14th ISPE

CE' 2007 - International Conference on Concurrent Engineering

São José dos Campos, Brazil, July 16th to 20th

ne

Guidelines for Reverse Engineering Process Modeling of Technical Systems

Ivo R. Montanha Junior, M.Eng. André Ogliari, Dr.Eng. Nelson Back, Ph.D

núcleo de desenvolvimento integrado de produtos

Outline

- Overview
- Literature Review
 - Conceptual Design of Technical Systems
 - Reverse Engineering for Technical Systems Design
 - Product Teardown
 - Support Methods Related to Reverse Engineering (RE)
- Technical Visit to a RE Leading Company
- Proposal of the RE Process Modeling
- Guidelines for the RE Model
- Final Considerations

I. Overview

I. Overview

- The process of <u>conceptual design</u> is essential to <u>innovation</u>, because it uncouples the design problem from the known solutions by an <u>abstraction</u> process
- In spite of its importance, this process is not effectively carried out by designers
- <u>Standardized functions</u> should guide the designers in the product functional modeling
- Reverse Engineering (RE) is suggested, as a way to model the processes of identifying, purchasing and modeling design information – functions and design principles – in a continuous and systematic way

II. Literature Review

II. Conception Process of TS

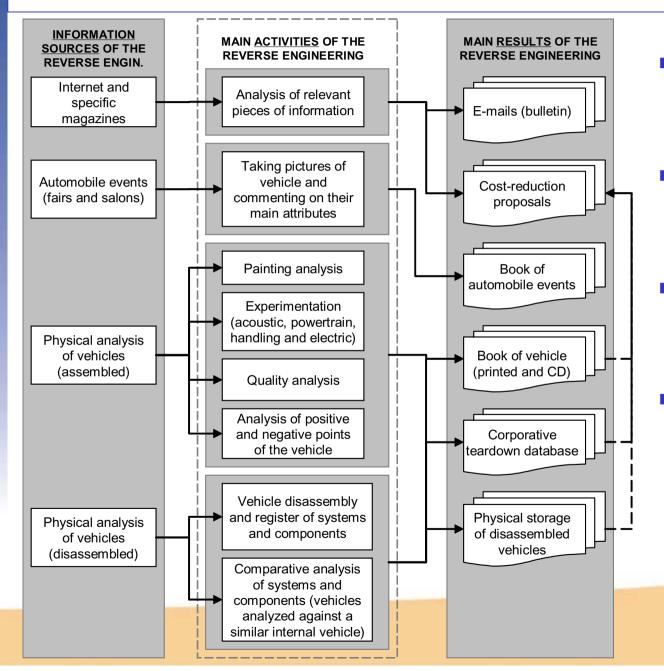
- In the conceptual design phase, the <u>Technical</u> <u>Systems (TS) conceptions</u> are developed by:
 - Functional modeling
 - Design principles and
 - Product conceptions generation
- The main <u>functional modeling</u> approaches are:
 - Functional deployment (Pahl and Beitz)
 - Axiom-based synthesis (Tomiyama *et al.*) and
 - The function-means tree (Tjalve)
- The conceptual design <u>demands</u>:
 - A significant capacity of abstraction
 - An accurate definition of the functions
 - RE supports the acquisition of this information

II. Reverse Engineering for TS Design

- RE is "a process of information getting and analysis from <u>existent systems</u>, in order to optimize systems being developed"
- RE seeks to <u>understand</u> how a <u>TS works</u>, not copying technical solutions
- RE methodologies have been suggested to formalize the RE process for TS, considering:
 - FAST (Function Analysis System Technique)
 - SOP (Subtract and Operate Procedure)
 - Force Flow
 - Teardown (technical disassembly)

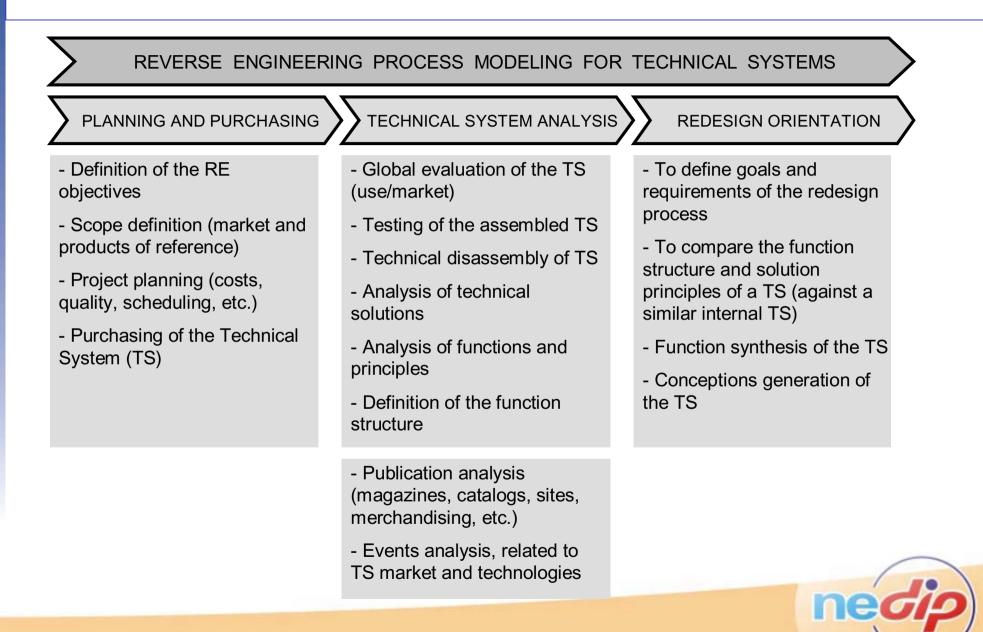
II. Product Teardown

- Teardown is carried out by many companies
 - To verify new technologies in the market
 - Informally, aiming at the solution of specific problems
- Teardown must:
 - Be a <u>formal process of TS disassembling</u>, analyzing each subsystem and component
 - Identify the <u>inter-relationships</u> among them, their <u>functions</u> and <u>design principles</u>
- Methodologies of teardown have been suggested:
 - <u>Otto and Wood (2001)</u>: the practical procedure was emphasized but not the functional modeling
 - <u>Abe and Starr (2003)</u>: the identification of the TS functions is clear and logical



II. Support Methods Related to RE Value Analysis (VA) AHP (Analytic Hierarchy Process) may COVER 2 Interface Diagrams COVER 1 To identify the connections TURE between the physical components or processes of a TS COVER 2 Assembly analysis methods (DFA approach) BODY TIP TUBE INK COVER 1

III. Technical Visit to a Leading RE Company

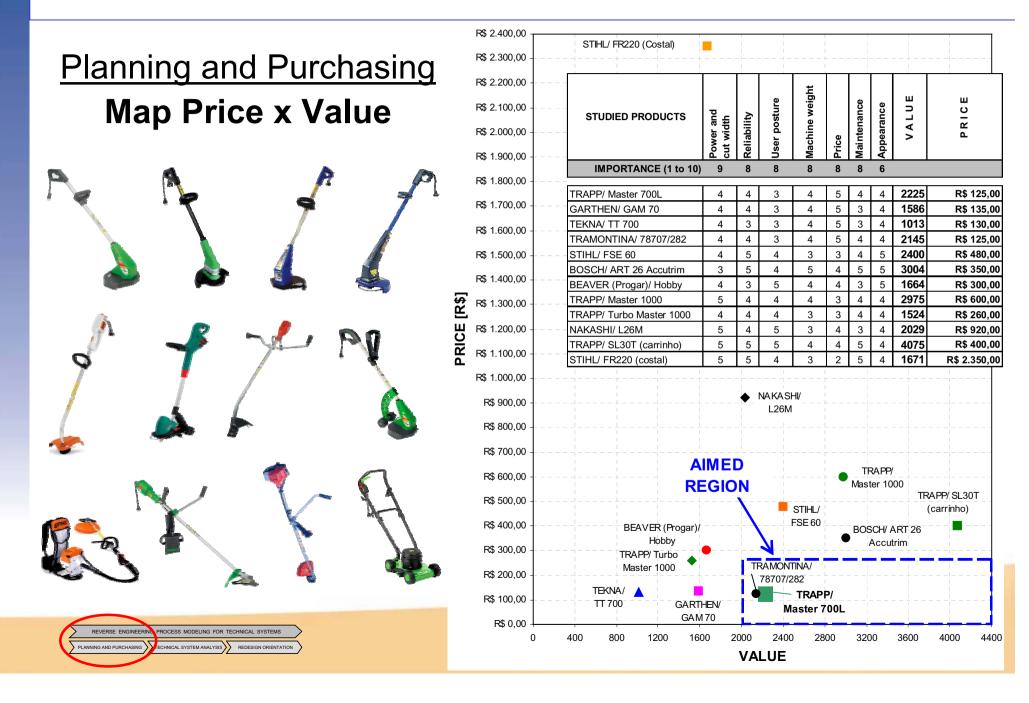

III. Technical Visit to a Leading RE Company

- Company: an automotive assembler (Brazil)
- The European head office designs the new vehicles
- RE sectors: quality, engineering and teardown
- They have a formal and understood procedure of RE, but functions are not focused on

IV. Proposal for the Reverse Engineering Process Modeling

REVERSE ENGINEERI

PLANNING AND PURCHASING


- Definition of the RE objectives
- Scope definition (market and products of reference)
- Project planning (costs, quality, scheduling, etc.)
- Purchasing of the Technical System (TS)

REVERSE ENGINEERING PROCESS MODELING FOR TECHNICAL SYSTEM

ECHNICAL SYSTEM ANALYSIS X REDESIGN ORIENTATIO

- <u>GOAL</u>: to plan the activities of the RE process, and to orientate the designers to purchase the right TS to be analyzed
- <u>RESULTS</u>: the project plan of the RE process and the TS purchasing

NG PROCESS MODELING FOR

TECHNICAL SYSTEM ANALYSIS

- Global evaluation of the TS (use/market)
- Testing of the assembled TS
- Technical disassembly of TS
- Analysis of technical solutions
- Analysis of functions and principles
- Definition of the function structure
- Publication analysis (magazines, catalogs, sites, merchandising, etc.)
- Events analysis, related to TS market and technologies

REVERSE ENGINEERING PROCESS MODELING FOR TECHNICAL SYSTEMS

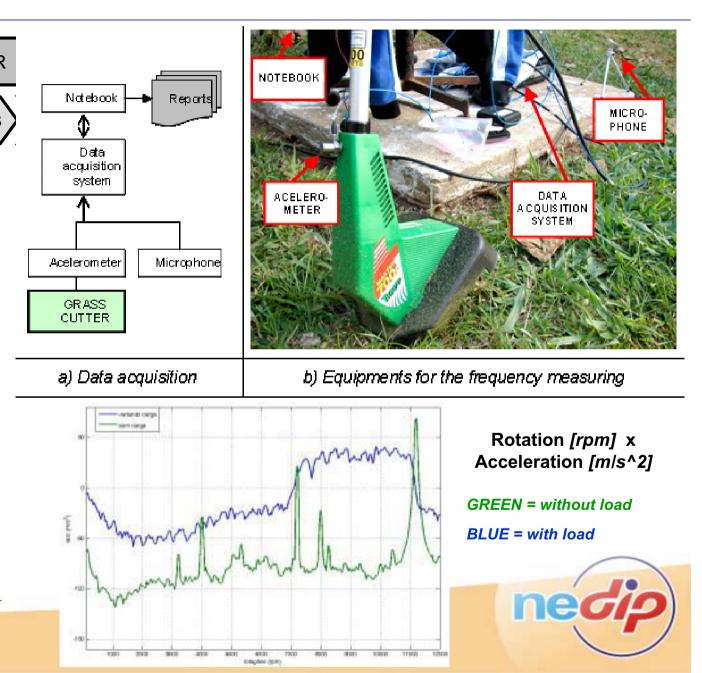
NG >>> TECHNICAL SYSTEM ANA

PLANNING AND PURCHA

- <u>GOAL</u>: to obtain information which can be used in future designs and redesigns
- <u>RESULTS</u>: a list of components and materials; TS description; information on technical performance; and the <u>functions identification</u>

NG PROCESS MODELING FOR

TECHNICAL SYSTEM ANALYSIS


- Global evaluation of the TS (use/market)
- Testing of the assembled TS
- Technical disassembly of TS
- Analysis of technical solutions
- Analysis of functions and principles
- Definition of the function structure
- Publication analysis (magazines, catalogs, sites, merchandising, etc.)
- Events analysis, related to TS market and technologies

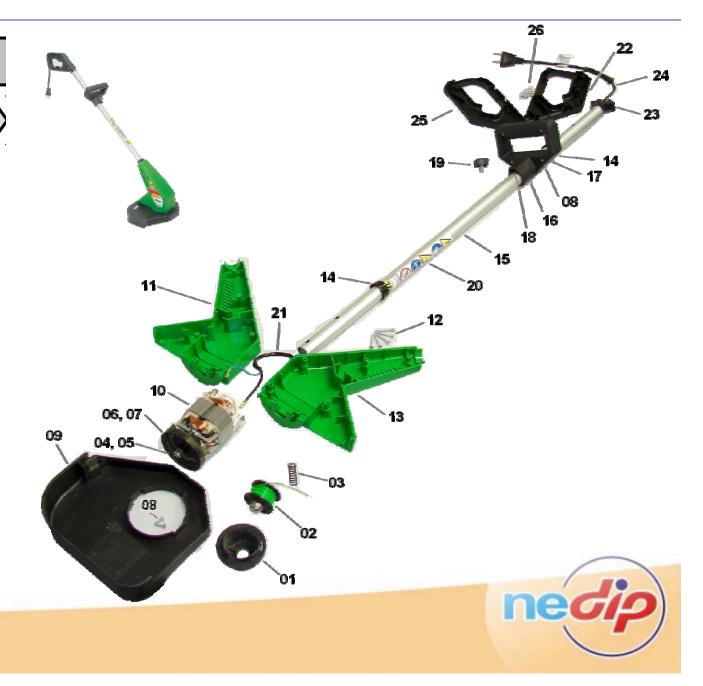
G TECHNICAL SYSTEM ANA

ECHNICAL SYSTEMS

REVERSE ENGINEERING PROCESS MODELING FOR

PLANNING AND PURCH

NG PROCESS MODELING FOR


TECHNICAL SYSTEM ANALYSIS

- Global evaluation of the TS (use/market)
- Testing of the assembled TS
- Technical disassembly of TS
- Analysis of technical solutions
- Analysis of functions and principles
- Definition of the function structure
- Publication analysis (magazines, catalogs, sites, merchandising, etc.)
- Events analysis, related to TS market and technologies

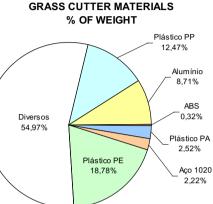
CHNICAL SYSTEMS

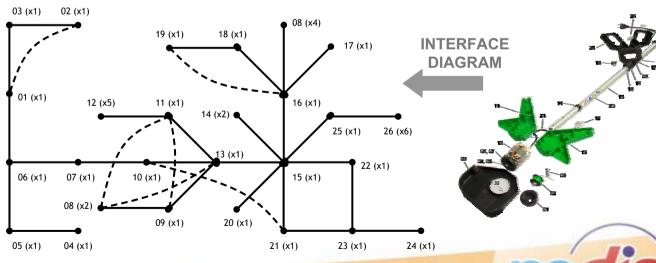
REVERSE ENGINEERING PROCESS MODELING FOR

PLANNING AND PURC

NG PROCESS MODELING FOR

TECHNICAL SYSTEM ANALYSIS


- Global evaluation of the TS (use/market)
- Testing of the assembled TS
- Technical disassembly of TS
- Analysis of technical solutions
- Analysis of functions and principles
- Definition of the function structure
- Publication analysis (magazines, catalogs, sites, merchandising, etc.)
- Events analysis, related to TS market and technologies


REVERSE ENGINEERING PROCESS MODELING FOR TECHNICAL SYSTEMS

REDESIGN ORIENTATION

PLANNING AND PURCHASING >> TECHNICAL SYSTEM ANALYS

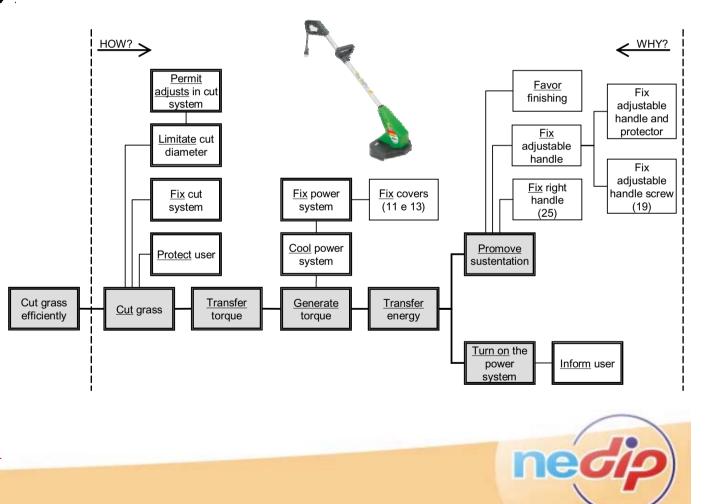
WEIGHT WEIGHT PART CÓD. COMPONENT QTD. MATERIAL AND DIMENSIONS WEIGHT JNIT. (g) ITEM (g) TYPE ITEM 26 Parafuso 4 x 20m 6 1 / 0.42 25 Punho direito 1 lástico 57.0 2.81 24 Cabo elétrico com plug - 2 : iverso 41 (20mm 23 Botão de acionamento (gatinho iversos/ 47 x 29 x 15 mr 18.5 om trava 22 Punho esquerdo Plástico PE/ 235 x 110 x 25 mr 63 Cabo elétrico inferior - 2 x 1 21 iversos 47.7 180mm 20 Adesivo com instruci inil/ 190 x 30 19 Borboleta de fixação 18 Porca da borboleta 13 x 19 x M8 17 Punho aiustável trasei Punho ajustávol dia Tubo de alumí Jumínio/ 90 8 71 Diversos Anel trava 54.97% Plásť 128 7 128 6 35 ástico PE/ 250 x 170 x 131,54 131,5 6.49 Diversos/ 160 x 70 x 60 m 956.7 956.7 47 17 Plástico PP/ 230 x 200 154.16 154 1 7 60% 1.2 0.38 0.94 0.05% co 1020 – ø3 x 13mr 0.9 24 (do. lástico PA/ ø79 x 21 mm 1 18 0.6 0.6 co 1020 - 5/16" x 1mm 0.039 co 1020 - 5/16 6.5 co 1020/ ø11 5 x 35 x ø1 3 m 3,39 0 179 . espiras iversos/ ø47 x 44 m 36.8 27.1 amna inferior do carrete ástico PA (nylon)/ ø71 x 40 m TOTAL = 41 Componentes 2028 13 (02 (x1) 08 (x4) 19 (x1) 18 (x1)

NG PROCESS MODELING FOR

TECHNICAL SYSTEM ANALYSIS

- Global evaluation of the TS (use/market)
- Testing of the assembled TS
- Technical disassembly of TS
- Analysis of technical solutions
- Analysis of functions and principles
- Definition of the function structure
- Publication analysis (magazines, catalogs, sites, merchandising, etc.)
- Events analysis, related to TS market and technologies

REVERSE ENGINEERING PROCESS MODELING FOR TECHNICAL SYSTEMS


REDESIGN ORIENTATION

PLANNING AND PURCHAS G TECHNICAL SYSTEM ANALYS

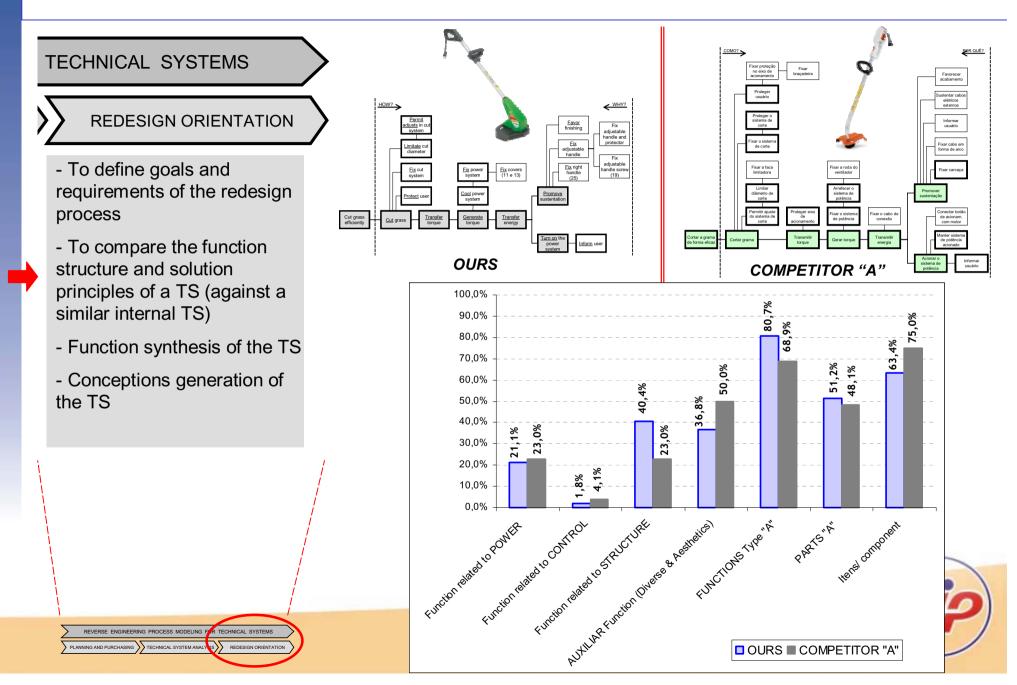
FUNCTION STRUCTURE:

USING <u>SOP</u> (SUBTRACT AND OPERATE PROCEDURE) AND

FAST (FUNCTION ANALYSIS AND SYNTHESIS TECHNIQUE)

TECHNICAL SYSTEMS

REDESIGN ORIENTATION


- To define goals and requirements of the redesign process
- To compare the function structure and solution principles of a TS (against a similar internal TS)
- Function synthesis of the TS
- Conceptions generation of the TS

REVERSE ENGINEERING PROCESS MODELING FOR TECHNICAL SYSTEMS

NING AND PURCHASING TECHNICAL SYSTEM ANALY

- <u>GOAL</u>: the goals and requirements of the TS redesign are defined, indicating which subsystems should be optimized
- RESULTS: the redesign of goals, a comparative analysis of the function structures, the optimized function structure and the attributes of the new versions of the TS conceptions

TECHNICAL SYSTEMS

REDESIGN ORIENTATION

- To define goals and requirements of the redesign process
- To compare the function structure and solution principles of a TS (against a similar internal TS)
- Function synthesis of the TS
- Conceptions generation of the TS

REVERSE ENGINEERING PROCESS MODELING FOR TECHNICAL SYSTEMS

IS REDESIGN ORIENTATION

PLANNING AND PURCHASING >> TECHNICAL SYSTEM ANALY

TOP SEVEN FUNCTIONS OF OUR PRODUCT NO. TEM FUNCTION DESIGN PRINCIPLES 01 19 Cut grass (A)TR-02, Refil Grass scissors Helicoidal blade Rotative blade Koite. 02 Generate torque 10 (A) TR-10. Motor 700W - 220V Torsion spring Hydraulic motor Pneumatic motor Crank m 16 Cool power **(B)** system TR-06. Refil top cover Cooler (computer) Blower Heat exchanger Peltier's plate 04 15 Transfer (B) toraue TR-07. Transmission Groove Driveshaft Strap locker pin 05 03 Turn on power **(B)** system TR-23. Button Button type on-off Connect cables (without button) without locker 06 02 Transfer energy (B)TR-24. Bectric cable with TR-21. Down electric Wireless Pipes cable 2 x 1 x 1180mm plug 2 x 1 x 320mm (without cables) Promove $\mathbf{1}\mathbf{7}$ 04 (B) Sustentation TR-25. Right handler TR-22. Left handler TR 15. Auminum TR-17, Back TR-16. Front adjustable handler adjustable handler tube

V. Guidelines for the RE Model

V. Guidelines for the RE Model

- To study processes of <u>functional modeling</u>, in order to define the <u>information structure</u> needed to describe the TS functions, considering the function deployment levels and the right technical language
- To develop a <u>method for the comparative analysis of TS</u> <u>function structures</u>, considering the functions of each subsystem, the interaction among functions, types of flows, types of transformations, etc.
- To develop a <u>database</u>, who will permit the <u>comparison of</u> <u>similar functions</u>, as well as the registration of functions and solution principles from many areas – mechanical, electrical, optical, bionic (analogy with nature), and others – to satisfy the design needs

VI. Final Considerations

VI. Final considerations

- The RE process formalizing supports the identification of TS functions and solution principles
- A comparative analysis between the studied TS and an internal TS can favor an improvement in the TS
- By utilizing the RE process as a source of knowledge for innovations in TS, companies can develop TS solutions in a faster way and with less uncertainties, in relation to a project without comparison parameters
- However, our methodology is currently being developed. For this reason, practical results in companies have still not been obtained, but they will be reported before the end of this year.

Guidelines for Reverse Engineering Process Modeling of Technical Systems

Ivo Rodrigues Montanha Junior, M.Eng. (M.Sc.) IVOJR@nedip.ufsc.br

> André Ogliari, Dr.Eng. OGLIARI@emc.ufsc.br

Nelson Back, Ph.D BACK@emc.ufsc.br

www.nedip.ufsc.br

