%0 Journal Article %@nexthigherunit 8JMKD3MGPCW/46JKC45 %@holdercode {isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S} %@archivingpolicy denypublisher denyfinaldraft12 %@issn 0177-798X %@usergroup administrator %@usergroup deicy %3 Correia et al - 0-335-1.pdf %X The numerical regional model (Eta) coupled with the Simplified Simple Biosphere Model (SSiB) was used to investigate the impact of land cover changes on the regional climate in Amazonia. Four 13-month integrations were performed for the following scenarios: (a) no deforestation, (b) current conditions, (c) deforestation predicted for 2033, and (d) large scale deforestation. Ali initial and prescribed boundary conditions were kept identical for ali integrations, except the )and cover changes. The results show that during the dry season the post-deforestation decrease in root depth plays an important role in the energy budget, since lo there is less soil moisture available for evapotranspiration. In ali scenarios there was a significant increase in the surface temperature, from 2.0°C in the first scenario, up to 2.8°C in the last one. In both the scenarios (b) and (c), the downward component of the surface solar radiation decreased due to an increase in the cloud cover over deforested areas, which contributed to even further reduction of the net radiation absorbed at the surface. The cloud mechanism, where an increase in albedo is balanced by an increase in downward solar radiation, was not detected in any of these scenarios. In scenarios (a), (b) and (c), a negative feedback mechanism was observed in the hydrological cycle, with greater amounts of moisture being carried to the deforested areas. The increase in moisture convergente was greater than the reduction in evapotranspiration for both scenarios (b) and (c). This result and the meso-scale thermodynamic processes caused an increase in precipitation. A different situation was observed in the large-scale deforestation scenario (d): a local increase of moisture convergente was observed, but not sufficiently intense to generate an increase in precipitation; so, the local evapotranspiration decrease was dominant in this scenario. Therefore, partia) deforestation in Amazonia can actually lead to an increase in precipitation locally. However, if the deforestation increases, this condition becomes unsustainable,leading to drier conditions and, consequently, to reduced precipitation in the region. %8 Jan. %N 3-4 %@secondarydate 20070118 %T Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study %@secondarytype PRE PI %K Amazonia, deforestation, GCM, eta, SSiB. %@visibility shown %@group %@group DMA-INPE-MCT-BR %@e-mailaddress deicy@cptec.inpe.br %@secondarykey INPE-15264-PRE/10082 %@copyholder SID/SCD %2 sid.inpe.br/mtc-m17@80/2007/04.19.23.09.09 %@affiliation State University of Amazonas (UEA), Manaus, AM, Brazil %@affiliation Instituto Nacional de Pesquisas Espaciais (INPE/CPTEC) %@affiliation National Institute for Amazonia Research (INPA), Manaus, AM, Brazil %B Theoretical and Applied Climatology %P 225-244 %4 sid.inpe.br/mtc-m17@80/2007/04.19.23.09 %D 2007 %V 93 %@doi 10.1007/s00704-007-0335-z %A Correia, F. W., %A Alvalá, R. C., %A Manzi, Antonio Ocimar, %@dissemination WEBSCI; PORTALCAPES; MGA. %@area MET