detail the optical configuration,

calibration, and data processing of the three airglow temper-
ature photometers as well as a comparison with the CSU li-
dar. Although the rotational temperature measurement con-
tains several assumptions of airglow layer height, transi-
tion probabilities, and thermodynamic equilibrium, it is still
useful to monitor the mesospheric temperature because the
photometer is a compact instrument and easily automated.
This advantage of the photometer makes it suitable for net-
work measurement of the mesospheric temperatures at mul-
tiple stations. The good temperature correlation among the
13 filters of the three photometers and between the pho-
tometers and the lidar guarantees such a network measure-
ment. The three photometers are currently in operation
at Rikubetsu (43.5◦N, 143.8◦E), Sata (31.0◦N, 130.7◦E),
Japan, and Kototabang, Indonesia (0.2◦S, 100.3◦E) to mon-
itor latitudinal difference of global-scale waves in the meso-
sphere. The present result also indicates that the cross cal-
ibration is essentially important for the network measure-
ment of rotational temperatures.
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SATI: A spectral airglow temperature imager, Adv. Space Res., 19, 677–
680, 1997.

Won, Y.-I., Q. Wu, Y. M. Cho, G. G. Shepherd, T. L. Killeen, P. J. Espy, Y.
Kim, and B. Solheim, Polar cap observations of mesospheric and lower
thermospheric 4-hour waves in temperature, Geophys. Res. Lett., 30(7),
1377, doi:10.1029/2002GL016364, 2003.

Zhang, S. P. and G. G. Shepherd, The influence of the diurnal tide on the
O(1S) and OH emission rates observed by WINDII on UARS, Geo-
phys. Res. Lett., 26, 529–532, 1999.

Zhang, S. P., R. H. Wiens, and G. G. Shepherd, Gravity waves from O2
nightglow during the AIDA ’89 campaign II: numerical modeling of the
emission rate/temperature ratio, η, J. Atmos. Terr. Phys., 55, 377–395,
1993.

Zhao, Y., M. J. Taylor, and X. Chu, Comparison of simultaneous Na lidar
and mesospheric nightglow temperature measurements and the effects
of tides on the emission layer heights, J. Geophys. Res., 110, D09S07,
doi:10.1029/2004JD005115, 2005.

K. Shiokawa (e-mail: shiokawa@stelab.nagoya-u.ac.jp), Y. Otsuka, S.
Suzuki, T. Katoh, Y. Katoh, M. Satoh, T. Ogawa, H. Takahashi, D. Gobbi,
T. Nakamura, B. P. Williams, C.-Y. She, M. Taguchi, and T. Shimomai


