

INPE-15078-PRE/9987

DESIGNING FAULT INJECTION EXPERIMENTS USING STATE-

BASED MODEL TO TEST A SPACE SOFTWARE

Ana Maria Ambrosio
Maria de Fátima Mattiello Francisco

Valdivino A. Santiago Jr.
Wendell P. Silva
Eliane Martins *

*UNICAMP- Instituto de Computação (IC)

Presented at Third Latin-American Symposium on Dependable Computing (LADC),
Morelia, México, Sept. 26-28, 2007.

INPE
São José dos Campos

2007

Publicado por: esta página é responsabilidade do SID

Instituto Nacional de Pesquisas Espaciais (INPE)
Gabinete do Diretor – (GB)
Serviço de Informação e Documentação (SID)
Caixa Postal 515 – CEP 12.245-970
São José dos Campos – SP – Brasil
Tel.: (012) 3945-6911
Fax: (012) 3945-6919
E-mail: pubtc@sid.inpe.br

 Solicita-se intercâmbio
 We ask for exchange

 Publicação Externa – É permitida sua reprodução para interessados.

INPE-15078-PRE/9987

DESIGNING FAULT INJECTION EXPERIMENTS USING STATE-

BASED MODEL TO TEST A SPACE SOFTWARE

Ana Maria Ambrosio
Maria de Fátima Mattiello Francisco

Valdivino A. Santiago Jr.
Wendell P. Silva
Eliane Martins *

*UNICAMP- Instituto de Computação (IC)

Presented at Third Latin-American Symposium on Dependable Computing (LADC),
Morelia, México, Sept. 26-28, 2007.

INPE
São José dos Campos

2007

Published in Dependable Computing. Editors: Bondavali, A.; Brasileiro, F.;
Rajsbaum, S. Springer, Berlin. 2007; pages 170-178. Third Latin-American
Symposium on Dependable Computing (LADC). Morelia, México, Sep. 26-28, 2007.

Designing Fault Injection Experiments using State-
based Model to test a Space Software

Ana Maria Ambrosio1, Fátima Mattiello-Francisco 1,
Valdivino A. Santiago Jr1, Wendell P. Silva1, Eliane Martins2

1National Institute for Space Research (INPE)

Av. Dos Astronautas, 1758 - São Jose Campos -12227-010 - Brazil
Phone: +55-12-3945-6586,

(ana, fatima) @dss.inpe.br, (valdivino, wendell) @das.inpe.br

2Institute of Computing (IC)
State University of Campinas (UNICAMP)

P.O. Box 6176 - Campinas, 13083-970, SP, Brazil
eliane@ic.unicamp.br

Abstract. Software for space applications requires significant testing. This
paper presents an evaluation of the CoFI testing methodology as applied to
actual space software, where deterministic fault cases derived from state-based
models were executed using the software-implemented fault injection
technique. Different models were used to represent the behavior of embedded
software in a real satellite computer under the presence of both normal inputs
and external faults in communication, processor, and memory. CoFI
methodology was used for model construction, the Condado tool for test
derivation, and the QSEE-TAS tool for test execution. In total, 8,620% of 471
fault cases detected errors in the software; this is a very large number, and more
so considering that the software had already been tested by the company which
developed it before being subject the CoFI methodology.

Keywords: deterministic fault injection, software testing method, state-
based models.

1 Introduction

The testing phase in software development lifecycle has attracted software engineer
attention to answer the question, “how can one test a complex embedded software in a
short time without losing testing accuracy?”

Model-based test techniques have been used for protocol conformance testing to
complement the ISO practical testing guides, checking the implementation with
respect to a specification written in a formal notation [12], from which tests are
automatically generated [5], [8], [18].

A set of conformance test cases aims to establish that a given Implementation
Under Test (IUT): (i) performs all functions of the original specification over the full

range of parameter values and (ii) can properly reject erroneous inputs in such a way
that it is consistent with the original specification [11]. These test cases generate a
certain number of detected errors, but for dependability assessment, fault injection
methods are recommended. Fault injection execution is an activity highly dependent
on the facilities provided by the test environment [3], [6] and constraints in test
execution impose constraints in test generation. The CoFI (Conformance and Fault
Injection) testing methodology [1] was designed to help determine which faults to
inject using the same principles as model-based techniques “starting from a textual
specification towards formal models” [13]. Thus, CoFI reinforces the systematic
derivation of test cases that may be executed with software-implemented fault
injection (SWIFI).

This article presents the results of the use of CoFI to define which tests should be
generated to validate the SWPDC (SoftWare embedded into the Payload Data
Handling Computer (PDC)) that is intended to be part of a scientific X-ray instrument
onboard of the MIRAX satellite under development at the National Institute for Space
Research (INPE), Brazil. This software was developed by a private company and
delivered to INPE as part of INPE’s Quality of Space Application Embedded
Software (QSEE) research project of the [15], [16].

The paper is organized as follows. Section 2 presents an overview of the SWPDC.
Section 3 shows the testing tools that were used. Section 4 explains the CoFI
methodology applied to the SWPDC. Section 5 discusses the test results. Finally,
Section 6 presents pertinent conclusions.

2 Overview of the SWPDC

Figure 1 illustrates the SWPDC software in charge of collecting scientific data from
the Event Pre-Processors (EPPs); executing commands from the main on-board
computer (OBDH); generating housekeeping data; performing data memory
management, loading programs, and detecting external faults that can occur at
anytime, as is typical in computer space systems.

Fig. 1. Context of the SWPDC.

Given that the SWPDC is a software embedded in a satellite computer, it is
exposed to space radiation, which may cause Single-Event Effects (SEEs) like the
Single Event Upset (SEU) and Multiple Bit Upset (MBU). A single bit flip in a digital
device is an example of SEU. When several memory bits are upset during the passage
of the same particle it is a MBU [10].

The SWPDC also implements error detection mechanisms for Single and Double
memory errors, which are "soft" bit errors, in that a reset or rewriting of the device
causes normal behavior thereafter.

To detect processor errors the SWPDC is linked to a Watchdog circuit. A
watchdog circuit is a computer hardware-timing device that indicates a problem if the

software neglects to regularly reset the circuit. Exception handling mechanisms exist
to treat communication faults. No complex action to treat such errors is required;
however, all errors that occur are reported via housekeeping data transmitted to the
Ground System.

3 Test Environment

For the sake of validation, the SWPDC was treated as a black-box whose interactions
with the test environment are only through Points of Control and Observation (PCOs).
Figure 2 illustrates the test environment where the circles around the SWPDC box
indicate the PCO’s. The external inputs were all simulated. The dashed arrow from
the Watchdog Circuit Simulation and to the Watchdog Error Simulation denotes the
SWPDC did not send the watchdog timer signal within the expected period of time. A
special circuit triggers Simple and Double memory errors, while another circuit
controls the temperature. The EEP Simulator generates the scientific data and the
QSEE-TAS (Automatic Software Testing) tool [17] simulates the OBDH.

Tester
Test Cases

Test
Data base

Software Test
Reports

RS-232

USB SWPDC RS-232

Temperature
Simulation

Clock Generator

Simple Error,
Double Error
Simulation

Watchdog
Circuit

Simulation

Watchdog
Error

Simulation

Power Supply

Digital Digital Digital

ADC Digital Ext Int

QSEE-TAS tool
 /OBDH simulator EPP Simulator

Condado

Models

Fig. 2. The Test Environment. Legend: Ext Int = External Interruption; USB = Universal Serial
Bus; ADC = Analog-to-Digital Converter.

The QSEE-TAS tool also includes facilities for test configuration, execution,
reports, management of the test cases produced by Condado or produced manually,
and SWIFI mechanisms that accelerate the occurrence of communication faults in
commands produced by the OBDH. This mechanism assigns unspecified and/or
incorrect values to fields of the commands to corrupt messages, repeat or delay

commands. So far, injection of memory and processor faults has not been automated,
so the tester manually interfered in the respective PCO to trigger these types of faults.

The Condado tool [14] automatically derives test cases from state-based models.
This tool is based on a theoretical approach of graphs and implements the switch-
cover algorithm [7]. Since Condado generates all test cases in the same format:
“senddata (pco,input1) recdata(pco, output1) senddata
(pco,input2) recdata()…”, a converter that takes specific inputs (indicating
faults to be injected) of the fault cases and produces pre-defined faults was built,
thereby permitting QSEE-TAS to execute the test cases produced by Condado
directly.

4 CoFI Testing Methodology Applied to the SWPDC Software

CoFI systematizes the creation of partial models of IUT behavior that are employed in
automated test methods to generate test cases. In other words, instead of designing a
very complex model of software behavior under normal and faulty inputs, which
could lead to an explosion of the number of test cases produced from this model,
several simpler models are built. The behavior of an IUT is modeled for each service
the IUT provides. Scenarios for normal and exceptional behavior are mapped into
several state-based models [2], taking into account the fault types (or the fault model,
the term used by the Fault Tolerance community), which describe the way the
hardware or software component can fail, an important step for fault injection
purposes.

4.1 Creating the SWPDC Models

In this study, we identified the SWPDC inputs that could be executed in the test
environment as the commands that characterize the IUT’s services. Inputs that could
not be executed were not considered, such as duplication and delay in commands
coming from an EPP. Next, we defined a syntax for the inputs and outputs used in the
models. An input carries information on command, channel (the physical
representation of the PCO), and faults. Inputs preceded by Cmd indicate commands
arriving from the OBDH, so the PCO was defined implicitly. The symbol {badcks}
indicates the injection of a checksum error, while {sup} indicates the suppression of a
field from the command. Inputs with no faults are all the commands of the PDC-
OBDH and PDC-EPP communication protocols (see Figure 1).

Specific inputs indicate the faults to be triggered by the QSEE-TAS tool. The
following information may be obtained from such inputs: a) channel-identification; b)
number of times the command is repeated; c) delay time (in milliseconds) to wait
before sending the command; d) special processing (to calculate checksum or to
suppress command fields). Table 1 presents all the fault types accounted for in
SWPDC; and sample inputs are also described for each fault type.

Eleven services were identified for the construction of the state-based models. The
SWPDC service behavior was represented in scenarios for normal situations (Norm);

specified-exceptional situations (SExc); sneak paths (SPat)1; the presence of the
communication faults such as command corruption, truncated and delay/early
commands (Com); and the presence of memory and processor faults (M&Pr).

Table. 1. Fault types covered by the SWPDC and sample of specific inputs.

Fault Type Examples of specific inputs Input description
CmdTurnOnEPP2,CKS{badcks}

The Turn On EPP2
command will have an
error in checksum field.

Corrupted data
 field values

CmdPrepMemoryDumpData,Me
m,18,EndI,8000,EndF,FFFF

The Prepare Memory
Dump command will
have an error in the
address field.

Repeated
command

CmdTransTestData_2X The Transmit Test Data
command will be
received twice.Indicates
a duplication error.

Out-of-order
commands

- Commands are sent in
an unexpected sequence.

Truncated –
command fields
 are missing

CmdTurnOffEPP1,NU,{sup} The third field in Turn
Off EPP1 command will
be suppressed.

C
om

m
un

ic
at

io
n

Delay/Early –
 command
arriving
after/before the
specified time

ObsEndT T time-units will expire.
This input is preceded
by an action to start a
timer in T time-units.

Simple error ObsSingleError A Single Event Upset
will occur

M
em

or
y

Double error ObsDoubleError A Multiple (double)
Event Upset will occur

First occurrence
of Process-fault

ObsErrorProc1 First indication of the
watchdog

Pr
oc

es
s

Second
occurrence of
Process-fault

ObsErrorProc2 Second consecutive
indication of the
watchdog

1 A sneak path [4] is a path in the model that contains unlikely inputs for a given state. To help

identify sneak path scenarios the tester creates a state table and completes it with the valid
inputs against all states, then, create models that represent out-of-order and duplicated
commands, which are two common types of communication faults.

Table 2 lists the services and the distribution of the 97 models by services and by
scenario type. In general, each set of faults of the same type was mapped in a distinct
model, except for memory and processor faults. The grey columns indicate the
models that produced fault cases.

Table. 2. Services x models.

Services Models Total
 Norm SExc SPat Com M&Pr

S1 Initialization 2 1 1 1 1 6
S2 Scientific data 2 2 1 1 1 7
S3 Housekeeping 3 3 3 1 1 11
S4 Test data 2 4 4 1 1 12
S5 Diagnostics 2 4 4 2 2 14
S6 Memory dump 5 3 5 2 1 16
S7 Change operat mode 1 0 0 0 1 2
S8 Load&execute program 1 5 4 3 2 15
S9 OBDH msg syntax 1 0 0 1 0 2

S10 EPP msg syntax 1 0 0 1 0 2
S11 Special commands 4 0 0 2 4 10

Total 24 24 22 13 14 97

The model of the single scenario for M&Pro of the S4-Test Data service is
illustrated in Figure 3. This model shows that under the presence of one memory error
(represented by the specific input ObsSingleError) the SWPDC reacts by correcting
the error (represented by the ObsCorrectError output), reporting the event in
housekeeping reports (ObsWriteHkReport) and remaining in the same state. But,
under a double memory error (ObsDoubleError), where SWPDC is not required to
correct the error, only a report is produced. In the presence of the first occurrence of a
processor error (ObsErroProc1), it reports the failure, but in the second occurrence
(ObsErroProc2), a reset makes the SWPDC return to its initial state (Standby).

5 The Fault Injection Experiments

Each model was submitted to the Condado tool. In the IUT models a transition
represented an input and the expected corresponding output produced in reaction to
that input [11]. This means that the test cases generated by Condado are ordered sets
of inputs and outputs, comprising a path from the initial state to a final state. The set
of test cases, therefore, covered all branches of each model at least once.

External faults added to the set of inputs normally accepted by the SWPDC define
the generation of fault cases, which have specific inputs and input data that
characterize the fault to be injected, so each fault case is considered a fault injection
experiment.

Fig. 3. State-based model representing processor and memory faults.

Table 3 shows the distribution of the errors detected by the fault cases in one
campaign. In total, 451 fault cases were generated in 770 test cases produced from the
models, resulting in 39 detected errors. Processor and memory faults were modeled in
a single model (M&Pr), but fault cases and the errors detected were computed
separately. There were 2 more processor errors than memory errors detected. The
fault cases of communication were derived from the SPat and the Com models. The
disproportionate number of communication fault cases reflects the research priority
for identifying communication errors.

Table. 3. Fault type x detected errors

Fault Type Fault injection experiments Detected Errors
Communication 283 31
Processor 80 5
Memory 88 3

Total 451 39

The other 319 test cases generated from Norm and SExc models resulted in only 12

errors. Thus, CoFI was able to identify a significant number of errors in a relatively
small number of fault cases. This suggests the CoFI methodology identified likely
errors successfully when pre-defining which faults to inject, confirming the
advantages of deterministic fault injection methods [9].

6 Conclusions

Considering that we were going to validate software supplied by a competent team
from a prominent Brazilian Software industry to INPE, which was developed under
rigorous quality assurance rules, we expected to find very few errors. The results
surprised us as 51 errors were yet found.

Since the models reflected the software behavior based on information obtained
from the textual documents such as protocol specification, technical specification,
software design, and manual, all non-conformances between code and document were
computed as a detected error. These errors were classified as 45% only code errors
33% only document non-conformance errors and 22% code and document non-
conformance errors.

The results pointed out that focusing on the faults is more effective than on the
normal behavior for validation purposes. Since models were grouped by fault types,
the set of automatically generated fault cases were distinguishable by their fault types
and statistical calculations on the tests were facilitated.

The INPE test team worked independently of the industrial development team to
create the models. Obviously, the greater effort to create the models was compensated
by the superior test organization CoFI achieved in comparison with previous ad hoc
test designs. The models served as guides to focus the tester’s attention to the faults
and exceptions that could occur during the software’s operation, leading to the design
of situations the developers had not thought of. One example is for OBDH to require
data during SWPDC initialization service.

Future work is required to verify whether other types of errors are identified when
test models are combined. In order to make the CoFI testing methodology applicable
to any space application, the adoption of a standardized test language to represent the
inputs and outputs seems to be important as well.

Acknowledgments

The authors acknowledge the financial support from Financiadora de Estudos e
Projetos (FINEP) to the QSEE research project and all those involved. The authors
also thank the reviewers for their insightful comments and constructive suggestions.

References

1. Ambrosio, A.M. “CoFI: uma abordagem combinando teste de conformidade e injeção de
falhas para validação de software em aplicações espaciais,” INPE-13264-TDI/1031.
Instituto Nacional de Pesquisas Espaciais - INPE, (2005)

2. Ambrosio, A.M., Martins E., Vijaykumar N. L., Carvalho, S.V., “A Methodology for
Designing Fault Injection Experiments as an Addition to Communication Systems
Conformance Testing,” Proceedings of the 1st Workshop on Dependable Software - Tools
and Methods in the IEEE Conference on Dependable System and Network, 28 June – 1
July 2005, Yokohama, Japan (2005)

3. Arlat, J.; Aguera, M.; Amat, L.; Crouzet,Y.; Fabre, J.-C.; Laprie, J.-C.; Martins, E.;
Powell,D. Fault Injection for Dependability Validation: A Methodology and Some
Applications. IEEE Tr on SE, v. 16, n.2, p. 166-182 (1990)

4. Binder, R. Testing Object-Oriented Systems-Models, Patterns and Tools – Addison-Wesley
(2000)

5. Cavalli, A.; Gervy, C.; Prokopenko, S. “New Approaches for Passive Testing using
Extended Finite State Machine Specification”. In: WTCS, Canada (2001)

6. Chandra, R.; Lefever, R.M.; Cukier, M; Sanders, W.H. A global-state triggered fault
injector for distributed system evaluation. IEEE Transaction on Parallel and Distributed
Systems –p.593-605 v.15 n.7 (2004)

7. Chow, T.S. “Testing software design modeled by finite state machines”. IEEE Trans on Sw
Engineering (TSE), vol.SE-4, nr. 3, pp178-187 (1978)

8. Dssouli, H.; Salek, K.; Aboulhamid, E; En-Nouaary, A ; Bourhfir, C. Test Development for
Comm. Protocols: Towards Automation. Computer Networks, n. 31, p. 1835-1872 (1999)

9. Echtle, K; Chen, Y. Evaluation of Deterministic Fault Injection for Fault-Tolerant Protocol
Testing. IEEE 21th Annual International Symposium on Fault-Tolerant Computing,
Montreal, p.418-425 (1991)

10. Goddard Space Flight Center (GSFC). Available at:
<http://radhome.gsfc.nasa.gov/radhome/papers/seeca1.htm>. Accessed in: March 2007

11. Holzmann, G. J. Design and validation of computer protocols. Prentice Hall, 1990
12. International Organization for Standardization ISO/IEC– IS9646 International standard

conformance testing methodology and framework. Geneve (1991)
13. Martins, E.; Mattiello-Francisco, F. A Tool for Fault Injection and Conformance Testing of

Distributed Systems. Lecture Notes in Computer Science, v. 2847/2003, pp. 282-302,
Brazil (2003)

14. Martins, E.; Sabião, S.B.; Ambrosio, A. M. ConData: a Tool for Automating Specification-
based Test Case Generation for Communication Systems. Software Quality Journal, v.8, n.
4, p. 303-319 (1999)

15. Mattiello-Francisco, M.F.; Santiago V.A., Costa, R., Jogaib, L.. Verificação e Validação na
terceirização de software embarcado em aplicações espaciais. Simpósio Brasiliero de
Qualidade de Software - SBQS2006, pp. 368-375, Villa Velha, ES, Brazil (2006)

16. Santiago, V.; Mattiello-Francisco, F.; Costa, R.; Silva, W.P.; Ambrosio, A.M. “QSEE
Project: An Experience in Outsourcing Software Development for Space Applications”. In
The Nineteenth International Conference on Software Engineering and Knowledge
Engineering (SEKE'07), Boston, EUA (2007)

17. Silva, W. P. et al, QSEE-TAS: Uma Ferramenta para Execução e Relato Automatizados de
Testes de Software para Aplicações Espaciais, XX Brazilian Symposium on Software
Engineering-SBES (2006)

http://radhome.gsfc.nasa.gov/radhome/papers/seeca1.htm

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI)

Manuais Técnicos (MAN)

Teses e Dissertações apresentadas
nos Cursos de Pós-Graduação do
INPE.

São publicações de caráter técnico
que incluem normas, procedimentos,
instruções e orientações.

Notas Técnico-Científicas (NTC)

Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de
programa de computador, descrição de
sistemas e experimentos, apresenta-
ção de testes, dados, atlas, e docu-
mentação de projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja
compatível com o de uma publicação
em periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompanha-
mento de projetos, atividades e convê-
nios.

Incluem apostilas, notas de aula e
manuais didáticos.

Publicações Seriadas

Programas de Computador (PDC)

São os seriados técnico-científicos:
boletins, periódicos, anuários e anais
de eventos (simpósios e congressos).
Constam destas publicações o
Internacional Standard Serial Number
(ISSN), que é um código único e
definitivo para identificação de títulos
de seriados.

São a seqüência de instruções ou
códigos, expressos em uma linguagem
de programação compilada ou inter-
pretada, a ser executada por um
computador para alcançar um determi-
nado objetivo. São aceitos tanto
programas fonte quanto executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em
periódicos, anais e como capítulos de
livros.

	CAPA
	VERSO
	PÁGINA DE ROSTO
	1 Introduction
	2 Overview of the SWPDC
	3 Test Environment
	4 CoFI Testing Methodology Applied to the SWPDC Software
	4.1 Creating the SWPDC Models

	5 The Fault Injection Experiments
	6 Conclusions
	Acknowledgments
	References

