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In typical aerospace missions, vehicle performance is directly related to the aerodynamic characteristics of the 
design. In particular, the lift-drag (L/D) ratio indicates one aspect of the aerodynamic efficiency of the vehicle. One 
class of aerospace vehicles that have shown the ability to attain a higher L/D ratio compared to the conventional designs 
is waveriders. Waveriders are designed analytically with infinitely sharp leading edges for shock wave attachment. The 
potential for high L/D ratio on waveriders originates from the high-pressure region between the shock wave and the 
lower surface. Due to the sharp leading edge, the attached shock wave prevents the high-pressure gas from the lower 
surface to communicate with the gas on the upper surface. However, as any practical waverider will have some degree 
of leading edge bluntness for heat transfer, manufacturing and handling concerns, then the predicted performance of 
waverider configurations may not be achieved. Moreover, because of the viscous effects, the shock wave will be 
detached from the leading edge and, hence, the aerodynamic performance of the vehicle may be degraded from ideal 
performance. Typically, a round leading edge (circular cylinder) with constant radius of curvature near the stagnation 
point has been chosen. Nevertheless, shock detachment distance on a cylinder, with associated leakage, scales with the 
radius of curvature. Certain classes of non-circular shapes may provide the required bluntness with smaller shock 
separation than round leading edges, thus allowing manufacturing, and ultimately heating control, with reduced 
aerodynamic losses. 

In this connection, a typical blunt body, composed of a flat nose followed by a highly curved, but for the most part 
slightly inclined afterbody surface, may provide the required bluntness for heat transfer, manufacturing and handling 
concerns with reduced departures from ideal aerodynamic performance. This concept is based on work of Reller (1957), 
who has pointed out that this shape results from a method of designing low heat transfer bodies. According to Reller 
(1957), low heat transfer bodies is devised on the premise that the rate of heat transfer to the nose will be low if the 
local velocity is low, while the rate of heat transfer to the afterbody will be low if the local density is low. 

A great deal of works (Santos, 2003, 2004, and 2005) has been carried out recently on flat-nose form representing 
blunt geometries. The major interest in these works has gone into considering the flat-nose shape as possible candidate 
for blunting geometries of hypersonic leading edges. Based on recent interest in hypersonic waveriders for high-
altitude/low-density applications (Shvets et al., 2005), Santos (2004) has investigated the effect of the leading edge 
thickness on the shock wave structure over these flat-nose leading edges. Nevertheless, that work (Santos, 2004) has 
been concentrated primarily on the analysis of the flowfield structure by considering the diffuse reflection model as 
being the gas-surface interaction. Nonetheless, as a space flight vehicle is exposed to a rarefied environment over a 
considerable time, a departure from fully diffuse model is observed, resulting from the colliding molecules that clean 
the surface of the vehicle, which becomes gradually decontaminated. The flux distribution of scattered molecules 
emitted from clean surfaces frequently has a lobular shape that is centered about an angle that tends to approach the 
specular angle for very high energies and/or low angle of attack. 

In this scenario, the emphasis of this work is to assess the sensitivity of the shock standoff distance, shock wave 
thickness and shock wave shape to variations on surface accommodation coefficient. For the high altitude/high Knudsen 
number of interest (.Q > 0.1), the flowfield is sufficiently rarefied that continuum method becomes inappropriate. 
Alternatively, the DSMC method is used in the current study to calculate the rarefied hypersonic two-dimensional flow 
on the leading edge shapes. 
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In dimensionless form, the contour that defines the shape of the afterbody surface is given by the following 
expression, 
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The flat-nose shapes are modeled by assuming a sharp leading edge of half angle θ with a circular cylinder of radius 

5 inscribed tangent to the wedge. The flat-nose shapes, inscribed between the wedge and the cylinder, are also tangent 
to them at the same common point where they have the same slope angle. The circular cylinder diameter provides a 
reference for the amount of blunting desired on the leading edges. It was assumed a leading edge half angle of 10 deg, a 
circular cylinder diameter of 10-2m and flat-nose thickness W�λ∞ of 0.01, 0.1 and 1, where W = 2\ ���� e and λ∞ is the 
freestream mean free path. Figure 1(a) illustrates this construction for the set of shapes investigated. From geometric 
considerations, the exponent N in Eq. (1) is obtained by matching slope on the wedge, circular cylinder and on the body 
shapes at the tangency point. For dimensionless thickness W�λ∞ of 0.01, 0.1 and 1, N corresponds to 0.501, 0.746 and 
1.465, respectively.  The common body height + and the body length / are obtained in a straightforward manner. 
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Figure 1: Drawing illustrating (a) the leading edge shapes and (b) the computational domain. 
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In this study, the particle simulations were performed by using the DSMC method developed by Bird (1994). The 
DSMC method simulates fluid flow by using thousands to millions of particles. These particles are tracked as they 
move, collide and undergo boundary interactions in simulated physical space. In addition, particle motions are assumed 
to be decoupled from particle collisions and each process is computed independently during a time step used to advance 
the simulation. This time step must be sufficiently small in comparison with the local mean collision time (Bird, 1994) 
such that the assumption of decoupled particle motions and collisions is not violated. 

The molecular collisions are modeled using the variable hard sphere (VHS) molecular model (Bird, 1981) and the 
no time counter (NTC) collision sampling technique (Bird, 1989). The energy exchange between kinetic and internal 
modes is controlled by the Borgnakke-Larsen statistical model (Borgnakke and Larsen, 1975). Simulations are 
performed using a non-reacting gas model consisting of two chemical species, N2 and O2. Energy exchanges between 
the translational and internal modes are considered. For this study, the relaxation numbers of 5 and 50 were used for the 
rotation and vibration, respectively. 
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The computational domain is made large enough so that the upstream and side boundaries can be specified as 
freestream conditions. Figure 1(b) depicts the physical extent of the computational domain for the present simulations. 
Advantage of the flow symmetry is taken into account, and molecular simulation is applied to one-half of a full 
configuration. The computational domain is divided into an arbitrary number of regions, which are subdivided into 
computational cells. The cells are further subdivided into four subcells, two subcells/cell in each coordinate direction. 
The linear dimensions of the cells should be small in comparison with the scale length of the macroscopic flow 
gradients normal to the streamwise directions, which means that the cell dimensions should be of the order of or even 
smaller than the local mean free path (Bird, 1994). In the current DSMC code, the cell provides a convenient reference 
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for the sampling of the macroscopic gas properties, while the collision partners are selected from the same subcell. As a 
result, the flow resolution is much higher than the cell resolution. 

Referring to Fig. 2(b), side I is defined by the body surface. Reflection with incomplete surface accommodation is 
the condition applied to this side. Side II is a plane of symmetry, where all flow gradients normal to the plane are zero. 
At the molecular level, this plane is equivalent to a specular reflecting boundary. Side III is the freestream side through 
which simulated molecules enter and exit. Finally, the flow at the downstream outflow boundary, side IV, is 
predominantly supersonic and vacuum condition is specified (Bird, 1994). At this boundary, simulated molecules can 
only exit. 

Numerical accuracy in DSMC method depends on the grid resolution chosen as well as the number of particles per 
computational cell. Both effects were investigated to determine the number of cells and the number of particles required 
to achieve grid independence solutions. Grid independence was tested by running the calculations with half and double 
the number of cells in ξ and η directions (see Fig. 1(b)) compared to a standard grid. The sensitivity of the surface to 
grid resolution was obtained for skin friction, heat transfer rate and pressure. Solutions (not shown) were near identical 
for all grids used and were considered fully grid independent. 
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The freestream and flow conditions used in the present calculations are those given by Santos (2003) and 
summarized in Tab. 1. The freestream velocity 9∞, assumed to be constant at 3.56 km/s, corresponds to a freestream 
Mach number 0∞ of 12. The wall temperature 7 &  is assumed constant at 880 K, which corresponds to four times the 
freestream temperature. 
 

Table 1: Freestream Conditions 
 

Temperature 
7∞ (K) 

Pressure 
S∞ (N/m2) 

Density 
ρ∞ (kg/m3) 

Number density 
Q∞ (m-3) 

Viscosity 
µ∞ (Ns/m2) 

Mean free path 
λ∞ (m) 

Velocity 
9∞ (m/s) 

220.0 5.582 8.753 x 10-5 1.8209 x 1021 1.455 x 10-5 9.03 x 10-4 3560 
 

The overall Knudsen number .Q ' , defined as the ratio of the freestream mean free path λ∞ to the leading edge 
thickness W, corresponds to 1, 10 and 100 for leading edge thickness W�λ∞ of 1, 0.1 and 0.01, respectively. The Reynolds 
number 5H '  covers the range from 0.193 to 19.3, based on conditions in the undisturbed stream with leading edge 
thickness W as the characteristic length. 

In order to simulate the partial surface accommodation, the Cercignani-Lampis-Lord (CLL) model (Lord, 1991) was 
implemented into this DSMC calculation. The CLL model is derived assuming that there is no coupling between the 
normal and tangential momentum components. The two adjustable parameters appearing in the CLL model are the 
normal component of translational energy α (  and the tangential component of momentum σ ' . In this work, the DSMC 
calculations were performed independently for three distinct numerical values for α (  and σ ' : 0.5, 0.75 and 1. It is 
important to mention that α (  and σ '  equal to 1 represent the diffusion reflection. 
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In a rarefied flow, the shock wave has a finite region that depends on the transport properties of the gas, and can no 

longer be considered as a discontinuity obeying the classical Rankine-Hugoniot relations. In this context, the shock 
wave structure, defined by shape, thickness and detachment of the shock wave, is predicted by employing a procedure 
based on the physics of the particles. In this respect, the flow is assumed to consist of three distinct classes of 
molecules; class I molecules denote those molecules from the freestream that have not been affected by the presence of 
the leading edge; class II molecules designate those molecules that, at some time in their past history, have struck and 
been reflected from the body surface; and finally, class III molecules define those molecules that have been indirectly 
affected by the presence of the body. Figure 2(a) illustrates the definition for the molecular classes. 

It is assumed that the class I molecule changes to class III molecule when it collides with class II or class III 
molecule. Class I or class III molecule is progressively transformed into class II molecule when it interacts with the 
body surface. Also, a class II molecule remains class II regardless of subsequent collisions and interactions. Hence, the 
transition from class I molecules to class III molecules may represent the shock wave, and the transition from class III 
to class II may define the boundary layer. 

A typical distribution of class III molecules along the stagnation streamline for blunt leading edges is displayed in 
Fig. 2(b) along with the definition used to determine the thickness, displacement and shape of the shock wave. In this 
figure, ; is the distance [ along the stagnation streamline (see Fig. 1(b)), normalized by the freestream mean free path 
λ∞, and I) ) )  is the number of molecules for class III to the total amount of molecules inside each cell. 

The shock standoff distance ∆ is defined as being the distance between the shock wave center and the nose of the 



leading edge along the stagnation streamline. As shown in Fig. 2(b), the center of the shock wave is defined by the 
station that corresponds to the maximum value for I* * * . The shock wave thickness δ is defined by the distance between 
the stations that corresponds to the mean value for I* * * . Finally, the shock wave shape (shock wave “location”) is 
determined by the coordinate points given by the maximum value in the I* * *  distribution along the lines departing from 
the body surface, i.e., η-direction as shown in Fig. 1(b). 
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Figure 2: (a) Drawing illustrating the classification of molecules and (b) schematic of shock wave structure. 
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The purpose of this section is to discuss and to compare differences in the shape, thickness and displacement of the 
shock wave due to variations on the surface accommodation coefficients as well as on the leading edge thickness. 

The distribution of molecules for the three classes along the stagnation streamline is illustrated in Fig. 3 for nose 
thickness corresponding to .Q 6  of 100 (W�λ∞ of 0.01). Figure 3(a) displays the distribution of molecules for normal 
accommodation coefficient α 7  of 0.5 and 1 and Fig. 3(b) for the tangential accommodation coefficient σ 6  of 0.5 and 1. It 
is important to note that α 7  = σ 6  = 1 represent the diffuse reflection case. In addition, in this set of plots, I* , I* *  and I* * *  are 
the ratio of the number of molecules for class I, II and III, respectively, to the total amount of molecules inside each cell 
along the stagnation streamline. By examining Fig. 3, it is clearly seen that partial accommodation coefficient affects 
the shock wave structure for this particular sharp leading edge. Consequently, changes in the normal and tangential 
accommodation coefficients will affect the shape, thickness and displacement of the shock wave in a different manner. 

Figure 4 shows the distribution of molecules for the three classes along the stagnation streamline for nose thickness 
corresponding to .Q 6  of 1 (W�λ∞ of 1). Similarly, Fig. 4(a) illustrates the distribution of molecules for normal 
accommodation coefficient α 7  of 0.5 and 1 and Fig. 4(b) for the tangential accommodation coefficient σ 6  of 0.5 and 1. 
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Figure 3: Distributions of molecules for classes I, II and III along the stagnation streamline for the leading edge case 
that correspond to thickness Knudsen number .Q 6  of 100 and (a) α 7  of 0.5 and (b) σ 6  of 0.5. 
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Figure 4: Distributions of molecules for classes I, II and III along the stagnation streamline for the leading edge case 
that correspond to thickness Knudsen number .Q A  of 1 and (a) α B  of 0.5 and (b) σ A  of 0.5. 

 
It is noted from this set of plots that normal and tangential accommodation coefficients have little effect on the 

shock wave structure along the stagnation streamline provided the leading edge is blunt. 
Of great significance in the plots shown in Figs. 3 and 4 is the behavior of the class I molecules for sharp and blunt 

leading edges. It should be observed that molecules from freestream, represented by class I molecules, collide with the 
nose of the leading edges even after the establishment of the steady state. This is shown in Fig. 3, which represent sharp 
leading edge cases. In contrast, molecules from freestream do not reach the nose of the leading edge for those cases 
illustrated in Fig. 4, that represent blunt leading edge. This is explained by the fact that density (Santos, 2003) increases 
much more for blunt (flat) leading edges in the stagnation region and reaches its maximum value in the stagnation point. 
In this connection, the buildup of particle density near the nose of the leading edge acts as a shield for the molecules 
coming from the undisturbed stream. The class distributions for the other cases investigated in this work are 
intermediate to these four cases and, therefore, they will not be shown. 
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According to the definition shown in Fig. 2(b), the shock wave standoff distance ∆ can be observed in Figs. 3 and 4 
for the flat-nose shapes shown. The calculated shock wave standoff distance ∆, normalized by the freestream mean free 
path λ∞, is tabulated in Tab. 2 for the cases investigated. It is apparent from these results that there is a discrete shock 
standoff distance for the cases shown. As would be expected, the shock standoff distance increases with increasing the 
flat-nose thickness. It is also seen that, in general, the shock standoff distance decreases with decreasing the tangential 
accommodation coefficient and increases by a reduction in the normal accommodation coefficient, even though the 
shock standoff distance decreased slightly for the sharpest leading edge, .Q A  of 100, as the normal accommodation 
coefficient changed from 1 to 0.5. 
 

Table 2: Dimensionless shock wave standoff distance ∆�λ∞ for flat-nose leading edges. 
 

� .Q A  = 100 .Q A  = 10 .Q A  = 1�
Diffuse 0.201 0.346 0.753 

α B  = 0.75 0.157 0.421 0.867 
α B  = 0.50 0.151 0.459 1.008 
σ A  = 0.75 0.107 0.265 0.696 
σ A  = 0.50 0.049 0.212 0.656 

 
For comparison purpose, the circular cylinder, shown in Fig. 1(a), provides a larger shock detachment, i.e., ∆�λ∞ of 

1.65, 1.81 and 1.54 for diffuse, α B  = 0.5 and σ A  = 0.5, respectively, according to Santos (2005). These values are about 
2.2, 1.8 and 2.3 times larger than those to .Q A  of 1, respectively. The results tend to confirm the expectation that the 
shock standoff distance for sharp leading edge is smaller than that for blunt leading edge. In fact, the flat-nose bodies 
behave as if they had a sharper profile than the representative circular cylinder. 

It is important to mention that shock standoff distance becomes important in hypersonic vehicles such as waveriders, 
which depend on leading edge shock attachment to achieve their high lift-to-drag ratio at high lift coefficient. In this 



connection, the flat-nose shapes seem to be more appropriate than the circular cylinder, since they present reduced 
shock wave detachment distances. Nonetheless, smaller shock detachment distance is associated with a higher heat load 
to the nose of the body. According to Santos (2003), the heat transfer coefficient & C�D  (= 2T E �ρ∞9∞

F
) at the stagnation 

point for flat-nose bodies, .Q G  of 100, 10 and 1 are 2.4, 2.2 and 1.5 times larger than that for the circular cylinder by 
considering diffuse case. As a result, it should be notice from this comparison that the ideal blunting leading edge 
depends on the context. If shock standoff distance is the primary issue in leading edge design of hypersonic waveriders, 
then flat-nose leading edges are superior to round leading edges. Contrary, if the stagnation point heating is the 
important parameter in the hypersonic vehicle design, then round shapes seem to be superior to the flat-nose shapes. 
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Based on the definition of the shock wave thickness shown in Fig. 2(b), the shock wave thickness δ along the 
stagnation streamline can be obtained from Figs. 3 and 4 for the flat-nose shapes. As a result of the calculation, Tab. 3 
tabulates the shock wave thickness δ, normalized by the freestream mean free path λ∞, for the cases investigated. 
 

Table 3: Dimensionless shock wave thickness δ�λ∞ for flat-nose leading edges. 
 

� .Q G  = 100 .Q G  = 10 .Q G  = 1�
Diffuse 0.652 0.864 1.673 

α H  = 0.75 0.550 0.917 1.783 
α H  = 0.50 0.503 0.953 1.947 
σ G  = 0.75 0.369 0.662 1.568 
σ G  = 0.50 0.248 0.531 1.488 

 
It is evident from Tab. 3 that the shock wave thickness follows the same trend presented by the shock wave standoff 

distance in that it decreases with decreasing the tangential accommodation coefficient and increases by a reduction in 
the normal accommodation coefficient, although the shock thickness decreased slightly for the sharpest leading edge, 
.Q G  of 100, as the normal accommodation coefficient changed from 1 to 0.5. 

Again, the circular cylinder provides a much larger shock thickness, i.e., δ�λ∞, of 3.35, 3.41 and 3.16 for diffuse, α H  
= 0.50 and σ G  = 0.50, respectively. Compared to the flat-nose shapes, these values are about 2.0, 1.8 and 2.1 times larger 
than those for .Q G  of 1, respectively. 
 
�����6KRFN�:DYH�6KDSH�
 

The shock wave shape, defined by the shock wave center location, is obtained by calculating the position that 
corresponds to the maximum I for class III molecules in the η-direction along the body surface (see Fig. 1(b)). The 
effect of incomplete surface accommodation on the shock wave shape is illustrated in Fig. 5. Figure 5(a) displays the 
shock wave shape for .Q G  of 100 and Fig. 5(b) for .Q G  of 1, which correspond to flat-nose bodies with thickness W�λ∞ of 
0.01 and 1, respectively. In this set of plots, ; and < are the Cartesian coordinates [ and \ normalized by λ∞,. 
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Figure 5: Shock wave shapes on flat-nose bodies as a function of the surface accommodation coefficient for leading 
edges that correspond to thickness Knudsen number .Q G  of (a) 100 and (b) 1. 
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It was pointed out by Lees and Kubota (1957) that when the freestream Mach number 0∞ is sufficiently large, the 
hypersonic small-disturbance equations admit similarity solutions for the asymptotic shock wave shapes over power-
law bodies (\ ∝ [ M , 0 < Q < 1), where asymptotic refers to the flowfield at large distances downstream of the nose of the 
body. The hypersonic small-disturbance theory states that, for certain exponent Q, a body defined by [ M  produces a 
shock wave of similar shape and profiles of flow properties transverse to the stream direction that are similar at any 
axial station not too near the nose. At or near the nose, the surface slope, the curvature, and the higher derivatives are 
infinite, and the similarity solutions break down. In the more general case for 0 < Q < 1, the shock wave grows as [ N . 
When Q grows from zero, P begins by keeping the constant value P = 2/3 for 2-D flow, and if Q keeps on growing 
towards unity, P remains equal to Q. 

The flat-nose bodies, defined by Eq.(1), are not power-law shapes by themselves, but they can be closely fitted with 
power-law shapes (∝ [ M ) far from the nose of the leading edge (Santos 2004). In this way, Fig. 6(a) displays the 
comparison of the flat-nose shapes and the corresponding power-law curve fit shapes. As would be expected, 
discrepancies have been found among the curves in the vicinity of the nose of the bodies. This behavior is brought out 
more clearly in Fig. 6(b), which exhibits details of the curves near the nose. 

By considering the reference system located at the nose of the flat-nose bodies, ; = 0, the fitting process, which has 
been performed over those bodies shown in Fig. 6, approximates the body shapes by power-law shape of the following 
form, 
 O

E[D\ )( +=  (2) 
 
where D is the power-law constant of the curve fit, E is the distance from the nose of the leading edge, and Q is the 
power-law exponent of the curve fit. As a result, the body power-law exponents are 0.79, 0.72 and 0.56 for leading 
edges corresponding to .Q P  of 100, 10 and 1, respectively. The maximum absolute error between the original and the 
curve fit shapes for ; > 3 are less than 0.12%, 0.14% and 0.30% for flat-nose thickness corresponding to .Q P  of 100, 10 
and 1, respectively. 
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Figure 6: Comparison of flat-nose shapes with power-law curve fit shapes for leading edge thickness W�λ∞ of 0.01, 0.1 
and 1, which correspond to Knudsen number .Q P  100, 10 and 1.  (a) along the afterbody surface and (b) in the vicinity 

of the nose. 
 

In what follows, the flat-nose leading edges shown in Fig. 6 are now well represented by shapes with the power-law 
form (∝ [ M ) far from the nose of the leading edges. Hence, by assuming that power-law bodies generate power-law 
shock waves in accordance with hypersonic small-disturbance theory (Lees and Kubota, 1957), the shock location 
coordinates shown in Fig. 5 were used to approximate the shape of the shock wave with a curve fit. A fitting algorithm 
was performed over these points to approximate the shock shape as a power-law curve of the following form, 
 ]

%[$\ )( +=  (3) 
 
where $ is the shock wave power-law constant, % is the distance from the nose of the leading edge to the shock wave 
curve fit along the stagnation streamline, and P is the shock wave power law exponent. 

For comparison purpose, two forms of the curve fit were considered in defining the shock shape: (1) $, % and P 
were found to provide the best curve fit solutions, and (2) $ and % were found by keeping P = 2/3 for Q < 2/3 cases, and 



P = Q for Q ≥ 2/3 cases, where Q and P�stand for body and shock wave power-law exponents, respectively. 
It is worthwhile mentioning that the fitting process was performed over the points yielded by DSMC simulations 

located far from the nose region, say ; > 3.0, where it is expected that the blunt nose effects are not significant. It is also 
important to recall that the shock wave shape in the vicinity of the nose is not correctly predicted by the theoretical 
solutions, since the hypersonic slender body approximations are violated close to or at the nose of the leading edges as 
explained earlier. Moreover, the flat-nose shapes are represented by power-law shapes far from the nose region, as 
displayed in Fig. 6. 

Curve fit solutions for shock shape over the flat-nose body with .Q ^  of 100 (W�λ∞ = 0.01), which corresponds to a 
body power-law exponent of 0.79, are displayed in Figs. 7(a) and 7(b) for normal and tangential accommodation 
coefficients of 0.5, respectively. In Fig. 7(a) (or 7(b)), the solutions given by P = 0.798 (or P = 0.875) and P = Q = 0.79 
represent, respectively, the two forms of the curve fit solutions mentioned earlier. It is apparent from this set of figures 
that the curve fit solutions present a good agreement, by visual inspection, with those solutions provided by the DSMC 
simulation. Nevertheless, as the maximum absolute error between the DSMC solutions and the curve fit solutions are 
calculated for coordinate points located at ; > 3.0, it is found that the best fit is obtained for the first form of the fitting 
process, i.e., when $, % and P were found in order to yield the best solution. The error is less then 1.0% and 2.4% for P 
= 0.798 or 0.875 and 0.79, respectively, for the curves in Figs. 7(a) and 7(b). In general, the solutions are in qualitative 
agreement with the Lees and Kubota (1957) findings in the sense that the shock wave shape would follow the shape of 
the body for body power-law exponent Q > 2/3. 
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Figure 7: Shock wave shape curve fits on flat-nose body with nose thickness W�λ∞ of 0.01, which corresponds to 
Knudsen number .Q ^  of 100.  (a) α c  = 0.5 and (b) σ ^  = 0.5. 
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Figure 8: : Shock wave shape curve fits on flat-nose body with nose thickness W�λ∞ of 1, which corresponds to Knudsen 

number .Q ^  of 1.  (a) α c  = 0.5 and (b) σ ^  = 0.5. 
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Shock shape curve fit solutions for the flat-nose body with .Q e  of 1 (W�λ∞ = 1), which corresponds to a body power-
law exponent of 0.56, are displayed in Figs. 8(a) and 8(b) for normal and tangential accommodation coefficients of 0.5, 
respectively. The curve fit solutions shown in this set of figures were obtained according to Eq.(3) by three different 
forms; in the first form, $ and %�were found by keeping P equal to the body shape, P = Q; in the second form, $, % and 
P were found in order to obtain the best fit; finally in the third form, $ and % were found by keeping P equal to 2/3, the 
exponent that it is expected that the shock wave would grow, according to the theory (Lees and Kubota, 1957). 

Referring to Fig. 8, it is noted that the curve fit given by P = Q = 0.56 does not match the shock wave shape obtained 
by the DSMC simulation, as predicted by the hypersonic small-disturbance theory (Lees and Kubota, 1957). In contrast, 
the two other curve fit solutions, P equal to 2/3, 0.683 in Fig. 8(a) and 0.716 in Fig. 8(b) present an excellent agreement 
with those solutions provided by the DSMC simulation. Once again, the curve-fitted solution deviates from the DSMC 
solution close to the nose of the leading edge, as would be expected. 

At this point, it should be emphasized that the curve fit exponents are very sensitive to the number of coordinate 
points used in the fitting process, which define the shock wave center. In addition, these coordinate points present 
fluctuations, originated from the DSMC simulations, which were not taken into account. 
 
���&RQFOXGLQJ�5HPDUNV�
 

This study applies the Direct Simulation Monte Carlo method to investigate the shock wave structure for a family of 
flat-nose leading edges. The calculations have provided information concerning the nature of the shock wave 
detachment distance, shock wave thickness and shock wave shape resulting from variations on the thickness of the flat 
nose and on the surface accommodation coefficient for the idealized situation of two-dimensional hypersonic rarefied 
flow. The analysis also showed that the shock wave structure was affected by changes in the normal and tangential 
accommodation coefficients. It was found that the shock wave standoff and the shock wave thickness increased by a 
reduction in the normal accommodation coefficient and decreased by a reduction in the tangential accommodation 
coefficient for the range of the coefficient investigated. In addition, the computational results indicated that the shock 
wave shape grows with power-law form (∝ [ f ), for the flat-nose bodies investigated, which can be closely fitted with 
power-law shapes (∝ [ g ). 
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