Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

Optimized Neural Network Code for Data Assimilation

Nandamudi Lankalapalli. Vijaykumar', Stephan Stephany', Airam Jonatas Preto', Haroldo
Fraga de Campos Velho' and Alexandre Nowosad’

'Laboratério Associado de Computagdo e Matematica Aplicada (LAC)
*Centro de Previsdo de Tempo e Estudos Climaticos (CPTEC)
Instituto Nacional de Pesquisas Espaciais (INPE)

Sao José dos Campos, SP, Brasil
{vijay, stephan, airam, haroldo} @lac.inpe.br; alex@cptec.inpe.br

Abstract

The data assimilation process can be described as a procedure that uses observational data to
improve the prediction made by an inaccurate mathematical model. Recently, neural networks have
been proposed as a new method for data assimilation. The Multilayer Perceptron network with
backpropagation learning was chosen for this procedure. Neural networks are inherently a parallel
procedure. This paper presents some strategies being used to achieve an optimized parallel code for
the network training. Code optimizations include the use of either High Performance Fortran
directives or Message Passing Interface library calls. A neural network for Data Assimilation was
trained based on both the physical models of the Lorenz and shallow water equations.

Introduction

Data Assimilation is a very important process in the numerical weather forecast. It permits the
imbedding of observational data in the meteorological model. This data provides a feedback during
the generation of the forecast in a real time fashion. However, the process of embedding the
observational data is not straightforward and it has to be done in a very smooth manner in order not
to disturb the forecast model thus leading to erroneous results. Classically, the assimilation process
can be outlined as a two step process (Yang & Cotton, 1998):

Forecast step: wh = Flwji]

Analysis step: we = wl +d,

where w, represents model state variable at time step n; F/.] is the mathematical (forecast) model,
superscripts f and a denote forecast and analyzed values respectively, and d, is the innovation.
Several methods of data assimilation have been developed for air quality problems (Zannetti,
1990), numerical weather prediction (Daley, 1991), and numerical oceanic simulation (Bennet,
1992). In the case of atmospheric continuous data assimilation there are many deterministic and
probabilistic methods (Daley, 1991). Deterministic methods include dynamic relaxation, variational
methods and Laplace transform, whereas probabilistic methods include optimal interpolation and
Kalman Filtering. Dynamic relaxation assumes the prediction model to be perfect, as does Laplace
transform. Variational methods and optimal interpolation can be regarded as minimum-mean-

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

square estimation of the atmosphere. In Kalman filtering the analysis innovation d, is computed as
a linear function of the misfit between observation (superscript o) and forecast (superscript f):

dn = Gy (WZ - H, W;j:) (1)

where G, is a weighting (gain) matrix, ¢ is the observed value of , and f7, is an observation

n

matrix. An adaptive extended Kalman filter has been tested in strongly nonlinear dynamical
systems for assimilation procedure: the Lorenz chaotic system. Kalman filtering has the advantage
of minimizing the error in the assimilation p/us propagating the error itself from one data insertion
to the next. But it is computationally too expensive as this process involves a heavy computational
load, specially for large meteorological systems. A strategy to alleviate this load is the use of neural
networks to emulate the performance of Kalman filtering with economy in computer time
(Nowosad et al, 2000a). Neural networks (Haykin, 1994) can be efficiently applied to map two sets
of data. Several architectures have been proposed for neural networks out of which Multilayer
Perceptron with backpropagation learning (Haykin, 1994) may be mentioned.

In a recent paper, Gardner and Dorling (1998) did a survey on applications of the ANN in
meteorology, where a brief introduction about ANN and the back-propagation algorithm are shown.
It also cites applications in the atmospheric sciences looking at prediction (air-quality: surface
ozone concentration, sulfur dioxide concentrations; severe weather; Indian monsoon, Brazilian
rainfall anomalies, solar radiation), function approximation (air-quality, modeling of non-linear
transfer functions), and pattern classification (cloud classification; distinction between clouds and
ice or snow; classification of atmospheric circulation patterns; land cover classification;
classification of convergence lines from radar imagery; etc). Although, the use of ANN for data
assimilation can be understood as function approximation, this application was not mentioned in
Gardner and Dorling's paper.

In this paper a Neural network with backpropagation learning was chosen for data assimilation.
It basically consists of an input layer and an output layer with a number of hidden layers that may
contain one or more neurons. As both the input as well as the expected output are fed with data to
train the network, this process is known as supervised learning. The paper shows the strategies used
to optimize the training phase code. The training was applied on two physical models: chaotic
Lorenz’s system (Lorenz, 1963) and shallow water model (Lynch, 1984). Optimizations included
the use of HPF (High Performance Fortran) (HPF Forum, 1993) parallel directives or calls to the
MPI (Message Passing Interface) library functions (Pacheco, 1996). The next section provides a
brief introduction to Neural networks. The following section discusses the neural network
architecture used for Data Assimilation application and presents in details the strategies used for
achieving a parallel code during the training phase. The final section concludes with some
comments and remarks.

Neural Networks
An artificial neural network (ANN) is an arrangement of units characterized by:
¢ a large number of very simple neuron-like processing units;
® alarge number of weighted connections between the units, where the knowledge of a network
18 stored;
¢ highly parallel, distributed control.

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

The processing element (unit) in an ANN is a linear combiner with multiple weighted inputs,
followed by an activation function. There are several different architectures of ANNs, most of
which directly depend on the learning strategy adopted. It is not the aim of this paper to present an
overview on ANN. Instead, a brief description of the ANN used is focused: the Multilayer
Perceptron with backpropagation learning (Haykin, 1994).

The multilayer perceptron with backpropagation learning, also called the backpropagation neural
network, is a feedforward network composed of an input layer, an output layer, and a number of
hidden layers for extracting high order statistics from the input data (Haykin, 1994, page 19).
Figure 1 shows a backpropagation neural network with one hidden layer. Functions g and Fyn
provide the activation for the hidden layer and the output layer, respectively. In order to make the
network more flexible to solve nonlinear problems, the activation functions for the hidden layer are
sigmoid functions.

LL 1 .
gi(p%. wpl Xp+ up) i=1,2,....m

g 2
fl(p{“l w;% gp + l‘l‘p)

fj(PZ=‘.1 Wy Ep+].lp)
F1.2,..,q

L 2
(3wl

Figure 1. Multilayer Perceptron with one hidden layer with m neurons

Mathematically, a perceptron network simply maps input vectors of real values onto output
vector of real values. The connections in the figure have associated weights that are adjusted during
learning process, thus changing the performance of the network.

There are two distinct phases in the usage of an ANN: the training phase (learning process) and
the running phase (activation of the network). In the training phase, the weights are adjusted for the
best performance of the network in establishing the mapping of many input-output vector pairs.
Once trained, the weights are fixed and new inputs can be presented to the network for it to
compute corresponding outputs, based on what it has learned.

The training phase of a multilayer perceptron is controlled by a supervised learning algorithm,
which differs from unsupervised learning. The main difference is that the latter uses only
information contained in the input data, whereas the former requires both input and output (desired)
data, which permits the calculation of the error of the network as the difference between the
calculated output and the desired vector. Adjustment of the network's weights is conducted by
backpropagating such error through the network. This adjustment is called Backpropagation
Algorithm. The weight change rule is a development of the Perceptron learning rule. Weights are
changed by an amount proportional to the error at that unit, times the output of the unit feeding into
the weight. This is the essence of the so-called delta rule. The training phase can make use of two
fashions: batch mode and sequential mode (Haykin, 1994). The former deals with the whole input

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

data whereas the latter carries out the training based on each input pattern. The scope of this paper
is restricted to batch mode in which al/l the input examples are taken at once and the learning
procedure searches a set of weights 0 and biases [that minimizes the total squared error:

N
em = kzluFANN (X¢,0, u,m)— F (Xk)" @)
= 2

where N is the number of examples in the training set, Xy is the input vector of example k, 6 and p
are the weights and biases of the network, Fann is the approximation and F is the desired output
value.

Code Optimization

The search for better results using the proposed artificial neural network may require a large
number of neurons in the intermediate layers or even a large number of examples to be used to train
the network, consequently demanding a huge amount of processing time. Therefore, performance
optimization of the code is a requirement.

Timing and profiling of the sequential code was done in order to identify performance
bottlenecks (Stephany et al, 2000). This provided a path for code optimization and further
parallelization.

Classical, hardware-independent optimizations were performed in the sequential code and this
led to a reduction of 40% in the processing time for the particular neural network architecture of
two intermediate layers each with three neurons in the Lorenz’s test case. The input layer consists
of six neurons while the output layer consist of three neurons. The input layer neurons correspond
to forecast and observation data of a given parameter whereas the output layer neurons correspond
to the assimilated data. The network was trained using 2,000 examples. The original Fortran 77
code was automatically generated using the MATLAB programming environment, which showed
inefficient due to excessive number of calls to subroutines. The Fortran 77 code was compiled
using a Fortran 90 compiler in order to use the intrinsic functions of the latter. This allowed
replacement of subroutines of nesting level two by calls to Fortran 90 functions, as in the case of
loops implementing the dot product of lines of a matrix by columns of another matrix. This
procedure was also applied to the chosen transfer function, the hyperbolic tangent, available as the
Fortran 90 tanh function. The use of programming language intrinsic functions helped to eliminate
inefficient hand-coded subroutines, as they are usually well optimized. An alternative would be to
use a Fortran 77 compiler, linking to a Mathematics library, that implements, for instance, linear
algebra subroutines.

The optimized code was parallelized using HPF-High Performance Fortran (High Performance
Forum, 1993) directives, mainly the INDEPENDENT statement, specifying that there are no data
dependencies between loop iterations and the FORALL statement, fully replacing the classical
iteration-structured loop. A further version, using Message Passing Interface (MPI) library calls
was also implemented, in order to compare both approaches. The MPI directives were mainly
imbedded in the routine that determines internal activation of the network as well as the application
of the tangent sigmoid function.

Tests for the data assimilation process were performed on the Lorenz's system, given by
following dynamical equations:

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

dx

— = -0(X-Y

7 (X -Y) 3)
A px_v-xz 4)
dt

dz

— = XY -bZ

0 (%)

this system is integrated using the Euler predictor-corrector method adopting At=0.001, =10,
b=8/3, R=28 so that the system is in chaotic state, with initial conditions
=[XY Z]"=[1.508870 -1.531271 25.460917".

The numerical experiment was made inserting observations every 12 time-steps. The
observational data were the same as forecast data added to a Gaussian deviations with zero-mean.
This is the same test carried out by (Miller et al, 1994). For the data assimilation procedure tests
were also performed with 10 neurons in the two hidden layers. In the case of 3 neurons weights and
bias were determined after 259 iterations whereas for 10 neurons iterations were 152. However, the
quality of assimilation was poor when using 3 neurons in the hidden layers. This case is shown in
Figure 2. A perfect assimilation was obtained with 10 neurons as shown in Figure 3.

TR e

.-, Vol |

P,/‘J' LAt N\/\J .:: :V _qV\J\J\ \J

a 50510 Tt TeeoT

|
o
IIIIIq:.'llﬂI.r?ll"llllll\llllllllllll

ey x

I Lol
l i ,

a EXEIN oot TERT z.ox10°

Figure 2. Lorenz Model - Assimilation with 3 neurons in the hidden layers

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

20

LI ’ T
15 JoA Ao H i Aot
VT i ' | Fygn Jll Al
st / i Ryt 4
¥ o ks P
/ Yoa sl e LS I' RY f =
W (AN Iy FYRr A 5) o L=
i i P M L AL TAY J"lf E
-0 [y TR '1|| {TIRY! i) \ TRERY E:
\ vl LSRN H i L i W 3
20 . .) E
a 5.0x10 oo 15=10" Zom10°
30
20E . : B |
Aon A soA
1 1 1
wg A4 N HELVA ft
gE M 1! A Tl e J"' Wb St ! t
! G Voo : L 5
| o ! (T " i Y [t
-10E}! IR t“"\f W y ' ROAY W \l‘r'lg o
- i / oW Y w oy ok [
_onE ! i
—30
a 50107 1o’ 1510t 2.0%10°
50 T
#0E-4 » i i .
(O T S S A P i -1 y b sy 4
30 fli v ﬂ i i\ oKk pohn ;‘l i i !r‘. ,“‘, :‘1 f ['*-H SN fh
' L r iy [N R (1 I N A
AN AN Hw.\‘,-‘ AN I A S A R RTAYANAVEREN EUE
29"15'\!\.r1,|t1."1"“-‘".-"'.i f?ll'*-’i,f'-'l-"\l"'-' Vi
Pty e AR A T SRR
10+ -J " \l.-[* b w3 v
o . . .
a 5.0x10° [152187 z.ox10’

Figure 3. Lorenz Model - Assimilation with 10 neurons in the hidden layers

Tests for data assimilation were also performed on the system based on shallow water equation
[Lynch, 1984]. Dynamical equations for this model are shown:

a—§+Ro—a(u§) +0+R,v=0

6
ot ox ©

Rl o(ud 0’
EJFR” (gx)—§+Rﬂu+ax—?: 0 (7)
%—ij+ Roa(aLj)—Rouov+RF5: 0 (8)

where u, v are zonal and meridional wind components; ¢ is the geopotential, & = du/ox is the
divengence; { = dv/dx is the vorticity; R,=0.10, R/=0.16, Rz10, are dimensionless numbers:
Rossby, Froude, and a number that gives the importance of S-effect (Lynch, 1984). Hereafter
prognostic variables will be grouped into a vector w=[& ¢]". The system is discretized using
forward and central finite difference method for time and space integration, where N,Ax=L=10000
Km, being L the total length of the channel; N,=32 the number of grid points; and A=100 seconds.

The numerical experiment was made inserting observations every 11.1 hours. The observational
data were the same as forecast data added to a Gaussian deviations with zero-mean. For the data
assimilation procedure tests were performed with 50 neurons in the two hidden layers. The weights
and bias were generated after 179519 iterations and the program took several days to finish its
execution. Figures 4, 5 and 6 show the assimilation for the geopotential, u component and v
components respectively.

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

d—compaonern (m)

Time th)

Figure 4. Shallow water equation model - Assimilation with 50 neurons in the hidden
layers (Geopotential)

_1 5 1 1 1 1 1
0 20 40 =] 80 100

Time)

Figure 5. Shallow water equation model - Assimilation with 50 neurons in the hidden
layers (U component)

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

1
20 40 =1 a0 oo
Time ¢h)

Figure 6. Shallow water equation model - Assimilation with 50 neurons in the hidden
layers (V component)

The parallel code is being currently ported to a distributed memory parallel machine. Tests will
be conducted to evaluate the efficiency of the parallel implementation in both the HPF and MPI
versions. Some preliminary studies have showed that the communication between processors needs
to be further optimized. Therefore, the code is being instrumented with timing directives in order to
determine precisely the communication bottlenecks in both implementations. It is foreseen that
some modifications in the code must be introduced in order to overlap communication and
processing.

Final Remarks

The use of the proposed neural network for Data Assimilation proved to be a good alternative as
the results confirmed its feasibility. In the case of Lorenz model, convergence was not possible
with two neurons but with three. The results of assimilation were improved pretty much when using
ten neurons in the intermediate layers. For shallow water equation model, convergence was
possible only after using fifty neurons in the intermediate layers. It is impossible to provide a recipe
not only with the appropriate number of intermediate layers but also the number of neurons to be
used in these layers with this neural network topology. It is merely a question of numerical and
experimentation basis. Due to the times involved in processing, optimization and parallelization is
very much justified. Optimization made a significant progress in decreasing the processing time.

Work is in progress to imbed HPF directives as well as Message Passing Interface library calls
into the optimized code. Tests are being performed in a [A-32 16-cluster environment.

Future work points to the use of other transfer functions such as logistic sigmoid, use of other
network topologies such as radial base function.

Proceedings of XII CBMET-Brazilian Congress of Meteorology , Foz de Iguagu, PR, Brazil, August 2002

References

A.F. Bennet (1992) Inverse Methods in Physical Oceanography. Cambridge University Press,
Cambridge, EUA.

L. Bengtsson, M. Ghil, E. Kélen (1991) Dynamic Meteorology: Data Assimilation Methods.
Springer-Verlag, New York, EUA.

R. Daley (1991) Atmospheric Data Analysis. Cambridge University Press, Cambridge, EUA.

M.W. Gardner, S.R. Dorling (1998): Artificial Neural Networks (The Multilayer Perpectron) - A
Review of Applications in the Atmospheric Sciences. Atmospheric Environment, 32(14/15), pp.
2627-2636.

S. Haykin (1994) Neural Networks: A Comprehensive Foundation. Macmillan, New York.

High Performance Fortran Forum (1993) High Performance Fortran Language specification version
1.0. Technical Report CRPC-TR92225, Center for Research on Parallel Computation, Rice
University, Houston, USA.

E.N. Lorenz (1963): Deterministic nonperiodic flow. Journal of Atmospheric Science, 20, 130-141.

P. Lynch (1984) DYNAMO: A One-Dimensional Primitive Equation Model. Technical Note 44,
Irish Meteorological Service, Ireland.

R.N. Miller, M. Ghil, F. Gauthiez (1994) Advanced Data Assimilation in Strongly Nonlinear
Dynamical Systems. Journal of the Atmospheric Sciences, S1(8), pp.1037-1056.

A.G. Nowosad, A. Rios Neto, H.F. Campos Velho (2000a) Data Assimilation in Chaotic Dynamics
Using Neural Networks. Proceedings of Third International Conference on Nonlinear
Dynamics, Chaos, Control and Their Applications in Engineering Sciences, July 31 - August 4,
Campos do Jordao (SP), Brasil, Vol. 6, Chapter 6 - Control, pp.212-221.

A.G. Nowosad, H.F. Campos Velho, A. Rios Neto (2000b) Neural Network as a New Approach for
Data Assimilation. Proceedings of the XI Brazilian Congress on Meteorology, pp.3078-3086,
Rio de Janeiro, Brazil.

P. Pacheco (1996) Parallel Programming with MPI. Morgan Kaufmann Publishers.

S. Stephany, R.V. Correa, C.L. Mendes, A.J. Preto (2000) Identifying performance bottlenecks in a
radiative transfer application. In: Applications of High-Performance Computers in Engineering,
Edited by M. Ingber, H. Power, C.A. Brebbia, WIT Press, Southampton.

Todling R. (1997) Estimation Theory and Foundations of Data Assimilation. Course Notes, LNCC,
Rio de Janeiro, Brazil.

S. Yang, W.R. Cotton (1998) A Method of Continous Data Assimilation using Short-range 4D-Var
Analysis. Technical Report - paper No. 653, Department of Atmospheric Science, Colorado
State University, Fort Collins (CO), USA.

P. Zannetti (1990) Air Pollution Modeling. Computational Mechanics Publications, UK.

