<u>Def. 3.6</u> – λ^i de K_m^D em K_1^E . O operador ϕ de K_m^D em K_n^E é dado por:

$$\phi \triangleq \sum_{i=1,\dots,n} \lambda^i \tag{1.39}$$

e denominado por *operador de casamento de padrões*, onde os $\lambda^i(g)(x)$ são denominados por *condições de casamento*.

<u>Def. 3.7</u> – $D,E \subset \mathbb{Z}^2$ e $1 \le l \le n$. Os operadores de casamento inexato ϕ_l de K_m^D em K_1^E são dados por:

$$\phi_l = \delta_{l-1} \circ \phi \tag{1.40}$$

• Pela Expressão (1.39) tem-se:

$$\phi_l = \delta_{l-1} \circ \sum_{i=1,\dots,n} \lambda^i \tag{1.41}$$

• $(\phi_l)_{l=1,...,n}$ podem ainda ser decompostos na união dos operadores λ^{i} s:

$$\phi_l = \bigvee_{\substack{\mathbf{c} \subset \mathbf{n} \\ \#\mathbf{c} = l}} \left(\bigwedge_{i \in \mathbf{c}} \lambda^i \right) \tag{1.42}$$