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ABSTRACT

Context. We investigate the behavior of the mass variance and the mass function of galaxy clusters in a mixed distribution model.
Aims. Our aim is to find a relation between the mass variance at a 8 h−1 Mpc scale, σ8, and the parameter controlling the Gaussian
deviation in the model, α0, and to constrain the non-Gaussianity using observational data at cluster scales.
Methods. By assuming that the statistics of the density field is built as a weighted mixture of two components, a Gaussian + Lognormal
distribution, we rewrite the mass variance expression and the mass function for galaxy clusters.
Results. We find a relation between the mass variance at a 8 h−1 Mpc scale, σ8, and the scale parameter controlling the Gaussian
deviation in the model, α0. This result, in conjunction with observational constraints on the mass variance and high-z galaxy clustering,
suggests a scenario where structures develop earlier in comparison to strictly Gaussian models, even for α0 � 0.003 Mpc. Our model
also indicates that only well selected galaxy cluster samples at z � 1 can discriminate between Gaussian and non-Gaussian (mixed)
distribution models.
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1. Introduction

Galaxy clusters are the largest virialized structures in the
Universe. The study of their abundance as a function of red-
shift can impose important constraints on the linear amplitude
of mass fluctuations (Bahcall & Fan 1998). To find the number
of clusters in any given redshift interval, one needs to know their
commoving density n(z). This may be predicted using the semi-
analytic formalism of Press & Schechter (1974). In this model
(and most of its variants) the space density of a given type of ob-
ject exponentially depends on the rms dispersion in mass, σM ,
and also on the growth factor for the linear perturbation, D(z).
In the case of rich galaxy clusters, the linearized Abell radius
(1.5 h−1 Mpc) is ∼ 8h−1 Mpc and, hence,σM on this scale can be
determined from the observational abundance of these objects,
becoming the so-called σ8 parameter. The exponential depen-
dence in the PS formula comes from the underlying hypothesis
of a Gaussian distribution for the density fluctuations field. Such
a dependence can be more or less intense if this distribution is
not Gaussian. Clusters correspond to rare peaks in the density
field and, as a consequence, any positive skewness in the proba-
bility density function, with respect to the Gaussian distribution,
yields more clusters at higher redshifts. Some authors show that
the mere observation of a few clusters at high redshifts could in-
dicate a small level of non-Gaussianity in the primordial density
field (e.g. Ribeiro et al. 2000 – RWL, Robinson & Baker 2000;
Matarrese et al. 2000; Willick 2000).

Recent observations suggest the existence of clusters or pro-
toclusters at relatively high redshifts. Some examples are the
high-z quasar clustering evidence at z � 4 (Djorgovski 1999;
Steidel et al. 1998, 2005); Ly-α and LBG objects in the range
2 � z � 5 (Röttgering et al. 2004; Pentericci et al. 2000); X-ray
clusters from Chandra + XMM-Newton survey presenting high
correlation length at z ≈ 1 (Rosati et al. 2004). All these observa-
tions have some difficulties for any hierarchical structure forma-
tion model based on a strictly Gaussian statistics. Nevertheless,
any level of non-Gaussianity (if present) should respect the se-
vere constraints on CMB scales from recent WMAP data (e.g.
Komatsu et al. 2003); non-Gaussian traces have already been
detected in WMAP-1 and WMAP-3 year data (e.g. Chiang et al.
2006; Cruz et al. 2006; Vielva et al. 2004). These results have
stimulated the investigation of non-Gaussian contributions using
several kinds of models (e.g. Lyth 2006; Seery & Lidsey 2006;
Allen et al. 2006). Some authors consider the possibility that
non-Gaussianity is a scale-dependent feature and thus models
in this context could fit both CMB and high-z galaxy cluster-
ing in the Universe (e.g. Andrade et al. 2004, 2005 – AWR04
and AWR05; Avelino & Liddle 2004; Mathis et al. 2004). In
this work, continuing the studies of RWL, AWR04 and AWR05,
we investigate the predictions of scale-dependent mixed non-
Gaussian cosmological density fields for the space number den-
sity of massive galaxy clusters. Our aim is to use the current
observational values of σ8 in conjunction with high-z galaxy
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clustering data to constrain the level of non-Gaussianity in the
density field.

2. Structure formation

In this section, we briefly review the basics of Gaussian random
fields and the PS formalism for the mass function.

2.1. Smoothed Gaussian random field

In a linear approximation, the theory of structure formation
describes the evolution of the density contrast

δ(x) =
ρ(x) − ρ̄

ρ̄
, (1)

where ρ(x) is the density at the point x and ρ̄ is the cosmic mean
density. The Fourier mode of the density contrast, δk, is given by

δk =

∫
δ(x)eik·x dx. (2)

The density contrast is smoothed by a window function W(r)
with a smoothing mass-scale M,

δM(x) ≡
∫

W(|x′ − x|)δ(x′) dx′ (3)

or

δM(x) =
1

(2π)3

∫
W̃(kR)δke−ik·x dk (4)

where W̃(kR) is the Fourier transform of the window function
W(r), R is a scale related to the mass M, and k ≡ |k|.

The density field variance with a smoothing mass-scale M is

σ2
M ≡ 〈δ2

M〉 =
1

2π2

∫
W̃2(kR)P(k)k2 dk (5)

where we have defined the power spectrum P(k) ≡ 〈|δk|2〉. The
use of a spherical Heaviside function

W(r) =
3

4πR3
θ
(
1 − r

R

)
(6)

or

W̃(kR) =
3

(kR)3
(sin kR − kR cos kR), (7)

with commoving scale 8 h−1 Mpc, defines the usual measure of
the linearly evolved power spectrum amplitude, σ8, with corre-
sponding mass M8 = 1.785(Ωm/0.3)×1014 h−1 M�, i.e., a typical
galaxy cluster mass.

2.2. The mass function

To find the number of clusters of mass M in any given redshift in-
terval, one needs to know their commoving density, n(M, z). This
may be predicted using the semi-analytic formalism of Press &
Schechter (1974), where the basic assumption is that the ampli-
tude of the primordial density fluctuations can be described by a
Gaussian distribution:

P(δ) =
1√

2πσM

exp

⎡⎢⎢⎢⎢⎣− δ2

2σ2
M

⎤⎥⎥⎥⎥⎦· (8)

For fluctuations of a given mass M, the fraction F(M) of those
that become bound at a particular epoch are those with ampli-
tudes greater than δc

F(M) =
1√

2πσM

∫ ∞

δc

exp

⎡⎢⎢⎢⎢⎣− δ2

2σ2
M

⎤⎥⎥⎥⎥⎦ dδ, (9)

where δc ≈ 1.68 is the linear threshold overdensity for collapse.
This leads to the commoving number density of bound objects
with mass in the range M and M + dM:

dn
dM
=

√
2
π

ρ̄

M
δc

D(z)

⎛⎜⎜⎜⎜⎝ 1

σ2
M

⎞⎟⎟⎟⎟⎠ exp

⎡⎢⎢⎢⎢⎣− δ2
c

2σ2
MD2(z)

⎤⎥⎥⎥⎥⎦· (10)

3. Non-Gaussian random fields

The most accepted model for structure formation assumes ini-
tial quantum fluctuations created during inflation and amplified
by gravitational effects. The standard inflation model predicts
an adiabatic uncorrelated random field with a nearly flat, scale
invariant spectrum on scales larger than ∼1◦−2◦ (e.g. Bardeen
et al. 1983). Simple inflationary models also predict that the den-
sity random field follows a nearly Gaussian distribution, where
only small deviations from Gaussianity are allowed (e.g. Gangui
et al. 1994). Actually, current data cannot disprove a small level
of non-Gaussianity in the anisotropy of the cosmic background
radiation temperature (e.g. Chiang et al. 2003).

Non-Gaussianity, even at a small level, implies an infinite
range of possible statistical models. The general procedure for
creating a wide class of non-Gaussian models is to introduce an
operator that transforms Gaussianity into non-Gaussianity ac-
cording to a specific rule. For instance, we can define a zero-
mean random field ψ that follows a local transformation F on an
underlying Gaussian field:

ψ(x) = F(φ) ≡ αφ(x) + ε
[
φ2(x) − 〈φ2(x)〉

]
(11)

where α and ε are free parameters of the model. The field de-
scribed by ψ is physically motivated in the context of non-
standard inflation models (see e.g. Gangui et al. 1994). P(φ) is
Gaussian, while P(ψ) =

∫
W(ψ|φ)P(φ) dφ, in which W(ψ|φ) is

the transition probability from φ to ψ (e.g. Taylor & Watts 2000;
Matarrese et al. 2000). An alternative way to introduce non-
Gaussianity is that proposed by RWL, in which the PDF of ψ
is directly modified as a mixture: P(ψ) = (1 − α) f1(φ) + α f2(φ),
where f1 is the (dominant) Gaussian PDF and f2(φ) modulates
the shape of the resulting (slightly) non-Gaussian distribution,
for small values of α. The particular choice of RWL was to de-
fine f2 as a lognormal distribution. This choice is supported by
the simple argument that the real PDF of the density field cannot
be strongly non-Gaussian at CMB scales (see e.g. Stompor et al.
2001; Komatsu et al. 2003) and, at the same time, it should be ap-
proximately lognormal at galaxy cluster scales (see e.g. Plionis
& Valdarnini 1995). Actually, as shown by AWR04, the choice
of the second component in the mixed field is less important
than the cross-correlation between the amplitude of both fields.
According to RWL, α is a function of time that turns a nearly
Gaussian PDF at recombination (α ≈ 0) into a nearly lognormal
distribution (α ≈ 1) over the nonlinear regime, mostly at galaxy
cluster scales. In this paper we consider the case where the seeds
for structure formation are a weighted combination of adiabatic
perturbations produced during inflation and active isocurvature
perturbations produced by topological defects generated at the
end of the inflationary epoch (see e.g. Battye & Weller 1998).
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4. Structure formation in the mixed model

In the mixed scenario, we suppose that the field has a probability
density function of the form:

P[δk] ∝ (1 − α) f1(δk) + α f2(δk). (12)

The first field is the Gaussian component and the effect of the
second component is to modify the Gaussian field to have a pos-
itive tail. The parameter α in (1) allows us to modulate the con-
tribution of each component to the resultant field. Like the hy-
brid inflation models (Battye & Weller 1998; Battye et al. 1999),
the mixture models consider the scenario in which structure is
formed by both adiabatic density fluctuations produced during
inflation and active isocurvature perturbations created by cos-
mic defects during a phase transition which marks the end of
inflationary epoch.

Nevertheless, the mixed scenario just considers the correla-
tion between the adiabatic and the isocurvature fields in the post-
inflation Universe. So, the fluctuations in super-horizon scales
(inflated during the exponential expansion) are strictly uncorre-
lated and the mixing effect acts only inside the Hubble horizon,
on sub-degree scales. To allow for this condition and to keep
a continuous mixed field, a scale dependent mixture parameter,
α ≡ α(k) was defined. We assume the simplest choice of α(k), a
linear function of k:

α(k) ≡ α0k. (13)

4.1. The mixed power spectrum

To constrain the two component random field, we take δk =
P(k)ν2, where ν is a random number with a distribution given
by (12). So, we consider the primordial power spectrum of the
mixed field in the form:

P(k)mix ≡ Mmix(α0, k)P(k) (14)

where the P(k) is the primordial power-law spectrum and
Mmix(α0, k) is the mixture term, a functional of f1 and f2, which
accounts for the statistical effect of the new component:

Mmix(α0, k) ≡
∫
ν

[(1 − α0k) f1(ν) + α0k f2(ν)]ν2 dν. (15)

In the case of a pure Gaussian field, α0 = 0, Mmix(α0, k) = 1,
and the power spectrum is just the simple power-law spectrum,
kn, where n is the spectral index predicted by inflationary mod-
els. In the case of a mixed field, correlations between both fields
are estimated by the integral in Eq. (15), on mixture scales de-
fined by Eq. (13). Introducing the Gaussian+lognormal mixture
distribution in (15), we have the following integral for the mix-
ture term

Mmix(α0, k) =
∫
ν

[
(1 − α0k)√

2π
e−ν

2/2 +
α0k

ν
√

2π
e−(ln ν)2/2

]
ν2 dν. (16)

Solving this integral we find

Mmix(α0, k) = 1 + α0k

(
e2

2
− 1

)
> 1, (17)

and hence the contribution ofMmix(α0, k) to the power spectrum
is always positive. The overall effect, however, also depends on
the mixed transfer function estimated according to

T 2
mix(k) ≡ (1 − α0k)2T 2

adi(k) + 2(1 − α0k)(α0k)Tadi(k)

×Tiso(k) + (α0k)2T 2
iso(k) (18)

Fig. 1. Transfer function of matter: the solid line is the adiabatic case,
the dotted line is the mixed case for a lognormal with α0 = 0.003 Mpc.

where Tadi(k) and Tiso(k) are the transfer functions computed
by CMBFAST (Seljak & Zaldarriaga 1996) for adiabatic and
isocurvature seed initial conditions, respectively. Although an
isocurvature transfer function is not a necessary condition for
mixed models, we have assumed such a feature here in order to
be consistent with our previous work (AWR04 and AWR05).

To see the total influence of the second component, we com-
pute the power spectrum of matter as

Pmix(k) = 2π2δ2
H

kn

Hn+3
0

T 2
mix(k)Mmix(α0, k) (19)

where δH 
 1.9 × 10−5, H0 = 100 h−1 km s−1 Mpc−1 (e.g.
Dodelson 2003).

In Fig. 1, we compare the mixed transfer function with the
strict adiabatic case. In this plot, the choice of α0 = 0.003 Mpc
corresponds to the maximum value for this parameter to be con-
sistent with the CMBR anisotropies (see AWR04). This scale,
at recombination, corresponds to the commoving length scale
of 1012 M� (the baryonic damping mass by photon diffusion)
and should be equivalent to the minimal value of α0 for later
times of the structure formation process. Note in this figure that
the effect of the mixed field is a power transfer from smaller
scales to larger physical scales, the critical point being k 

0.04 h Mpc−1 (the pure effect of T 2

mix(k)). This point is displaced
to k 
 0.45 h Mpc−1 when we compute the power spectrum,
as we can see in Fig. 2 (resulting from the combined effect of
T 2

mix(k) and Mmix(α0, k)). Hence, the distinctive feature of the
mixed model is the prediction of less power at galaxy scales and
slightly more power at larger scales.

4.2. Mass variance in the mixed model

We estimate the mass variance as a function of α0 using

σ2
8(α0) =

1
2π2

∫
W̃2(k8h−1)P(k)mixk2 dk. (20)

Solving this integral for increasing values of α0, with the fol-
lowing set of parameters: Ωm = 0.27, ΩΛ = 0.73, h = 0.7 and
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Fig. 2. Power spectrum of matter: the solid line is the Gaussian case,
the dotted line is the mixed case for a lognormal with α0 = 0.003 Mpc.

Fig. 3. σ8 as a function of α0. The data points projected onto the curve
are: XLF and XTF (X-ray luminosity and temperature functions), WL
(weak lensing), SZ PS (Sunyaev-Zeldovich effect power spectrum) and
WMAP (Wilkinson Microwave Anisotropy Probe).

n = 0.96 (Spergel et al. 2003), we find the behavior presented
in Fig. 3, where we also plot some data points on the theoreti-
cal curve in order to set observational constraints to the model.
The estimates of σ8 are based on different methods and were
taken from the compilation of Pierpaoli et al. (2003). The data
suggest that the value of σ8 is approximately in the range 0.7–
0.9, which corresponds to the range 0.001–0.01 Mpc for α0. The
presence of a maximum value of σ8 
 0.95 corresponding to
α0 
 0.03 Mpc is seen. This is the scale where the mixed transfer
function becomes dominated by the contribution of small scales
(k → ∞) in integral (20). This is an interesting feature of the
model, being directly related to the way we define T 2

mix(k) in
Eq. (18).

Fig. 4. Comparison between mass functions following J01, PSG and
PSNG. Filled circles are J01; open circles are PSG; and filled squares
are PSNG. Power spectra built from CMBFAST transfer function.

4.3. Mass function of massive clusters

By modifying the original PS formula to take into account the
small non-Gaussianity, we rewrite Eq. (10) as a function of σM

f (σ−1
M ) =

√
2
π

[
(1 − α0)(δcσ

−1
M ) exp

(
−(δcσ

−1
M )2/2

)]

+

√
2
π

[
α0

2
(ln δcσ

−1
M ) exp

(
−(ln δcσ

−1
M )2/2

)]
. (21)

The result is presented in Figs. 4 and 5, where we compare our
model with the standard PS (just the first term of Eq. (21)) and
also with the fitting formula obtained from the Virgo Consortium
Cluster Data by Jenkins et al. (2001)

f (lnσ−1
M ) = A exp

[
−| lnσ−1

M + B|ε
]

(22)

where the parameter B controls the location of the peak in the
collapsed mass fraction, A controls the overall mass fraction in
halos and ε stretches the function to fit the overall shape of the
simulations (in this work we follow Jenkins et al. 2001 and set
A = 0.315, B = 0.61 and ε = 3.8). In Fig. 4, all the spectra
are built from the CMBFAST transfer function: pure adiabatic
for Gaussian and mixed for non-Gaussian models. We verify a
higher density of objects with M > 1014 M� at high redshifts in
comparison with the strictly Gaussian case. This result is similar
to others found in different works dealing with non-Gaussianity
(e.g. Amara & Refregier 2003; Mathis et al. 2004).

This effect is even clearer if we integrate Eq. (21) for M >
8.0 × 1014 M�, thus finding the abundance as a function of the
redshift: n(z). The result is presented in Fig. 5, where we also de-
pict a possible scenario of galaxy cluster formation based on ob-
servational evidence of high-z galaxy clustering in the Universe.
In this figure we see a vertical line indicating the redshift up
to which galaxy clusters are detected in the Chandra + XMM-
Newton experiments (Rosati et al. 2004); and regions where we
find observations of high-z galaxy clustering, Ly-α and LBG ob-
jects at z � 2 (Röttgering et al. 2003; Pentericci et al. 2000) and
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Fig. 5. Galaxy cluster evolution scenario at high redshifts. Data points
correspond to the most massive EMSS clusters. Possible formation se-
quence: 1◦) quasar clustering at first stage (z � 4−5); then 2◦) normal
galaxy clustering – the protocluster stage (z � 3−4) and 3◦) virialized
clusters (z � 1−2).

quasars at z � 4 (Djorgovski 1999; Steidel et al. 1998, 2005). It
is important to note in this figure the degeneracy between σ8 and
α0 for z � 1, which implies the need for well selected samples of
galaxy clusters at these redshifts in order to distinguish between
Gaussian and nearly-Gaussian initial conditions.

5. Discussion

Continuing the work of RWL, AWR04 and AWR05, we explore
the effects of small non-Gaussianities, defined by a mixed distri-
bution model, on the mass variance at galaxy cluster scale. The
mixed power spectrum and the σ8 − α0 relation were obtained
from a finite mixture model according to RWL, with a weighted
adiabatic and isocurvature transfer function. Observational data
on σ8 allowed us to constrain the mixture parameter to 0.001 �
α0 � 0.01 Mpc. If we take this in conjunction with the result of
AWR04, α0 � 0.003 Mpc in order for the model to be consis-
tent with the CMBR anisotropies, we are led to a very restricted
range for the mixture parameter: 0.001–0.003 Mpc. As a conse-
quence, we have σ8 
 0.7−0.74.

Using the extreme values for α0 (one for each value of σ8,
and relaxing the upper limit set by AWR04 in the case of σ8 =
0.9), we estimate the effects of such small Gaussian deviations
on the number density evolution of galaxy clusters. Our results
suggest a scenario where structures develop earlier in compari-
son to strictly Gaussian models due to the mass function depen-
dence on the mixture parameter α0 and the lognormal compo-
nent (the positive skewness effect).

The evolution of cluster abundance with redshift also indi-
cates the need for well selected cluster samples around z � 1 to
discriminate between Gaussian and non-Gaussian (mixed) dis-
tribution models. Although the available data are not complete
up to such redshifts, current (and future) observational missions
will probably allow us to answer this question. For the moment,
we conclude that the observational evidence for earlier stages of
galaxy cluster formation since z ≈ 5 marginally favors models
with a small level of non-Gaussianity. The question of possible
effects of dark energy on our present results will be probed in
future work.
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