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ABSTRACT: Fire influences global change and tropical ecosystems through
its connection to land-cover dynamics, atmospheric composition, and the glob-
al carbon cycle. As such, the climate change community, the Brazilian gov-
ernment, and the Large-Scale Biosphere–Atmosphere (LBA) Experiment in
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Amazonia are interested in the use of satellites to monitor and quantify fire
occurrence throughout Brazil. Because multiple satellites and algorithms are
being utilized, it is important to quantify the accuracy of the derived products.
In this paper the characteristics of two fire detection algorithms are evaluated,
both of which are applied to Terra’s Moderate Resolution Imagine Spectrora-
diometer (MODIS) data and with both operationally producing publicly avail-
able fire locations. The two algorithms are NASA’s operational Earth Observ-
ing System (EOS) MODIS fire detection product and Brazil’s Instituto Nacio-
nal de Pesquisas Espaciais (INPE) algorithm. Both algorithms are compared to
fire maps that are derived independently from 30-m spatial resolution Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
imagery. A quantitative comparison is accomplished through logistic regres-
sion and error matrices. Results show that the likelihood of MODIS fire de-
tection, for either algorithm, is a function of both the number of ASTER fire
pixels within the MODIS pixel as well as the contiguity of those pixels. Both
algorithms have similar omission errors and each has a fairly high likelihood of
detecting relatively small fires, as observed in the ASTER data. However,
INPE’s commission error is roughly 3 times more than that of the EOS algo-
rithm.

KEYWORDS: Fire monitoring, MODIS, Validation, Satellite fire detection

1. Backgound
Fire monitoring continues as an area of interest within global change research on
ecosystem dynamics through its connection to land cover and change, atmospheric
composition, and the global carbon cycle (USCCSP 2004). The influence of fire in
tropical ecology has been established (Goldammer 1990) and fire has been asso-
ciated with land-cover dynamics (Elvidge et al. 2001; Eva and Lambin 2000) as
well as with carbon cycling (Potter et al. 2001). This implies the importance of fire
statistics to the Large-Scale Biosphere–Atmosphere (LBA) Experiment in Ama-
zonia. Polar-orbiting satellite systems have been extensively used to monitor the
global distribution of fire (Dwyer et al. 2000; Malingreau and Gregoire 1996;
Justice and Dowty 1994). Regional fire monitoring in Brazil has been done with
Defense Meteorological Satellite Program (DMSP) Operational Linescan System
(OLS) (Elvidge et al. 2001), Advanced Very High Resolution Radiometer
(AVHRR) (Setzer and Pereira 1991a; Franca and Setzer 2001), Moderate Reso-
lution Imaging Spectroradiometer (MODIS), and Geostationary Operational En-
vironmental Satellite (GOES) (Setzer et al. 1994; Prins et al. 1998).

This work is part of LBA that is carried out specifically under Land Cover and
Land Use Change Investigation 23 (LC-23): quantifying the accuracy of MODIS
fire products and establishing their relationship with land-cover dynamics. The
LC-23 project is working to provide accuracy information on satellite-derived fire
products to other fire-related LBA projects, including, but not limited to,

• Trace Gas and Aerosol Fluxes Project 3: Characterization of aerosol optical
properties and solar flux for NASA’s LBA-Ecology program (LBA-ECO);

• Trace Gas and Aerosol Fluxes Project 10: Tropical biomass fires and
tropospheric chemistry: chemistry and production of smoke in Brazil;
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• Land Cover and Land Use Change Project 2: Land-cover/land-use change
and carbon dynamics in an expanding frontier in western Amazonia: Acre,
Brazil; and

• Carbon Dynamics Project 5: Amazon scenarios: modeling interactions
among land use, fire, and climate.

This research and analysis builds on the MODIS land team’s validation strategy
to derive MODIS-like products from high-resolution imagery and compare these
to MODIS products (Morisette et al. 2002). The research is integrated with the
Global Observation of Forest Cover (GOFC)/Global Observation of Land Dynam-
ics (GOLD) program and the Committee on Earth Observing Satellites (CEOS)
global validation activities. These international entities have helped define the role
of regional partners in validating global fire products (see information online at
http://gofc-fire.umd.edu). Integration with GOFC/GOLD and CEOS maximizes
the applicability of this research beyond Brazil to the international effort to better
understand global fire product accuracy.

The primary goal of this paper is to evaluate the characteristics of two fire
detection algorithms, both of which are applied to Terra’s MODIS data and with
both operationally producing publicly available fire locations. We start by describ-
ing the two Terra MODIS fire detection algorithms—one produced as the National
Aeronautics and Space Administration’s (NASA’s) operational, archived, Earth
Observing System (EOS) MODIS fire detection product (henceforth referred to as
the EOS algorithm), and the other produced by Brazil’s Instituto Nacional de
Pesquisas Espaciais (INPE; National Institute for Space Research). We then de-
scribe the binary fire detection algorithm applied to the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) imagery and how the
resulting binary fire imagery derived from ASTER, which has 30 m × 30 m spatial
resolution, is summarized for comparison with each individual MODIS 1-km
pixel. This paper builds upon the previous work of coupled ASTER and EOS
MODIS fire detection in southern Africa (Morisette et al. 2005). The correspond-
ing MODIS and summarized ASTER data provide detailed information with
which to evaluate the two MODIS fire detection products. A quantitative com-
parison is accomplished through logistic regression and the application of accuracy
assessment curves (Morisette and Khorram 2000) applied to ASTER versus
MODIS error matrices. We use the analysis to empirically quantify the detection
envelope for the INPE and EOS algorithms with respect to fire size and spatial
continuity as estimated by the ASTER fire maps. This paper goes beyond previous
MODIS fire validation work that has been done for southern Africa (Morisette
et al. 2005) by considering the INPE fire detection algorithm, focusing on a new
region, developing a more refined ASTER fire detection algorithm, and putting
the ASTER/MODIS statistical analysis in the context of the more familiar error
matrix.

2. Fire monitoring history in Brazil

In the context of strengthening the structure of law enforcement, prevention, and
control of environmental-related activities, the Instituto Brasileiro do Meio Am-
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biente e dos Recursos Naturais Renováveis (IBAMA; the Brazilian Institute for the
Environment and Natural Renewable Resources) was created in 1989 under the
jurisdiction of the Ministry of the Environment. Among the diverse areas under the
responsibility of this agency, the activities of fire monitoring, prevention, and
suppression received special attention. In 1991 the Sistema Nacional de Prevenção
e Controle aos Incêndios Florestais (PREVFOGO; National Fire Prevention and
Control System) was created within IBAMA and started to use—in a semiopera-
tional way—satellite fire detection information coming from National Oceanic and
Atmospheric Administration (NOAA) AVHRR data generated by INPE. In 1985
the first fire detections with AVHRR were made as part of the NASA–INPE
Atmospheric Boundary Layer Experiment (ABLE)-2A mission, resulting in the
report of previously unknown biomass burning in the Amazon, with regional
transport of emissions (Andreae et al. 1988). In 1987 the first operational moni-
toring project started, supplying regional offices of the Brazilian Forest Institute
(which later became IBAMA) with coordinates of fires sent by Telex machines.
The results showed an unknown scale of biomass burning associated with massive
deforestation in the Amazon, awakening the scientific community to the global
environmental effects of such practices (Setzer and Pereira 1991a; Setzer and
Pereira 1991b). The monitoring system continued to improve and the user base
expanded. Extensive field experience was gained during many years in the combat
and control of vegetation fires and in validating the satellite-derived product
(Setzer et al. 1994).

March 1998 was a decisive period in fire monitoring. Roughly 12 000 km2 of
forests burned in the northern state of Roraima. The Brazilian government estab-
lished and funded a bilateral effort between INPE and IBAMA, where the former
was responsible for improving the detection and monitoring of fires using satellite
imagery and the latter was to implement policies of fire management and combat
in critical areas of the Amazon region. Innovations in computer technology and in
geoprocessing, and the creation and widespread use of the Internet, fostered the
development of a large number of products. Three Brazilian Web pages should be
explored in detail to understand the results and magnitude of this effort (see
information online at http://www.cptec.inpe.br/queimadas, http://www.dpi.inpe.
br/proarco/bdqueimadas, and http://www2.ibama.gov.br/proarco). Products in-
clude IBAMA daily reports of fires in conservation units in the country, Indian
territories, and in forested areas in the Amazon; comparative tables of fire occur-
rences; a geographical information system (GIS) and database of fire detection for
use on the Internet by the general public; fire risk maps of analysis and forecasts;
etc. Dozens of institutional and hundreds of individual users access this fire sys-
tem, which in the last years has been also expanded to Bolivia, Paraguay, Peru, and
Venezuela. The IBAMA departments that are involved in fire management and
control, PREVFOGO and the Programa de Prevenção e Controle de Queimadas e
Incêndios Florestais na Amazônia Legal (PROARCO), direct the operational work
related to fire on a national basis. Firemen and state environmental agencies and
forestry institutes, as well as the civil defense and the army (in extreme events),
engage in actual fire combat.

The PROARCO monitoring system uses a set of satellite sensors to monitor
fires, fire risk, and meteorological conditions in all of the Amazon area and some
neighboring countries (Pereira et al. 1999). To track fire dynamics in the Amazon,
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the need for a more reliable, fast-response hot-spot detection system required a
new approach from PROARCO shortly after its implementation. Working toward
the improvement of the information being generated, by mid-2000 PROARCO
started a new phase that would lead its fire monitoring system to a much more
sophisticated level. At that time operational fire monitoring, using both the
AVHRR (Setzer and Pereira 1991a) and GOES (Molenar et al. 1996; http://hadar.
cira.colostate.edu/ramsdis/online/BRZFIRE.html) data, was in place. Throughout
operational use at IBAMA, AVHRR and GOES fire data have proven to be a
valuable tool, adding an improved detection capability for the whole forest fire
detection system. Even though the fire detection system was showing clear signs
of improvement, some uncertainties or eventual mismatches between AVHRR and
GOES fire data showed that there were still some gaps. To help reduce these gaps
IBAMA gained access to the MODIS fire data, a new-generation satellite sensor
carrying some spectral bands specifically designed for fire detection (Justice et al.
2002). Considering its relatively early stage of implementation, MODIS fire data
had to be validated before it could be fully incorporated in the operational routine
of fire monitoring at IBAMA. Currently two algorithms are applied to the MODIS
data stream—one developed by the NASA Earth Observing System program de-
veloped at the University of Maryland (Justice et al. 2002), the other by INPE
(described below). Understanding the accuracy associated with the fire detections
from MODIS helps IBAMA understand how to best integrate the MODIS detec-
tions with data from other sensors and algorithms.

3. Data: Satellite fire detection algorithms
MODIS (Kaufman et al. 1998) is a 36-band instrument with substantially im-
proved capabilities for fire mapping as compared to the AVHRR. The first MODIS
sensor is on board the Terra satellite, which was launched in December 1999 and
has a daytime local overpass of about 10:30 A.M. The second MODIS sensor is on
board the Aqua satellite, launched in May 2002, with a 1:30 P.M. daytime local
overpass. One of the land products derived from the MODIS sensor is a pixel
resolution fire mask, separated into files representing 5 min of image acquisition
along a given swath (Justice et al. 2002). The increased saturation temperatures of
the 1-km-resolution 3.9- and 11-�m sensors decrease the ambiguities leading to
false alarms or omission errors typical of the AVHRR-based fire products (Giglio
et al. 2003).

3.1. MODIS INPE

Starting mid-2002, daily processing of MODIS direct broadcast data began at
INPE. INPE’s satellite receiving station located in Cuiabá, Mato Grosso, in central
Brazil receives Terra and Aqua imagery and disseminates that information to the
Centro de Previsão de Tempo e Estudos Climáticos (CPTEC; Center for Weather
Forecast and Climate Studies) in Cachoeira Paulista, São Paulo, where fire prod-
ucts are designed and implemented. The MODIS INPE algorithm relies on the
well-consolidated methodology of fixed threshold algorithms (Setzer and Pereira
1991a; Setzer et al. 1994; Setzer and Malingreau 1996; Li et al. 2001). INPE
has successfully used this method with the NOAA AVHRR series of satellite data
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for nearly two decades. The daytime algorithm uses empirically derived thresh-
olds. Pixels are classified as “fire” if two conditions are satisfied: band 20 > 3000
digital numbers (DNs) and band 9 < 3300 DNs. The band 20 test is used to
determine pixels that are potentially associated with vegetation fires at the surface
while the band 9 test is used to eliminate eventual sources of contamination that
affect the fire product (e.g., bright targets). The nighttime algorithm requires one
condition, band 20 > 3000. Text files with fire coordinates are disseminated to
regional fire monitoring centers (e.g., PROARCO) and made available to the user
community under a Web-based GIS system within approximately 2 h after the
satellite overpass time (information online at http://tucupi.cptec.inpe.br/
queimadas/index_modis.html).

3.2. MODIS EOS

Fire detection within the EOS MODIS fire products is performed using a contex-
tual algorithm that exploits the strong emission of midinfrared radiation from fires
(Dozier 1981; Matson and Dozier 1981). Briefly, multiple tests are applied to each
pixel of the MODIS swath that look for the characteristic signature of an active fire
in which the 4-�m brightness temperature, as well as the 4- and 11-�m brightness
temperature difference, departs substantially from that of the nonfire background.
Relative thresholds are adjusted based on the natural variability of the scene.
Additional specialized tests are used to eliminate false detections caused by sun
glint, desert boundaries, and errors in the water mask. The algorithm ultimately
assigns to each pixel one of the following classes: missing data, cloud, water,
nonfire, fire, or unknown. A detailed description of the detection algorithm is
provided by Giglio et al. (Giglio et al. 2003).

In this study we used the “Collection 4” level 2 (swath based) fire product,
available from the Land Processes Distributed Active Archive Center (DAAC) via
the EOS Data Gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/).

3.3. ASTER

ASTER (Yamaguchi et al. 1998), also on board the Terra satellite, provides
near-nadir view measurements in four visible and near-infrared bands between
0.52 and 0.86 �m, six shortwave infrared (SWIR) bands between 1.6 and 2.43 �m,
and five thermal infrared (TIR) bands between 8.125 and 11.65 �m at 15-, 30-, and
90-m resolutions, respectively. The coincident high-resolution, multispectral mea-
surements within a ∼60 km swath near the center of the MODIS swath provide a
unique opportunity to analyze the finescale features within the MODIS pixels,
such as active fires.

In this study we utilized 22 ASTER Level 1B–calibrated radiance scenes ob-
tained through the NASA Earth Observing System Data Gateway (EDG). Both the
MODIS and ASTER data are available through EDG (online at http://edcimswww.
cr.usgs.gov/pub/imswelcome/); the file name in the table provides the unique
identifier for each image dataset for the Terra MODIS Thermal Anomalies/Fire
5-min Level 2 1-km swath (MOD14), the Terra MODIS Level 1A Geolocation
data (MOD03; required input for proper geolocation of MOD14 swath data), and
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the ASTER Level 1B data. All of these data can be found in the EOS data gateway
by searching for this file name as the “local granule ID.” Figure 1 shows the
distribution of these scenes in space and Table 1 provides details for the acquisi-
tion date, center latitude and longitude, cloud cover, and file name for each
ASTER scene and the associated MODIS file names.

Figure 1. Location map for the 22 ASTER scenes used in this study.
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4. Methods
4.1. ASTER fire map

ASTER Level 1B–calibrated radiances were first converted to top-of-atmosphere
reflectances. We then used ASTER band 3N (band 3 � 0.76–0.86 �m, N� nadir
view) and 8 (2.295–2.365 �m) reflectance images to prepare individual fire masks.
These bands exhibit a high correlation in typical terrestrial scenes but have vastly
different responses to the blackbody radiation emitted by fires: the presence of a
fire within an ASTER pixel significantly increases the band 8 reflectance relative
to the reflectance observed in band 3N. ASTER band 3 data are originally avail-
able at 15-m spatial resolution; while band 8 data are available at 30-m spatial
resolution. To compare it to band 8 data on a pixel-by-pixel basis, we degrade the
band 3 data to 30-m spatial resolution through a simple averaging. ASTER pixels
containing actively burning fires were identified by considering both the ratio and
difference of band 8 and band 3N, where large ratios and large differences indicate
fires. A pixel for which the ratio is greater than 2 and the difference is greater than
0.2 is considered to be an “obvious” fire and is flagged as an active fire. A pixel
for which the ratio is between 1 and 2 and the difference is between 0.1 and 0.2
is compared to the difference and ratio for surrounding pixels. The mean and
standard deviation of both the ratios and differences for a 61 × 61 pixel square
neighborhood centered on each pixel are calculated. Pixels flagged as obvious fires
are excluded in calculation of the mean and standard deviation. When a pixel’s
ratio is more than either (a) three standard deviations or (b) 0.5 beyond the mean
ratio and the pixel’s difference is either (a) three standard deviations or (b) 0.05
beyond the mean difference, that pixel is flagged as an active fire. (For global
application, additional false alarm rejection tests are probably required, but the
lack of sun glint and other problematic features in the ASTER scenes used in this
study rendered such tests unnecessary.) Manual inspection of each ASTER scene
was performed to ensure that the resulting fire masks missed no visually apparent
fires and contained no false fire pixels.

4.2. ASTER summaries

Within a given MODIS pixel there are many ways to summarize the corresponding
ASTER fire map. We were most interested in summaries related to the spatial
extent and distribution of fires. To quantify the spatial extent of fires, we summed
the number of ASTER fire pixels within each MODIS pixel [we used the geolo-
cation information from MODIS to select the ASTER pixels to aggregate for each
MODIS pixel, following Morisette et al. (Morisette et al. 2005)]. To summarize
the spatial distribution of the fires we calculated the mean size of contiguous fires
within each MODIS pixel. Contiguous fires were defined as fire pixels that shared
a side or diagonal connection, and each connected group of fire pixels is referred
to as a fire cluster. Mean fire size for fire clusters was calculated as

Mean fire size �MFS�i = number of ASTER fire pixelsi�number of fire clustersi,

where i is an index representing a given MODIS pixel.
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4.3. Logistic regression

Similar to the work in southern Africa (Morisette et al. 2005), the comparison
between MODIS and ASTER fire products is used to address the following three
major questions.

1) What are the characteristics of fires that MODIS will almost always detect
(probability of detection � 0.95)?

2) What are the characteristics of fires that MODIS might detect (probability
of detection � 0.50)?

3) What are the characteristics of fires that MODIS will likely miss (prob-
ability of detection <�.05)?

We consider these three questions with respect to both the EOS and INPE
algorithms.

To address these questions in a quantitative manner, we employed a logistic
regression to relate the binary MODIS fire/no-fire product with summary statistics
from the ASTER fire map. MODIS data were taken to be the response (or y)
variable and the summary statistics derived from the ASTER data as the indepen-
dent (or x) variable(s) within the context of logistic regression models. The model
can be written as

��xi� =
e�0 + �

j = 1

p

�jxij

1 + e�0 + �
j = 1

p

�jxij

,

where ∑p
j � 1�jxij represents the linear combination of p ASTER summary statis-

tics within MODIS pixel i, �(xi) is the probability that MODIS pixel i will be equal
to 1 (i.e., labeled as fire) given the value of xi, and the �0 and �j parameters are
estimated from the data (Agresti 1990).

The modeling was done with S-PLUS statistical software (Insightful Corpora-
tion, Seattle, Washington). The resulting models were then used to address the
three questions regarding MODIS fire detection. We addressed the first question
by evaluating the model at the �(xi) � 0.95 level, the second by considering �(xi)
� 0.5, and the third by evaluating the models at �(xi) � 0.05. While these
particular values for �(xi) are somewhat arbitrary, the 0.05 and 0.95 values match
probability levels that are typically associated with statistical testing, while values
associated with the second question correspond to the midpoint where the prob-
ability of detection is as likely as nondetection. Actual models are given such that
other values for �(xi) can be explored.

4.4. Error matrices/accuracy assessment curves

More so than logistic regression, typical remote sensing accuracy assessment is
summarized through an error matrix. In the error matrix, the columns represent the
reference data, while the rows represent the classified data (Aronoff 1982a,b). In
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this context, the ASTER imagery is the reference data and the MODIS fire product
is the classified data. However, for such an analysis the reference data should be
collected at the same minimum mapping unit as the map that is being assessed
(Congalton and Green 1999). The error matrix approach requires using the same
classification scheme for both the reference data and classified map. These two
issues imply the need to reduce the information from all ASTER pixels contained
within one MODIS pixel to a simple binary classification of either fire or nonfire.
That is, there is a need to convert the ASTER data to a ∼1 km binary fire product.
This, in turn, requires developing a method for such a classification based on the
summary statistics described above. Here we consider selecting a threshold for the
number of ASTER fire counts beyond which we would classify the ASTER data
within the MODIS pixel as fire. For example, a threshold of 10 would imply that
when there are 10 or more ASTER fire pixels within the MODIS pixel, then the
“1 km” ASTER fire product would be classified as fire. Any count less then 10
would be classified as no fire.

Figure 2 illustrates how different ASTER fire count threshold values are related
to the associated error matrix. The number of points falling in areas A, B, C, and
D on the scatterplot shown in the upper portion of the figure are the values that fill
the corresponding elements in the error matrix. Plotting error matrix values as a
function of the classification threshold provides accuracy assessment curves
(Morisette and Khorram 2000) from which we can compare the EOS and INPE
algorithms.

Figure 2. Diagram illustrating the creation of an error matrix for a given ASTER fire
count threshold used to classify the 1-km ASTER data as fire.
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5. Results
5.1. ASTER summaries

The number of ASTER fire pixels labeled as fire for all 22 scenes was 12 439.
These pixel counts came from 982 contiguous fire clusters. Figure 3 through
Figure 6 provide examples of data from which all of the results are derived and
provide a visual demonstration of the difference in scale between the MODIS and

Figure 3. MODIS 1-km grids and fire detections over ASTER imagery and binary
ASTER fire masks on 28 Jan 2003 in Roraima: (a) EOS fire detection, ASTER
8–3–1 RGB image; (b) EOS fire detection, ASTER binary fire map; (c) INPE
fire detection, ASTER 8–3–1 RGB image; (d) INPE fire detection, ASTER bi-
nary fire mask. MODIS EOS fire detection is shown as yellow and blue grid
cells for high and nominal confidence, respectively.
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ASTER data. The figures show the MODIS 1-km grids over the ASTER imagery
and over the corresponding binary ASTER fire maps. The MODIS grid is color
coded to indicate MODIS fire detections from the EOS and INPE algorithms. The
yellow and blue boxes on the MODIS EOS grid indicate fire pixels with “high”
and “nominal” confidence, respectively. Because the MODIS INPE algorithm
does not provide confidence levels, all of the MODIS fire pixels are blue in color
on the MODIS INPE grid. The colors of the ASTER band 8–3–1 red–green–blue
(RGB) imagery are stretched to show fires in red. A comparison of the ASTER
imagery with the corresponding binary ASTER fire masks shows that the ASTER
fire detection algorithm works well. Each ASTER scene’s fire mask used in this
study was visually inspected against the corresponding, linked image of the origi-
nal ASTER imagery at full resolution. This visual inspection found no falsely

Figure 4. Same as Figure 3, but on 29 Aug 2003 in Acre.
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detected or missed fires. The last column in Table 1 notes which ASTER scenes
are represented in the figures presented here.

The 28 January 2003 images (Figure 3) are from Roraima. The large fire near
the lower-right corner is a prescribed burn set by the LBA-Ecology (ECO) LC-23
project team, which was also observed from aircraft and on the ground. The INPE
algorithm flagged the two MODIS pixels that included most of the fire front. The
EOS algorithm also flagged a third pixel at nominal confidence level, which covers
the edge of the fire front. There is an additional fire ∼15 km to the north. A larger
fire front is visible at the edge of a large burn scar. Here the INPE algorithm
correctly flagged all three MODIS pixels with a significant amount of fire. The
EOS algorithm, however, missed one pixel here. On the EOS MODIS grid there
are also two pixels flagged at nominal confidence ∼8 km to the west of this fire
front. These pixels include rather small fires and remain undetected by the INPE

Figure 5. Same as Figure 3, but on 8 Oct 2003 in Tapajós.
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algorithm. Both algorithms also missed several small fires seen in the western half
of the scene.

The 29 August 2003 image (Figure 4) is from Acre, an area that includes many
fires and has been studied extensively by the LBA-ECO Land Cover and Land Use
Change-02 team, with whom the authors have been collaborating. The comparison
of the EOS and INPE MODIS fire products shows that, in general, the EOS
algorithm detects more of the smaller fires. For example, obvious fires beneath
thin cloud edges near the lower-left corner of the scene are detected by the EOS
algorithm, but are missed by the INPE algorithm. On the other hand, the EOS
algorithm also produced a few apparently false detections (i.e., no ASTER fire
pixels).

The ASTER scene from 8 October 2003 in Tapajós (Figure 5) includes only one
larger fire near the center. This fire was detected by the INPE algorithm, but

Figure 6. Same as Figure 3, but on 24 Oct 2003 in Tapajós.
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missed by the EOS algorithm. Another scene from Tapajós on 24 October 2003
(Figure 6) shows a fire among clouds in the lower-left part of the image. This is
a prescribed fire set by the LBA LC-23 team. Both the INPE and the EOS
algorithms, probably because of cloud contamination, missed this rather large fire.
We now proceed to a more quantitative assessment.

5.2. Logistic regression

The logistic modeling indicates that both the ASTER fire counts and MFS, as well
as the cross product (or interaction) between them, are all significant variables for
the model applied to the MODIS EOS observations (p values < 0.001), and that the
ASTER fire counts as well as the interaction between the counts and MFS are
significant variables for the MODIS INPE algorithm. For consistency, while not a
highly significant variable for the INPE model, the MFS variable is included in
both models. That is, to address the three questions related to probability of
detection, we use the model

��xi� =
e�0 + �1Countsi + �2MFSi + �3Countsi × MFSi

1 + e�0 + �1Countsi + �2MFSi + �3Countsi × MFSi
.

The estimated parameter values and their p values are given in Table 2. The
higher the absolute value of the parameter, the more sensitive that response vari-
able is to the associated variable. So, while the parameters for the INPE and EOS
algorithms are similar, we see that the EOS algorithm shows slightly more sen-
sitivity to the ASTER fire counts and much more sensitivity to MFS. The resulting
model surface and the data combined for all 22 scenes are shown in Figure 7.
Decreasing probabilities for high counts and large MFS values (seen in the upper
right for Figures 7a and 7b) are the result of the negative coefficient on the
cross-product terms and applying the model beyond the range of data. This can be
addressed by adjusting the model to

��xi� = �
e�0 + �1Countsi + �2MFSi + �3Countsi × MFSi

1 + e�0 + �1Countsi + �2MFSi + �3Countsi × MFSi
for �counts � 200� or �MFS � 200�

1 for �counts � 200� and �MFS � 200�

.

Using this model, we can address the question related to detection probabilities.
This is done by plotting the contour lines for the 0.05, 0.50, and 0.95 probability
levels on the modeled surface. These contour lines are shown in Figure 8.

Table 2. Logistic regression parameters, standard errors, and p values. (The p val-
ues are calculated by adding terms sequentially (first to last), based on an S-PLUS
ANOVA chi-square probability.)
Parameter EOS Std error p value INPE Std error p value

�0 −7.5989 0.154 −6.50 0.0893
�1 0.0947 0.0072 < .0001 0.0854 0.0075 < 0.0001
�2 0.0956 0.0140 0.0003 0.0524 0.0184 0.1932
�3 −0.0006 0.00004 < .0001 −0.0004 0.00008 0.0065
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Figure 7. Modeled probability surface and observed data. The open circles indi-
cate MODIS fire detections and smaller closed squares are pixels without
a MODIS fire detection; the (a) INPE and (b) EOS algorithm.
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5.3. Accuracy assessment curves

To help explain the accuracy assessment curve concept, we first present three error
matrices and related accuracy figures for three different ASTER fire count thresh-
olds for the INPE data. Figure 9 shows the three error matrices and related error
probabilities (following the diagram in Figure 2). When we classify the ASTER
data as a fire for even one ASTER fire count, then the probability of the INPE
algorithm missing a fire (omission error) is rather high, at 0.8671. However, we
see that the chance of this error decreases significantly as we require more ASTER
fire counts before we classify the area as fire. When we require 50 ASTER fire
counts before we classify the area as fire, the probability of the INPE algorithm
missing a fire is 0.375. When we require 100 ASTER fire counts before we
classify the area as fire, the probability of the INPE algorithm missing a fire is
0.045. So, the probability of an error behaves as expected. That is, a bigger fire
based on the number of ASTER fire counts is more likely to be detected by the
INPE algorithm. A plot of the omission error as a function of the ASTER fire
detection threshold is given in Figure 10. On this figure the three vertical red lines
are the threshold values shown in Figure 9. It is interesting to see how close the

Figure 8. Contour lines for the 0.05, 0.50, and 0.95 probability levels for the logistic
regression model for the EOS and INPE algorithm. The solid line represents
the model derived from the EOS algorithm, and the dashed line represents
the model derived from the INPE algorithm.
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omission errors are from the INPE and EOS algorithms. While there is general
agreement, it is shown that for small fires (threshold values less than 20 ASTER
fire counts) the EOS algorithm is better (lower probability for omission error), but
for larger fires (counts greater than 20) the INPE algorithm has lower omission
error probabilities.

Consider now the probability of MODIS detecting a fire when the ASTER 1-km
classification indicates that there is no fire (commission errors). Here, increasing
the threshold penalized the MODIS algorithm because very small fires can be
detected by the INPE algorithm yet fall below the ASTER fire count threshold and
so are put in the ASTER data’s no-fire column in the error matrix. For the three
error matrices in Figure 9 we see that the commission error increases from 0.0014
to 0.002 as the thresholds increases from 1 to 50. The probability of commission
error remains 0.002 for the threshold of 100. The downside to the analysis is that
the MODIS detection of a small fire below the threshold is not really an error. So,
perhaps the most useful values to consider for commission error are the commis-
sion error probabilities for the threshold of 1. Figure 11 shows the probability of

Figure 9. Three-error matrix for three different ASTER count threshold values applied
to the INPE algorithm.
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commission errors as a function of ASTER fire threshold, and again the red
vertical bars correspond to the threshold values corresponding to the error matrices
in Figure 9. But, again, the most useful threshold value to consider is the threshold
value of 1. Here we see an order of magnitude difference between the EOS and

Figure 11. Accuracy assessment curves for “commission error” across ASTER count
threshold levels for the INPE and EOS algorithms. The vertical red line
represents the threshold values corresponding to the three error matrices
in Figure 9.

Figure 10. Accuracy assessment curves for “omission error” across ASTER count
threshold levels for the INPE and EOS algorithms. The vertical red line
represents the threshold values corresponding to the three error matrices
in Figure 9.
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INPE algorithm. The probability of commission error for the EOS algorithm is
0.0001, while for the INPE algorithm it is 0.0014. Both values are extremely low
because of the large number of cases where both MODIS and ASTER classify the
area as no fire.

6. Conclusions and discussion

The primary conclusion is that both algorithms do a fairly good job detecting fires,
as compared to the fire detection from ASTER imagery. It is encouraging to see
that the results from the error matrix analysis are similar to those of the logistic
regression modeling. The algorithms show similarities in the detection probabili-
ties from the logistic regression and in the probability of omission error from the
error matrix approach. However, the EOS product shows much lower commission
error probabilities.

It is worth noting that by comparing to ASTER data, we are only considering
fires within the look-angle range of ASTER’s SWIR bands: ±8.55°. There is also
a chance that clouds can obscure fire detection from both ASTER and MODIS fire
detection algorithms. However, any bias as a result of look-angle cloud cover
should be consistent between the INPE and EOS ASTER comparison. So, the
comparison presented here is legitimate despite the caveats. It is also worth noting
that the issues of cloud cover and look angle will increase the likelihood that the
MODIS algorithm misses a fire (Schroeder et al. 2005). With this, the MODIS fire
detection from either algorithm can be thought of as a lower bound for the true
number of fires. Within ±8.55°, the accuracy of the fire detection for either algo-
rithm is relayed through Figure 8. For MODIS imagery, with a look angle beyond
±15°, the chance of missing a fire is likely higher than the values presented here
and will increase as a function of the look angle.

Future efforts are being directed to more fully exploit the radiative information
contained in the ASTER data. For example, the cumulative radiance from the
ASTER fire detections could be added as a parameter in the logistic regression
modeling used to determine MODIS fire detection limits. The cumulative radiance
may explain some of the errors of omission.

It is important to realize the difference between the EOS and INPE algorithms.
The EOS product is meant for both wildfire management and global climate
modeling. The product will be archived and it is meant to serve as a long-term
climate data record. The INPE product is primarily produced for fire management
purposes. It is a straightforward algorithm that is run on the digital numbers from
the MODIS direct broadcast. Indeed, we see from this analysis here that INPE’s
relatively straightforward, near-real-time algorithm is very similar to the EOS
algorithm with respect to omission error, and the INPE algorithm is even superior
for larger fires. While the chance of a commission error is very small for both
algorithms (primarily because of the large number of nonfires), the EOS algorithm
is superior. However, the objective for this paper is not to say which algorithm is
better, but rather to simply assess the uncertainty of each through independently
derived fire products. It is left to users and further research to build upon the
analysis presented here to determine the best use of products from either algorithm
or both.
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