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INTRODUCTION. 
Extreme weather and climate events have 
received increased attention in the last 
few years, due to the often large loss of 
human life and exponentially increasing 
costs associated with them. Variations 
and trends in extreme climate events have 
only recently received much attention. 
The increasing of economic losses, 
coupled with an raise in deaths due to 
these events, have focused attention on 
the possibility that these events are 
increasing in frequency. One of the major 
problems in examining the climate record 
for changes in extremes is a lack of high-
quality, long-term data. In some areas of 
the world augments in extreme events are 
apparent, while in others there appears to 
be a decline. Based on this information 
increased ability to monitor and detect 
multidecadal variations and trends is 
critical to begin to detect any observed 
changes and understand their origins. 
Since climate extremes can be defined as 
large areas experiencing unusual climate 
values over longer periods of time (e.g., 
large areas experiencing severe drought), 
one way to investigate trends in climate 
extremes over time is to develop indices 
that combine a number of these types of 
measures (factors).  
 
The analysis of extreme meteorological 
events indicates that there has been a 
sizable change in their frequency in Brazil. 
This suggests that natural variability of 
the climate system could be the cause of 
the recent changes, although 
anthropogenic forcing due to increasing 
greenhouse gas concentrations cannot be 
discounted as another cause. It is likely 

that anthropogenic forcing will eventually 
cause global increases in extreme 
precipitation, primarily because of 
probable increases in atmospheric water 
vapour content and destabilization of the 
atmosphere. Relatively little work has 
been completed related to changes in high 
frequency extreme temperature events 
such as heat waves, cold waves, and 
number of days exceeding various 
temperature thresholds. In this work 
trends in the number of warm days in 
Brazil and changes in the aestival season 
length are investigated. Significant trends 
to fewer extreme minimum cold days and 
also trends to fewer warm maximum 
temperatures as well are analysed. 
Apparent temperature, which combines 
temperature and humidity effects on the 
human body, is another important 
measure.  
 
Short-duration extremes’ episodes (heat 
or cold waves) are often responsible for 
the major impacts on health. Conversely, 
the location, timing, and magnitude of 
local and regional changes remain 
unknown because of uncertainties about 
future changes in the frequency and 
intensity of meteorological systems that 
cause extreme precipitation. There is still 
much work to be done in determining 
whether significant large-scale changes in 
these types of events cause significant 
impacts in Brazil and around the globe. 
One of the biggest problems in performing 
analyses of extreme climate events and if 
these changes are consistent with what 
should be expected in the future is the 
lack of established definitions for what 
constitutes an extreme. This lack of 
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consensus and a lack of access to high 
quality, long-term climate data for many 
parts of the world, with the time 
resolution appropriate for analyzing 
extreme events likely means it will be 
difficult to determine if extremes have 
changed, and how they may change in the 
future (climate change scenarios). 
 
Most climate impact studies rely on 
changes in means of meteorological 
variables, such as temperature, to 
estimate potential climate impacts, 
including effects on agricultural 
production. However, extreme 
meteorological events, say, a short period 
of abnormally high temperatures, can 
have a significant harmful effect on crop 
growth and final yield. The characteristics 
of daily temperature time series, 
specifically mean, variance and 
autocorrelation, are analyzed to determine 
possible ranges of probabilities of certain 
extreme temperature events with changes 
in mean temperature of the time series.  
 
The relationships between changes in 
mean temperature and the corresponding 
changes in the probabilities of extreme 
temperature events are quite nonlinear, 
with relatively small changes in mean 
temperature sometimes resulting in 
relatively large changes in event 
probabilities. These changes in the 
probabilities of extreme events need to be 
taken into consideration in order to obtain 
realistic estimates of the impact of climate 
changes such as increases in mean 
temperature that may arise from 
increases in atmospheric carbon dioxide 
concentration. 
 
EMPIRICAL CLUSTER ANALYSIS 
In this work one analysis the persistence 
feature of extreme temperature attributes 
taking into account daily records of the 
long-term time period over 50 years 
(1951-2000) of twenty-six typical 
meteorological data series covering the 
Brazilian territory.  
 
One uses clustering of variables to 
classify the uncertainty associated to the 
grouping process. Notice that this 
technique may give new variables that are 
more intuitively understood than those 
found using principal components. This 
procedure is an agglomerate hierarchical 
method. The final grouping of clusters 

(also called the final partition) is the 
grouping of clusters which will, hopefully, 
identify groups whose variables share 
common characteristics – regional 
climatology. 
 

 
Fig.1a: Brazil Political Map. 

 
Fig.1b: Target (main) Cities. 

 
The decision about final grouping is also 
called cutting the dendrogram. The 
complete dendrogram (tree diagram) is a 
graphical depiction of the amalgamation 
of observations or variables into one 
cluster with 90% of probability to detect 
the true effect. The similarity level at any 
step is the percent of the minimum 
distance at that step relative to the 
maximum inter-observation distance in 
the data. The pattern of how similarity or 
distance values change from step to step 
can help us to choose the final grouping. 
The step where the values change 

1540



 

abruptly may identify a good point for 
cutting the dendrogram. The dendrograms 
displays suggest variables which might be 
combined, perhaps by averaging or 
totalling. The regional TMIN ensemble and 
TMAX ensemble measurements are 
similar and combine spatial (geographic) 
characteristics. 
 
Extreme climatic events are those that are 
rare both in their intensity and in the 
frequency of their occurrence. Extreme 
weather and climate events have received 
increased attention in the last few years, 
due to the often large loss of human life 
and exponentially increasing costs 
associated with them. Variations and 
trends in extreme climate events have 
only recently received much attention. 
The increasing of economic losses, 
coupled with an raise in deaths due to 
these events, have focused attention on 
the possibility that these events are 
increasing in frequency.  
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Spring: TMIN for the Northeast Region. 
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Summer: TMIN for the Northeast Region. 
 

One of the major problems in examining 
the climate record for changes in 
extremes is a lack of high-quality, long-
term data. In some areas of the world 
augments in extreme events are apparent, 
while in others there appears to be a 
decline. Based on this information 

increased ability to monitor and detect 
multidecadal variations and trends is 
critical to begin to detect any observed 
changes and understand their origins. 
Since climate extremes can be defined as 
large areas experiencing unusual climate 
values over longer periods of time (e.g., 
large areas experiencing severe drought), 
one way to investigate trends in climate 
extremes over time is to develop indices 
that combine a number of these types of 
measures (factors).  
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Winter: TMIN for the Northeast Region. 
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Autumn: TMIN for the Northeast Region. 

 
Short-duration episodes of extreme heat 
or cold are often responsible for the major 
impacts on society. Conversely, the 
location, timing, and magnitude of local 
and regional changes remain unknown 
because of uncertainties on future 
changes in the frequency and intensity of 
meteorological systems that cause 
extreme weather and climate events. It is 
likely that anthropogenic forcing will 
eventually cause global increases in 
extreme precipitation, primarily because 
of probable increases in atmospheric 
water vapour content and destabilisation 
of the atmosphere. Relatively little work 
has been accomplished relating changes 
in high frequency extreme temperature 
events such as heat waves, cold waves, 
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and number of days exceeding 
temperature thresholds. 
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EXTREME EVENTS 
Extreme events occur naturally in 
physical systems. The same physical 
processes that are responsible for 
generating non-extreme events can 
contribute to the occurrence of extremes. 

When the distribution of extreme events is 
considered in the phase space of a system, 
the extremes are found, by definition, 
near the edges of the distribution, at least 
in the directions/variables in which 
extremes are defined. The analysis of tail 
behaviour of asset returns is important 
from the point of view of climate risk 
management. 
Seasonal daily temperature maximum 
(TMAX) and minimum (TMIN) have been 
analysed taking into account the two 
subsets of annual extreme temperatures, 
TMIN and TMAX subdivided into four 
seasonal attributes: winter, spring, 
summer and autumn. The most 
commonly used definition of extreme 
weather is based on an event's 
climatologically on exceedances over 
threshold distribution, the peaks-over-
threshold (POT) methodology. 
 
A more recent approach for modelling 
extreme events is based on so called peak 
over threshold methods. The Generalised 
Pareto Distribution (GPD) is widely used 
for modelling exceedances of a random 
variable over a high threshold and it has 
been shown to be one of the best ways to 
apply extreme value theory in practice. 
The POT model is based on “Pickands-
Balkema-de Haan Theorem” that 
postulates that the distribution of the 
observations in excess of certain high 
threshold can be approximated by a GPD.  
 
In the POT model, first a threshold κ  is 
identified to define the start of the tail 
region. Then the distribution of the 
excesses over the threshold point is 
estimated with the help of a GPD 
approximation. Application of POT model 
requires tx  to be i.i.d. and therefore it is 
crucial to have appropriate specifications 
of tµ  and tσ  such that tx  is white noise 
and does not contain any time 
dependence. We use a pseudo maximum 
likelihood approach to estimate the 
parameters of mean and the volatility 
dynamics of the returns, using Normal 
distribution for the innovation tx . Under 
this methodology, use of normal 
distribution for the estimation does not 
imply the assumption of normality for the 
distribution of tx .  
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Under standard regularity conditions 
(Coles, 2000) the use of Normal 
distribution would yield consistent 
estimates even if the underlying 
distribution is not Normal. Notice that the 
pseudo maximum likelihood estimators 
are obtained by maximising the likelihood 
function associated with a family of 
probability distributions that may not 
necessarily include the true distribution 
of the underlying random variable whose 
parameters are being estimated. 
Gourieroux et al. (1984) have established 
that the estimators of the first two 
moments (of the unknown distribution) 
based on the linear and quadratic 
exponential family are asymptotically 
consistent and normally distributed 
regardless of the exact form of the true 
unknown distribution. The normal 
distribution, being a quadratic 
exponential family, can provide consistent 
estimators of the first two moments. 
Moreover, this estimator is asymptotically 
Normal. 
 
Having specified an appropriate time 
series model for each of the series, we 
extract the standard residuals coming out 
of the fitted model and use these 
residuals for estimating the tails of the 
innovation distribution. The Pickands-
Balkema-de Haan Theorem offers the GPD 
as a natural choice for the distribution of 
excesses (peaks) over sufficiently high 
thresholds. However, while choosing an 
appropriate threshold, one faces an 
unpleasant trade off between bias and 
variance. Theoretical consideration 
suggests that the threshold should be as 
high as possible for the Pickands-
Balkema-de Haan Theorem to hold good, 
but in practice, too high a threshold 
might leave us with very few observations 
beyond the threshold for estimating the 
GPD parameters, leading to statistical 
imprecision and very high variance of the 
estimates (McNeil and Frey, 2000). 
 
There is no correct choice of the threshold 
level. Coles, 2001 use the “mean-excess-
plot” as a tool for choosing the optimal 
threshold level and an arbitrary threshold 
level of 90% confidence level (i.e. the 
largest 10% of the positive and negative 
returns are considered as the extreme 
observations). In this paper, we follow a 
slightly different approach, first 
estimating the GPD parameters 

corresponding to various empirical 
threshold levels of the extreme 
observations. Then we plot a graph of the 
estimated parameters and choose the 
threshold level at which the estimate 
stabilises. This is a non-parametric way of 
choosing the optimal threshold level and 
it is useful when the mean-excess-plot or 
normal distribution assumption fail.  The 
validity of the thresholds for TMIN and 
TMAX have been assessed checking the 
stability of the maximum likelihood 
estimates for the re-parameterised models. 
 
SUMMARY 
Like the exponential distribution, the GPD 
is often used to model the tails of another 
distribution. However, while the Normal 
distribution might be a good model near 
its mode, it might not be a good fit to real 
data in the tails and a more complex 
model might be needed to describe the full 
range of the data. The GPD allows a 
continuous range of possible shapes that 
includes both the exponential and Pareto 
distributions as special cases. The 
empirical distributions focused in this 
study lead to a negative shape parameter, 
whose tails are finite. 
 
The profile log-likelihood surface (Coles, 
2001) for the 10-year return shows 
“irrelevant” asymmetry, leading to 
confidence intervals that can be 
considered symmetric about the 
maximum likelihood estimate, reflecting 
the slight degree of uncertainty about 
large values of each seasonal process. 
 
Observed extreme weather events have a 
profound impact both on society and on 
natural processes surrounding the 
atmosphere, often making a 
disproportionately large impact. The 
number of warm nights is increasing on 
spring, summer and autumn! The number 
of warm days is increasing on summer! 
Almost certainly the summer nights are 
“contaminating” the spring nights and the 
autumn nights! 
 
The analysis of extreme meteorological 
events indicates that there has been a 
sizable change in their frequency in Brazil. 
This suggests that natural variability of 
the climate system could be the cause of 
the recent changes, although 
anthropogenic forcing due to increasing 
greenhouse gas concentrations cannot be 
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discounted as another cause. The long-
term trend detected for TMIN and TMAX in 
Brazil indicates that the magnitude of the 
air-temperature for the winter, spring, 
summer and autumn are increasing. The 
annual trend are carefully analysed and 
probably the summer is “invading” or 
“contaminating” spring and spring is 
“invading” or “contaminating” winter in 
the Brazilian territory. 
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