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ABSTRACT 

We present a new algorithm to estimate rainfall over the Amazon Basin region using the 

TRMM Microwave Imager (TMI). The algorithm was validated using the TRMM Precipitation 

Radar (PR) surface rainfall data, and comparisons with others well known methods are also 

presented. It is shown that the formulation proposed is more efficient and more compatible with the 

physics and dynamics of the observed systems over the area of interest than the other methods 

tested. 

 

RESUMO 

Neste trabalho apresentamos um novo algoritmo para estimativa de precipitação sobre a Bacia 

Amazônica usando o TRMM Microwave Imager (TMI). O algoritmo foi validado usando os dados 

de taxa de precipitação à superfície do TRMM Precipitation Radar (PR) e comparações com outros 

métodos conhecidos também são apresentadas. Mostramos que a formulação proposta é mais 

eficiente e compatível com a física e a dinâmica dos sistemas observados sobre a região de interesse 

do que os outros métodos. 

 

INTRODUCTION 

The algorithm described in this work, hereafter called USProb – University of São Paulo 

Probability Algorithm, relies on a probabilistic statistical method that correlates Polarized Correct 

Brightness Temperature (PCT, Spencer et. al. 1988) and rainfall rate (RR) for different precipitating 
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systems. Since the precipitating systems (e.g.: isolate convection, multi-cellular convection, squall 

lines, etc.) have different cloud and rain process development, it is expected that they have different 

hydrometeor distributions.  

 

DATA AND METHODS 

Datasets 

For development purposes, we used the surface rainfall and rain classification from PR 

(TRMM product 2A25) and the 10V, 19V, 22V and 85V,H GHz TMI brightness temperatures (TRMM 

product 1B11), where the subscript denote the polarization used (V: vertical; H: horizontal). 545 

TRMM orbits during the period of January 1st to April 30th of 1999 were used, over the region 

defined by the latitude of 5N and 16S and longitudes of 76-48W. The data were also interpolated to 

a grid size of 0.1x0.1 degrees in order to account for the different sensor resolutions.  

For validation purposes, 109 TRMM orbits during the whole month of October 2005 were 

used, with the PR surface rainfall as ground truth. USProb is also compared against the Goddard 

Profiling Algorithm – GPROF (TRMM product 2A12, version 6, Kummerow et. al. 2001), the 

Goddard Scattering Algorithm – GSCAT (Adler et. al. 1994), and 2 formulations of the NESDIS 

SSM/I rain rate algorithm - NESDIS (Ferraro and Marks, 1995). First formulation (NESDIS1) uses 

the original coefficients described by Ferraro and Marks, and the second one (NESDIS2) uses 

adjusted coefficients obtained during the calibration process. The GPROF datasets were available 

through the NASA/DISC3, and the GSCAT and NESDIS1 rainfall rates were computed using up-to-

date references. 

 

Methodology 

A raining system is defined as a cluster of pixels with PCT values lower than 277 K. Once 

delineating the cluster, a screening routine is applied to exclude the non-raining pixels. This 

screening procedure uses 4 tests to verify if a pixel can be assigned as a raining pixel: a) a PCT 

threshold; b) the difference between T19V and T85V; c) the Scattering Index (SI, Grody 1991), and 

d) the standard deviation of T85V on a 5x5 pixels window. 

After the screening, the clusters are classified according to 5 types based on the size and PCT 
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distribution (Table 1). The temperature criterion is based on the coldest 10% pixels PCT 

distribution, where a mean PCT value is computed, which we define as Mean Lower Temperature – 

MLT, and the 220 K threshold is used.  

 

Table 1: Systems classification criteria. 

Class Threshold 1 (K m2) Threshold 2 (K) System Type: Example 

1 Area > 15500 K m2 MLT < 220 K 

2 Area > 15500  K m2 MLT < 220 K 

MCS, squall lines 

3 3000  K m2 < Area < 15500   K m2 MLT > 220 K 

4 3000  K m2 < Area < 15500  K m2 MLT > 220 K 

Supercells, multi-cellular 

systems 

5 Area < 3000  K m2 N.A. Cumulunimbus 

 

Finally, we applied the Probability Matching Method (PMM), developed by Calheiros and 

Zawadzki (1987), to derive the PCT-RR relationships. To build such relationships, we computed 

the PCT and RR cumulative density functions (CDFs) for each one of the 5 classes. By relating 

each pair of CDFs, we were able to develop 5 different PCT-RR look-up tables (LUTs), which are 

graphically represented on Figure 1. The LUT approach gives better results than a curve-fit method, 

but demands more processing time. 

 
Figure 1: PCT-RR curves for each system class derived with the PMM. 



The relationships presented on Figure 1 show that colder systems (classes 1 and 3) will 

produce less rain for the same PCT value when compared with classes 2 and 4 (warm systems). 

This can be explained by the differences between the system hydrometeor contents. Colder systems, 

which present strong convective cores, can produce higher large-sized hail quantities. At 85 GHz, 

hail has a very high scattering efficiency, which drops the PCT observed, and this PCT drop can be 

wrongly associated with higher values of rainfall. When comparing PCT and PR surface rainfall 

from stratiform and convective systems, the non-precipitating hail scattering produced by 

convective clouds must be taken into account. Therefore, for the same amount of rainfall, 

convective systems will present lower PCT values. 

 

RESULTS 

We tested the USProb rainfall retrieval efficiency comparing the estimated the rain volumes 

computed for each cloud (quantitative estimative), and the total estimated rainfall distributions 

(qualitative estimative), as well as the errors distribution, using the PR surface rain rates as the 

ground truth.  

The rain volume was computed using the 10.8 μm channel of the TRMM Visible and Infrared 

Scanner (VIRS) to determine cloud areas. A cloud is defined as a region with brightness 

 
Figure 2: Scatterplots of the estimated rain volumes versus the PR-observed rain 

volumes, using VIRS to determine cloud areas. 



temperatures lower than 273 K, and within a cloud the number of raining pixels (observed by PR 

and estimated by each algorithm) is computed. 

Figure 2 shows the scatterplots of the estimated and PR-observed rain volumes. The 

NESDIS2 algorithm was the only algorithm with a correlation coefficient lower than 0.9, but its 

bias value was the lowest of all algorithms (-0.002). On the other hand, GPROF scored the highest 

correlation (0.977), but it is high biased (0.533). Both NESDIS1 and GPROF underestimate rain 

volumes for observed rain volumes lower than 109 m3 and overestimate rain volumes for observed 

rain volumes higher than 109 m3. USProb presented low bias (0.049) and high correlation 

coefficient (0.939), which indicates a realistic estimative of rain volumes. 

The rainfall distribution histograms were created using a bin size of 1 mm h-1, and dividing 

the amount of rain of each bin by the total rain. Results are presented on Figure 3. USProb and 

GPROF algorithms achieved the best results, but with 2 main differences: GPROF slightly 

overestimates the rainfall until 5 mm h-1, and shows a second peak from 28 to 39 mm h-1, which 

leads to a bi-modal distribution. The NESDIS1 distribution shows a quasi-linear behavior, 

underestimating the rainfall under 15 mm h-1, and overestimating over this value. The NESDIS2 

shows better coincidence than the NESDIS1, due its adjusted coefficients, which reinforces the idea 

of generate a unique coefficients set for each location, instead of using a global coefficients set. 

 
Figure 3: Rainfall distributions for each algorithm (solid) and the PR reference (dotted). 

From upper left to bottom right: USProb, NESDIS1, NESDIS2, GSCAT, and GPROF. 



GSCAT overestimates the rainfall from 4 to 12 mm h-1, but shows accurate results over 12 mm h-1. 

 

CONCLUSIONS 

USProb presented more accurate results than the others algorithms tested, what shows that 

PCT-rainfall relationships are clearly system-type dependent, and an algorithm that attempts to use 

single relationship between brightness temperatures and rainfall rates may lead to unrealistic results 

that are amplified on instantaneous retrievals. However, for monthly and weekly averages a single-

relationship algorithm can achieve good results, as demonstrated by Adler et. al. (1994), and 

Ferraro and Marks (1995). 
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