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ABSTRACT

Parcel trajectories can be determined by the time integration of the velocity using the Picard successive
substitution procedure. However, this scheme can rarely be applied in numerical problems because it implies
(in general) an increasing difficulty in solving the analytical solution in each iteration. This strong restriction
to its practical use can be overcome by approximating the velocity to a simple function where the analytical
integration can be performed as the iteration advances.

The usual procedure adopted in meteorological research is to compute the trajectories using the Petterssen
scheme. In this work it is shown that approximating the velocity by a linear time function along the trajectory
in the Picard method yields a numerical algorithm formally identical to the Petterssen scheme. An alternative
method is proposed following the philosophy of approximating the velocity in the Picard method in order to
simplify the integration. In this approach, the parcel path is assumed to be a linear function of space and time,
and the velocity along this path at each iteration is computed using an interpolating polynomial. Only one
analytical integration is necessary, and the successive integration depends upon the coefficients of the inter-
polating function adopted for the velocity. For cubic spline, the alternative algorithm can be represented in a
suitable vectorial form convenient in designing the numerical code.

The method is tested on idealized situations with high time and space velocity variations using either Lagrangian
or Eulerian coordinates. The results for the alternative and Petterssen schemes are similar in the Eulerian
coordinate, but the superiority of the alternative scheme is evident in the Lagrangian coordinate.

1. Introduction

Determination of air parcel trajectories is a tool fre-
quently employed in meteorology for at least three dif-
ferent purposes: 1) to enrich the description of a parcel
motion subject to some kind of dynamic instability,
which requires clear and elegant interpretation (Kuo et
al. 1992; Innocentini and Caetano Neto 1992); 2) to
feed models designed to point out regions favorable to
the incidence of acid rain, deposition of pollutants, and
air quality (Jakobs et al. 1995), with trajectories com-
puted with the wind fields produced by regional models;
and 3) to perform advection using the semi-Lagrangian
technique, efficiently employed in numerical weather
prediction models.

Usually the trajectories must be determined from data,
produced by either observations objectively analyzed or
numerical models, available in a gridded domain (in
space and time). The results depend on the time interval,
grid length, and interpolating procedure adopted. The
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time interval can vary from seconds to hours. For ex-
ample, the rawinsonde network in Europe and North
America has a rich spatial resolution at 12-h intervals;
these data blended with products from a numerical mod-
el can effectively increase the temporal resolution. On
the other hand, the semi-Lagrangian technique used in
a numerical model can define a time step on the order
of minutes. The impact on the accuracy of the trajectory
using forecast products provided by numerical models
and rawinsonde data at 6 h and 12 h has been investi-
gated by Draxler (1991).

The great variety of situations and necessities requires
quite different numerical approaches; they can vary
from the simplest, with velocity constant, to more com-
plex, with the velocity assuming a temporal and spatial
dependence. For example, a situation with time step Dt,
grid length Dx, and maximum velocity U satisfying the
relation for the Courant number C [ Dt 3 U 3 (Dx)21

K 1 offers reasonable conditions for assuming a con-
stant velocity (in time and space). Cases with C ø 1
require spatial interpolation. Lagrange interpolation of
polynomials in space (which can be linear, quadratic,
cubic, quartic, etc., depending on the number of grid
points values used to define the coefficients) has been
proposed in a semi-Lagrangian scheme (McDonald
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1984). Recently, Makar and Karpik (1996) have pre-
sented the cubic basis splines as an alternative method
for interpolation on the sphere.

Kuo et al. (1985) examined the sensitivity of trajec-
tory computation to spatial and temporal resolution us-
ing the North American synoptic network. The available
wind fields were first linearly interpolated to a time step
of 10 min, and the trajectory integration was performed
with a simple explicit forward integration assuming con-
stant velocity during the small time step. This is a rea-
sonable assumption, since they use Dx 5 80 km, re-
sulting in C ø 0.2 for U 5 100 km h21.

In the semi-Lagrangian integration scheme the tra-
jectory is only an intermediary step, since the final ob-
jective is to determine the values of all advected vari-
ables at the nodes of the grid mesh. An excellent review
of this numerical technique can be found in Staniforth
and Côté (1991). As a recent example, the cascade in-
terpolation technique, suggested by Purser and Leslie
(1991), and extended later to a mass conservative
scheme (Leslie and Purser 1995), has been used in the
semi-Lagrangian advection scheme. It has the advantage
of small computation cost in the spatial interpolation of
the advected field. They also maintain the velocities
fixed at the small time step for tracing the parcel path-
way, but once the departure point is obtained, higher-
order spatial interpolation is evoked to determine the
value of the advected variable at its upstream origin.
Sun and Yeh (1997) applied the cascade technique in a
forward semi-Lagrangian scheme.

Even a temporal interpolation may be necessary when
the velocity experiences a substantial time variation. A
time dependence for the wind speed is assumed by Mar-
yon and Heasman (1988). They apply a trajectory model
to the winds provided each 6-h period by the U.K. Me-
teorological Office operational numerical models. They
obtain an analytical formulation of the velocity by linear
interpolation in space and time. Although the interpo-
lation used is very simple, the system of differential
equations is rather complex to solve analytically. The
solution is obtained using the Runge–Kutta integration
technique.

Seibert (1993) examines the convergence and accu-
racy of trajectories, in several cases with known ana-
lytical solutions, performed with the iterative schemes
proposed by Petterssen (1940) and Pudykiewicz et al.
(1985). The Petterssen scheme avoids the analytical dif-
ficulty with the time integral using a second-order im-
plicit quadrature formula, which results in a fixed-point
problem solved by iterative substitution. The velocities
are given at discrete time steps, but are spatially con-
tinuous. In practical applications the accuracy of an al-
gorithm rests upon both the spatial and temporal as-
sumption for the velocity, since the variables are com-
monly available only at discrete nodes; some spatial
interpolating procedure must be adopted in order to
compute the velocities at the extremities of the path,

which are not, in general, coincident with the grid
points.

This research proposes an alternative scheme based
on the Petterssen scheme. The method replaces the lin-
ear time dependence of the velocity along the trajectory
assumed in the Petterssen algorithm by an approach that
takes into account the spatial interpolating polynomial
as the parcel travels along the trajectory. Section 2 de-
scribes the trajectory problem, the Picard, the Petters-
sen, and the alternative substitution algorithms. The al-
ternative method with the bicubic spatial polynomial
and some relevant properties are presented in section 3.
Section 4 illustrates the method applied to the slotted
cylinder advection and to the fast-moving pendulum
problems, respectively, a semi-Lagrangian and a La-
grangian scheme. Finally, section 5 resumes the dis-
cussion of the practical use of the alternative approach.

2. The alternative solution

The trajectory of a parcel, given its initial position
x0 at time t0, is the function x(t) satisfying the first-order
ordinary differential equation:

dx
5 u(x, t), x(t ) 5 x , (1)0 0dt

where u(x, t) is the velocity. The existence and unique-
ness of a solution for this problem is demonstrated in
texts dealing with ordinary differential equations using
the method of successive approximations or Picard the-
orem (see, e.g., Boyce and DiPrima 1977, p. 72); it
defines a convergent sequence of functions where the
limit is unique and represents the solution of problem
(1). Except in particular cases, the analytical solution
of (1) and the sequence of functions defined by the
Picard method are difficult to find, and in practical ap-
plications quadrature formulas are required.

In meteorological research the Petterssen scheme is
usually employed to determine the arrival location of a
parcel when the velocity is given at two time steps. In
the following it is shown that this scheme can be pre-
sented as an approximation of the Picard method. Then,
an alternative and more accurate approximation is de-
scribed based on the same method. To fully understand
this new approach, it is convenient to present a brief
description of the Picard and Petterssen methods.

a. Picard’s iteration method

The initial value problem (1) is equivalent to the in-
tegral equation:

t

x(t) 5 x 1 u(x(t9), t9) dt9. (2)0 E
t0

Defining a functional L by
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TABLE 1. Numerical solution x of the problem given by Eq. (6) at
t 5 1, as a function of the iteration number. The three methods
depicted are described in the text.

Itera-
tion

Analytic
Picard Petterssen Alternative

1
2
3
4
5
6
7
8
9

10
11

1.00000
1.50000
1.62500
1.64583
1.64844
1.64870
1.64872
1.64872
1.64872
1.64872
1.64872

1.00000
1.50000
1.75000
1.87500
1.93750
1.96875
1.98438
1.99218
1.99609
1.99805
1.99902

1.00000
1.50000
1.66667
1.72222
1.74074
1.74691
1.74897
1.74966
1.74988
1.74996
1.74999

t

L[Z ](t) [ x 1 u(Z(t9), t9) dt9 t # t # t , (3)0 E 0 1

t0

the solution of (1) or (2) is the function Z satisfying the
fixed-point equation:

Z(t) 5 L[Z](t). (4)

In the Picard method the function Z is obtained by
successive correction of a first-guess trajectory. The first
approximation for the trajectory is prescribed with the
constant velocity u00 [ u(x0, t0):

x (1)(t) 5 x0 1 (t 2 t0)u00,

where the upper index denotes the iteration. This tra-
jectory is corrected by applying the functional L on
x (1)(t):

x (2)(t) 5 L[x (1)](t)

and similar for x (3)(t), so an arbitrary kth evaluation is
given by

x (k)(t) 5 L[x (k21)](t). (5)

The sequence of functions obtained through the it-
erative procedure can be shown to converge to a unique
solution, provided the Lipschitz condition is observed
for u (or u is a Lipschitzian function); that is, there exists
a constant b such that

|u(xN(t), t) 2 u(xM(t), t)| # b|xN(t) 2 xM(t)|.

In particular for u differentiable, b is the maximum of
|]u/]x |. The error is given by (see Coddington 1961, p.
213)

k11M (bT )
(k)|x(t) 2 x (t)| # exp(bT ),

b (k 1 1)!

where

]u
b [ max ,) )]x

M [ max{|u(x, t)|},

T [ (t 2 t ).0

This method, also known as the Picard theorem, can
be applied in principle to any differential equation, and
by this reason is proof of existence and uniqueness of
a solution. It is also a particular application of the fixed-
point theorem (see, e.g., Kreider et al. 1968).

It is instructive to examine and to compare the results
of this method in a simple case with known analytical
solution. Consider the problem

dx
5 xt ; x(0) 5 1, (6)

dt

where one wants to determine the arrival location at t
5 1. The analytical solution is exp(t2/2), and the Picard
method gives

2 k2 2 2t 1 t 1 t
(k)x (t) 5 1 1 1 1 · · · 1 .1 2 1 22 2! 2 k! 2

Table 1 presents the parcel position x at t 5 1 for each
iteration. In the first iteration the velocity from t 5 0
to t 5 1 is assumed constant and equal to zero, therefore
the parcel stays at the initial position x 5 1. In the second
iteration the velocity is integrated along the previous
trajectory given by x 5 1. The successive substitutions
continue, so that in each iteration the arrival point is
computed with the velocity along the previous trajec-
tory.

b. Approximated iterative solution—The Petterssen
algorithm

The objective of approximated iterative methods is
to avoid the analytical work involved in the evaluation
of the integral (5), which presents an increasing diffi-
culty as the iteration advances. Petterssen (1940, p. 222)
presents a method of successive corrections to compute
trajectories based on intuitive arguments. Let t0 and t1

be two time steps and the velocity given by two func-
tions of space u(x, t0) and u(x, t1), respectively. First,
an arrival position x1 of the parcel at t 5 t1 is computed
assuming a constant velocity u00 5 u(x0, t0). Since the
velocity at x1 is u11 5 u(x1, t1), a new arrival position
is computed with a constant mean velocity (u00 1 u11)/2.
Arrival points and mean velocities are successively cor-
rected until a prescribed threshold value for the differ-
ence between two successive computations is achieved.
Thus, the algorithm may be written by

(1)x 5 x 1 u Dt ; Dt [ (t 2 t ),1 0 00 1 0

(1)u 1 u00 11(2) (1) (1)x 5 x 1 Dt ; u [ u(x , t )1 0 11 1 11 22

· · ·

(k21)u 1 u00 11(k) (k21) (k21)x 5 x 1 Dt ; u [ u(x , t ).1 0 11 1 11 22
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Note that the spatial dependence on x of u(x, t0) is not
required in the Petterssen algorithm, in contrast with the
alternative method, which will be proposed.

The Petterssen scheme can be posed on more solid
arguments, as pointed out by one referee, and following
Smolarkiewicz and Pudykiewicz (1992). An implicit
second-order trapezoidal quadrature of (2) is

u 1 u(x(t ), t )00 1 1x(t ) 5 x 1 Dt. (7)1 0 1 22

This is a fixed-point problem for x(t1), and can be solved
by the iterative procedure

(k)u 1 u(x (t ), t )00 1 1(k11)x (t ) 5 x 1 Dt. (8)1 0 1 22

Equations (8) and (3) state two fixed-point problems.
Although the convergence of both iterative processes is
guaranteed by the verification of the Lipschitz condition,
the problems and solutions are distinct. It is worthy to
note that this method is not based on the trajectory x(t)
for t0 # t # t1, but only on the arrival location x(t1).

The algorithm (8) can be obtained from another point
of view, as an approximation of the Picard scheme. Con-
sider the velocity as a linear time interpolating function
of the velocity functions at the arrival and departure
points; in an arbitrary kth iteration this is given by

(k)u (t ) u1 00(k)u (t) 5 (t 2 t ) 1 (t 2 t); t # t # t ,0 1 0 1Dt Dt
(k) (k) (k)u [ u (t ) [ u(x (t ), t ). (9)11 1 1 1

In this case the Picard iterative algorithm (5) can be
analytically solved, and one obtains

(k) (k)a a
(k11) 2 (k) 2 (k)x (t) 5 x 1 t 1 b t 2 t 2 b t ,0 0 02 2

where
(k)u 2 u1 00(k)a 5

Dt
(k)u t 2 u t00 1 1 0(k)b 5 .

Dt

For t 5 t1, one has exactly Eq. (8). Physically, this
approach is assuming that the velocity along a trajectory
is linear in time. It must be noted that this is not equiv-
alent to assuming linear interpolation of velocity for a
fixed x.

The results of this scheme applied to the simple il-
lustrative case proposed in Eq. (6) are provided by Table
1. Although both analytic Picard and Petterssen schemes
converge, due to the t linear dependence on the velocity
along the trajectory assumed by the latter, the results
are not the same.

The Petterssen scheme is fundamentally a form to
solve the fixed-point problem, when the integral (2) is
approximated by a second-order trapezoidal quadrature

formula, by an iterative procedure. However, it is con-
venient in this research to assume this method as the
analytic Picard method with the velocity being linearly
interpolated along the trajectory computed in the pre-
vious iteration: this (more physical) assumption will
supply the heuristic argument of the alternative method
proposed in the following discussion.

c. Alternative approximated iterative solution

One can heuristically argue that an improved solution
of the Petterssen scheme could be achieved if in each
iteration the parcel could feel the actual spatial variation
of the velocity. Let u(x, t0) and u(x, t1), represented by
u0(x) and u1(x), be two prescribed velocity fields at t 5
t0 and t 5 t1, respectively. A parcel traveling from t0

to t1 must have the velocity close to u0(x) for t → t0

and to u1(x) for t → t1. Then, one can use the linear
interpolation

u (x) u (x)1 0u(x, t) 5 (t 2 t ) 1 (t 2 t) (10)0 1Dt Dt

(the linear interpolation serves only to illustrate; another
temporal interpolation can be evoked, in principle).
Consider the trajectory a linear time-dependent func-
tion:

x(t ) 2 x1 0x(t) 5 x 1 (t 2 t ) (11)0 0Dt

and (10) becomes a function of only t, which defines
the velocity following the parcel and allows the ana-
lytical solution of integral (2).

The method can be summarized as follows. The first
iteration computes the arrival position as in the Pet-(1)x1

terssen scheme:
t1

(1)x 5 x 1 u(x , t ) dt 5 x 1 u Dt. (12)1 0 E 0 0 0 0

t0

The second iteration computes a corrected arrival po-
sition by assuming a linear (in t) pathway connecting(2)x1

and x0. Thus,(1)x1

(1) (1)Dx Dx
(1) (1) (1)x (t) 5 t 1 x 2 t [ a t 1 b (13)0 0[ ]Dt Dt

with Dx (1) [ x (1)(t1) 2 x0, is substituted into
t1

(2) (1)x 5 x 1 u(x (t), t) dt, (14)1 0 E
t0

so the integral can be analytically determined. For a
general kth iteration,

t1

(k11) (k)x 5 x 1 u(x (t), t) dt (15a)1 0 E
t0

with
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(k) (k)Dx Dx
(k) (k) (k)x (t) 5 t 1 x 2 t [ a t 1 b . (15b)0 0[ ]Dt Dt

Supposing u0(x) and u1(x) have the usual form employed
in spatial interpolations (e.g., sine, cosine, or a poly-
nomial) the integral in (15b) can be analytically eval-
uated. Equations (15a) and (15b) define a fixed-point
problem for x(t1) and therefore converge provided the
Lipschitz condition is satisfied. In summary, the alter-
native method is performed in two stages. First, the kth
estimate of the linear trajectory as a function of time is
calculated with (15b) using the kth arrival position given
by (15a) and the known departure location. In the second
stage, the (k 1 1)th arrival position is estimated with
(15a), making use of the kth trajectory function given
by (15b) and a predefined interpolating function of ve-
locity. One must note that the alternative method makes
uses of the spline fit for the velocity at t0 and t1, while
the Petterssen scheme uses only this spline at t1.

Consider the case

u(t1) 5 Ax, u(t0) 5 0,

which is reduced to the illustrative case given by (6)
when x0 5 1, t0 5 0, t1 5 1, and A 5 1. The alternative
procedure approximates u(x, t) by the relation

x
u(x, t) 5 A (t 2 t )0Dt

with x(t) computed at each iteration. Then

5 x0 1 u00Dt(1)x1

and a general is computed with a time linear func-(k11)x1

tion for x (k) (t):
t1

(k11) (k)x 5 x 1 u[x (t), t] dt,1 0 E
t0

(k) (k)x 2 x x 2 x1 0 1 0(k)x (t) 5 t 1 x 2 t ,0 01 2Dt Dt
(k) (k)[ a t 1 b

t1 (k) (k)A(a t 1 b )
(k11)x 5 x 1 (t 2 t ) dt,1 0 E 0Dtt0

t1(k) (k) (k)A a b a t03 2 (k)5 x 1 t 1 2 t 1 b t t .0 01 2[ ]Dt 3 2 2 t0

The numerical results of the simple example are given
in the last column of Table 1. The practical advantage
of this method in relation to the Picard algorithm is that
the analytical form of the integral is the same for all
iterations. In relation to the Petterssen scheme, the ad-
vantage is that the spatial variation of the velocities
supplied at t 5 t0 and t 5 t1 is carried out by the parcel
along the trajectory.

The alternative method is based on the Picard sub-
stitution scheme with two independent approaches:

(i) temporal interpolation on the velocity fields so that
the space and time variables are separated;

(ii) parcel displacement given by a linear time depen-
dence.

The error due to the approximation (i) depends on
the interpolation adopted. For practical reasons, the in-
terpolation must result in a simple expression so that
the analytical integral in (15b) can be obtained. For a
fixed x, the Taylor’s expansion of u at t 5 t0 and t 5
t1 is

2u 5 u(t) 1 (t 2 t)u9(t) 1 (t 2 t) u0(t)/2! 1 . . .0 0 0

2u 5 u(t) 1 (t 2 t)u9(t) 1 (t 2 t) u0(t)/2! 1 . . . ,1 1 1

and a combination of these expansions gives

(t 2 t) (t 2 t )1 0u(t) 5 u 1 u0 1(t 2 t ) (t 2 t )1 0 1 0

1
31 (t 2 t)(t 2 t)u0(t) 1 O(Dt ).0 12

If the (Dt)2 and higher-order terms are neglected, the
linear interpolation results in a first-order accuracy ap-
proximation. In the kind of problem that this research
is addressing the value of u is given at discrete time
steps, and therefore there is no information about the
time dependence of u for each fixed x. The linear in-
terpolation seems a reasonable assumption that has been
used in the past (Smolarkiewicz and Pudykiewicz 1992),
or at least, better than a constant in time velocity usually
adopted in semi-Lagrangian advection schemes. It is
worthwhile to mention that linear time dependence for
u at a fixed x is not equivalent to either linear velocity
along the displacement (the alternative scheme) or linear
displacement (the Petterssen scheme).

The error introduced by the approach (ii) is difficult
to examine, and in this research the use of the alternative
scheme is motivated by the heuristic arguments given
above, the results of Table 1, and the numerical tests
carried out in the next sections.

3. Two-dimensional applications

Seibert (1993) investigated the accuracy of the Pet-
terssen scheme in rotational and deformational flows.
Appendix C shows the equivalence between Petterssen
and the alternative schemes in stationary flows with the
velocity given by a linear function of x and y. Therefore
the alternative method will be illustrated in situations
where the velocity does not have these properties.

Although the alternative method proposed here can
be implemented in conjunction with any interpolating
function, provided it can be analytically integrated, in
recent years the use of cubic interpolation and cubic
basis spline (B-cubic) have been increased due to their
extreme accuracy and computational facilities. Makar
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and Karpik (1996) discuss these approaches in the con-
text of a semi-Lagrangian advective scheme. Consider
a bicubic interpolation for the velocity along x at t 5
t0 and t 5 t1:

4 4

i21 i21u (x, y) 5 c x y ,O O0 0 i j
i51 j51

4 4

i21 i21u (x, y) 5 c x y , (16)O O1 1i j
i51 j51

where c0ij and c1ij are constants defined by the bicubic
interpolation. This formulation can be found in many
texts dealing with numerical methods, as, for example,
Press et al. (1992). Using a linear time interpolation
they can be reduced to a single expression:

4 4

i21 i21u(x, y, t) 5 c(t) x y , (17)O O ij
i51 j51

with

c (t 2 t) c (t 2 t )0 i j 1 1i j 0c(t) 5 1 t # t # t ,i j 0 16(t 2 t ) (t 2 t )1 0 1 0

or

c(t)ij 5 aij t 1 bij,

with

c 2 c c t 2 c t1i j 0 i j 0 i j 1 1i j 0a 5 ; b 5 ;i j i j(t 2 t ) (t 2 t )1 0 1 0

c 5 c(t ) ; and c 5 c(t ) .0 i j 0 i j 1i j 1 i j

The first iteration computes using (12) and a sim-(1)x1

ilar expression for . Then, with (13) one obtains a (1),(1)y1

b (1), and x (1)(t) and similarly c (1), d (1), and y (1)(t), which
are substituted in (17) resulting in

t 4 41

(2) (1) (1) i21x 5 x 1 (a t 1 b )(a t 1 b )O O1 0 E i j i j[i51 j51t0

(1) (1) j213 (c t 1 d ) dt.]
Note that aij and bij are determined by the values of u
at the grid points (or the coefficients of the polynomial),
while a (1), b (1), c (1), and d (1) are dependent on x (1) and
y (1) obtained in the previous iteration. This means that
only a (k21), b (k21), c (k21), and d (k21) must be recomputed
at the kth iteration. Supposing a (1) ± 0, a transformation
of variable reduces this expression to

(1) (1)a t 1b 4 41

(2) (1) (1) i21x 5 x 1 (e t 1 f )tO O1 0 E i j i j[i51 j51(1) (1)a t 1b0

(1) (1) j213 (g t 1 h ) dt,]
where

(1) (1) (1)c b c
(1) (1) (1)g 5 ; h 5 d 2 ;

(1) (1)a a
(1)a b a bij ij i j 1(1) (1)e 5 ; and f 5 2 .i j i j(1) 2 (1) (1) 2(a ) a (a )

Then
7 71 1

(2) (1) j11 (1) j (1)x 5 x 1 r T 1 s T 1 C ,O O1 0 j j( j 1 1) jj51 j51

where
(1) (1)T 5 a t 1 b ; and1

7 1
(1) (1) (1) (1) jC 5 2 r (a t 1 b )O j 0jj51

7 1
(1) (1) (1) j112 s (a t 1 b ) ,O j 0(j 1 1)j51

with and given in appendix A; the index (1)(1) (1)r sj j

means this value was obtained with and (from(1) (1)x y1 1

the first iteration). If a (1) 5 0 and c (1) ± 0, the trans-
formation of variable must be done with c (1) t 1 d (1).
The case a (1) 5 c (1) 5 0, does not allow any transfor-
mation of variable; the integration is easier, resulting in

4 4 a9i j(2) 2 2x 5 x 1 (t 1 t ) 1 b9 (t 2 t ),O O1 0 1 0 i j 1 02i51 j51

with

5 aij (b (1)d (1)) j21, and 5 bij(b (1)d (1)) j21.a9 b9ij ij

For the (k 1 1)th iteration, the algorithm can be sum-
marized in the following manner: (i) compute a (k) , b (k) ,
c (k) , and d (k) using (15a); (ii) with c0ij and c1ij computed
before the first iteration (they are not modified in the
forthcoming iterations) a number of operations are per-
formed in order to compute and as given in ap-(k) (k)r sj j

pendix A; (iii) finally and are calculated.(k11) (k11)x y1 1

Although the computation of the coefficients given
above seems very complicated, making the alternative
method unreliable, in practical problems once the sub-
routines have been written, the method can be easily
applied. The step-by-step numerical procedure is sum-
marized in appendix B.

4. Numerical tests

Although Table 1 constitutes an example revealing
the superiority of the alternative approach over the Pet-
terssen scheme in a case with linear time variation of
the velocity, it is necessary to test the applicability of
the proposed method in more complex situations.

The accuracy of the advection of a solid body solved
by a semi-Lagrangian technique is determined by (i) the
computation of the trajectory and (ii) the interpolation
procedure carried out to evaluate the advected scalar
function at the arrival and departure points. Obviously
the interpolating procedure is a numerical step inde-
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pendent of the interpolation regarding the description
of the velocity, which is used to determine the parcel
trajectory. For example, Sun and Yeh (1997) recover
the value of the advected scalar to the Eulerian grid
using a sequence of one-dimensional interpolation, but
the Lagrangian grid is determined assuming constant
velocities prescribed at the previous time step.

A severe Eulerian (or semi-Lagrangian) test em-
ployed in research discussing numerical methods for
transport of particles is the slotted cylinder problem (Za-
lesch 1979; Bermejo 1990). Certainly the success of the
test depends on the ability of the continuous function
to represent the solid body that will be advected. In the
case of a slotted cylinder, there is an abrupt variation
of the height of the cylinder and interpolating contin-
uous polynomials tend to create holes and peaks in re-
gions around the sharp spatial gradient. This is the case
of the cubic function. Despite this limitation, the cubic
spline interpolation will be employed in the cylinder
test carried out here, since this interpolation is frequent-
ly evoked in meteorology (Purnell 1976; Pudykiewickz
and Staniforth 1984; Staniforth and Côté 1991). The
main purpose of this test is to show the feasibility of
the alternative scheme rather than its accuracy, as jus-
tified below in the description of the results.

A Lagrangian test (focused only on the computation
of the trajectory) will be considered for the two meth-
ods, and the results will be compared. It consists of
computation of the trajectory of parcels attached on an
oscillating pendulum. It is more illustrative for this re-
search, which is mainly concerned with the trajectory
evaluation.

There are remarkable distinctions between the two
tests above concerning the numerical procedure. In the
first, at each time step the parcel trajectory is computed
from where it comes (backward), while the second is
to where it goes (forward). In the numerical code, the
first case computes the departure position of the parcel
located at each grid point in the given time step. In the
second neither the departure nor the arrival locations
must be on a grid point. The second test is more effective
for highlighting the advantages of the alternative pro-
cedure because there is no influence of the interpolation
adopted in finding the scalar field at regular grid points
(the interpolating polynomial error is eliminated).

In both methods (alternative and Petterssen) the re-
quired two-dimensional interpolation (for both the ve-
locity and scalar field in the first test, and only for ve-
locity in the second test) is performed using 16 points,
that is, nine grid squares centered around the one where
the parcel departure is located. Situations with a great
velocity demand a certain caution; if the distance be-
tween the arrival position and the boundary of the cen-
tral grid square is larger than 0.4Dx (or 0.4Dy), the
computation is performed again with the time step di-
vided by two. Such procedure avoids the use of velocity
values, in the computation of the polynomial, at grid

points far from the parcel trajectory traced during the
time step. This procedure is applied to both methods.

a. Advection of the slotted cylinder

A two-dimensional grid is defined by 101 3 101
points, with the center at the point (51, 51). At the grid
point (26, 51) a cylinder of radius 15 grid points and
height H 5 1 is imposed. A slot is applied in the cyl-
inder, 6 grid points wide and 24 grid points deep, as
can be seen in Fig. 1a. The advected velocities are

u 5 2V(J 2 51), y 5 2V(I 2 51), (18)

with

V 5 at, I, J 5 1, 2, 3, . . . , 101,

where u and y are the velocities along the I (or x) and
J (or y) axes, respectively. The time necessary to com-
plete one revolution is 2(p /a)0.5 or 100 time steps for
a 5 4p 3 1024 and Dt 5 1 s. At this time the velocity
in the most distant border of the cylinder is about five
grid lengths per second.

Figures 1b and 1c present the results at 10 and 100
time steps, respectively, for the alternative scheme. In
the beginning of the integration peaks and holes are
noticeable because the cubic spline is not adequate to
represent sharp gradients as sharp as those imposed by
the cylinder configuration. This shows that the test is
highly contaminated by the error of the interpolating
method applied to the scalar field. As the advection
proceeds the gradients are smoothed, as can be noted
after 100 time steps in Fig. 1c. The result of this figure
is very similar to those presented by Bermejo (1990).

The difference between the two schemes after one
revolution is very small (not shown). Although the ve-
locity is linear in space, a time variation is imposed in
order to avoid a linear steady case, or both schemes
would be equivalent, as demonstrated in appendix C.
However this experiment (which is very important for
showing the feasibility of the alternative method in a
test considered severe), cannot emphasize the difference
between the two methods because it is inferior to 0.5Dx
at each time step, and the scalar interpolation has great
error at the cylinder border, as one can note in Fig. 1b.
Therefore, the results are a combination between inter-
polation and trajectory errors. The distinction between
the two methods can be enhanced when the interpolation
of the scalar field is eliminated, which is achieved in
the next test.

b. Fast-moving pendulum

Consider a pendulum with a motion defined by the
angle with a horizontal axis

u0u(t) 5 sin(vt 2 p/2) 1 1 , (19)1 22

and associated angular velocity
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FIG. 1. The advected slotted cylinder at step (a) 0, (b) 10, and (c) 100.

du u05 V 5 v cos(vt 2 p/2). (20)
dt 2

The speed varies from 0 at u 5 0, achieves a maximum
value at u 5 u0/2, and becomes 0 again at u 5 u0; then
the pendulum starts its backward motion, decreasing its
u value. From (20) one can note the variation of velocity
is controlled by u0 and v.

The experiment illustrated here is carried out with v
5 2p/10 and u0 5 p/18. The pendulum, initially along
the horizontal axis, is placed on the same grid mesh
defined for the slotted cylinder. Its fixed point arises on
the center of the domain, that is, at I 5 J 5 51. The
components of the velocity used to compute the trajec-
tory are given by (18) with V defined by (20). The
analytical solution of any parcel attached to the pen-

dulum is given by (19) and its initial distance from the
central point. The time step and grid length are the same
used in the cylinder experiment. However the advection
is Lagrangian in contrast with the semi-Lagrangian ad-
vection of the previous test.

The error (defined by the difference with the analyt-
ical solution of the distance to the center) of both meth-
ods increases with the distance to the center, but always
is smaller for the alternative scheme. Figure 2 depicts
the error (relative to a grid length) evolution from time
step 90 to 100 for the point initially located at 40 grid
lengths from the center. Note the error of the Petterssen
scheme is never inferior to 0.19 and reaches a maximum
of 0.51, while for the alternative method these values
are 0.05 and 0.44, respectively.
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FIG. 2. Difference between the numerically and analytically cal-
culated position (divided by a grid length). The results are plotted
for the point initially at 40Dx from the pendulum fixed point.

5. Summary and conclusions

The evaluation of a trajectory requires the time in-
tegral of the velocity along the trajectory. The implicit
nature of the problem leads us to look for a solution by
approximating methods. Given the velocity as a function
of space and time, the trajectory can be obtained with
Picard’s iterative method, represented by a time series
with terms corresponding to each iteration. In many
cases, Picard’s method results in increasing difficulty in
solving an integral as the iteration advances. This im-
poses a strong restriction on its practical applicability,
which can be removed by computing the integral using
a quadrature formula.

On the other hand, in meteorological problems, usu-
ally the velocity is given at discrete time steps. Then
the second-order implicit quadrature formulation
seems to be an adequate approach to compute the tra-
jectory, since only the velocities at the departure and
arrival times must be known. This formulation results
in an iterative fixed-point algorithm, or the Petterssen
scheme.

In this article we show the formal equivalence be-
tween the Petterssen scheme and the Picard method with
the velocity, along the path obtained on the previous
iteration, approximated by a linear time function.

Although in meteorological problems the velocities
are usually available at grid points, their spatial depen-
dence must be specified by some interpolating procedure
in the computation of trajectories, because the velocity
must be known at the extremities of the path, which
rarely lie exactly on the grid points. Then it seems nat-
ural to replace the linear time interpolation of the ve-
locity along the path, assumed in the Petterssen scheme,
by an approach that does not ignore the spatial inter-
polating polynomial of the velocity along the previous
path in the iterative method. An algorithm satisfying
this requirement is proposed in this article. The ana-

lytical difficulty is removed approximating the parcel
path by a linear time and space function.

The alternative method is proposed by assuming (i)
the velocity is a product of a function of space by a
function of time, and (ii) a linear time interpolation for
the trajectory. These assumptions allow the use of an
iterative method. From assumption (i) a difference meth-
od, defined as one where the time interval is decom-
posed into n smaller intervals, could be applied in solv-
ing the trajectory integral problem, for example, Euler,
Runge–Kutta, and predictor–corrector (see, e.g., Gear
1971). In this paper the iterative methodology is adopt-
ed, and a comparison with difference method is left to
future research.

The formulation of the alternative method applied to
the bicubic spatial interpolation can be conveniently rep-
resented by vectorial products, thus the numerical al-
gorithm is easily written. Only one analytical integral
is necessary. The coefficients of the interpolating poly-
nomial are calculated before the first iteration, and the
integral in the forthcoming iterative steps is updated
with few additional computations. The proposed method
is applied in two problems of trajectories with distinct
time integration numerical schemes; one test is semi-
Lagrangian and the other Lagrangian.

The semi-Lagrangian scheme is applied to the ad-
vection of a slotted cylinder where the new position is
found by interpolation from gridpoint values. In the La-
grangian test, the trajectory of a fast-moving pendulum
is determined without any interpolation other than the
polynomial used to describe the velocity.

The slotted cylinder test provides no evidence that
the alternative method has greater accuracy. The results
are nearly the same obtained by the Petterssen scheme.
It seems that the possible advantages of the alternative
scheme are masked by the error of interpolating a scalar
with sharp spatial gradient combined with trajectory er-
ror. The test with the fast-moving pendulum (which is
Lagrangian and where the interpolating error is elimi-
nated) exhibits smaller error in the alternative method.

The main conclusion of this research is that in situ-
ations with a high variation of velocity in consecutive
time steps, like the case of the fast-moving pendulum,
the proposed method reduces the error of the trajectories
obtained with the Petterssen scheme. This increased ac-
curacy comes at the price of decreased computational
speed; approximately double the CPU time is required
in the proposed method. Then the decision of what
method must be adopted in a particular application has
to be made in light of how much accuracy is necessary.
However, in many applications the extra computational
cost may not be significant. For example, in regional
models, including a large number of chemical reactions,
a large fraction of the CPU time is consumed by de-
scribing these chemical transformations (Saylor and
Ford 1995); then the computational overhead caused by
the alternative method in the computation of trajectories
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may represent only a minor fraction of the total CPU
time.
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APPENDIX A

Computation of the Coefficients in the Trajectory
Alternative Method Using Bicubic Interpolation

The equality

t 4 41

(n11) (n) (n) i21x 5 x 1 (a t 1 b )(a t 1 b )OO1 0 E i j i j1i51 j51t0

(n) (n) j213 (c t 1 d ) dt (A.1)2
can be transformed, for a (n) ± 0, in

(n) (n) j21a t 1b 4 41 (n) (n) (n) (n)a a b c b c dtij ij(n11) i21 (n)x 5 x 1 t 1 b 2 t t 1 d 2O O1 0 E i j(n) (n) (n) (n) (n)1 2 1 2[ ]a a a a ai51 j51(n) (n)a t 1b0

(n) (n)a t 1b 4 41

(n) (n) i21 (n) (n) j215 x 1 (e t 1 f )t (g t 1 h ) dt (A.2)O O0 E i j i j[ ]i51 j51(n) (n)a t 1b0

with

(n) (n) (n)c b c
(n) (n) (n)g 5 ; h 5 d 2 ; (A.3a)

(n) (n)a a
(n)a b a bij ij i j(n) (n)e 5 ; f 5 2 ; (A.3b)i j i j(n) 2 (n) (n) 2(a ) a (a )

c 2 c c t 2 c t1i j 0 i j 0 i j 1 1i j 0a 5 ; b 5 ; (A.4)i j i j(t 2 t ) (t 2 t )1 0 1 0

(n) (n)x 2 x x t 2 x t1 0 0 1 1 0(n) (n)a 5 ; b 5 ; (A.5a)
(t 2 t ) (t 2 t )1 0 1 0

(n) (n)y 2 y y t 2 y t1 0 0 1 1 0(n) (n)c 5 ; and d 5 , (A.5b)
(t 2 t ) (t 2 t )1 0 1 0

where c1ij and c0ij are the coefficients of the bicubic
interpolation of the velocity u(x, y) at t 5 t1 and t 5
t0, respectively. For a (n) 5 0 and c (n) ± 0, it is enough
to replace (a (n)t 1 b (n)) by (c (n)t 1 d (n)) and vice versa.
If a (n) 5 c (n) 5 0,

4 4 a9i j(n11) 2 2x 5 x 1 (t 1 t ) 1 b9 (t 2 t ) (A.6)O O0 1 0 i j 1 02i51 j51

with

5 aij(b (n)d (n)) j21 and 5 bij(b (n)d (n)) j21.a9 b9ij ij

Returning to cases with a (n) ± 0 or c (n) ± 0, one can
write

7 71 1
(n11) (n) j11 (n) j (n)x 5 x 1 r T 1 s T 1 CO O1 0 j j( j 1 1) jj51 j51

(A.7)
with

T 5 a (n)t1 1 b (n) ,
where

7 1
(n) (n) (n) (n) j11C 5 2 r (a t 1 b )O j 0( j 1 1)j51

7 1
(n) (n) (n) j2 s (a t 1 b ) (A.8a)O j 0( j 1 1)j51

(n) 3r 5 [e g ] (A.8b)7 4,4

(n) 2 2 3r 5 [e 3g h 1 e g 1 e g ] (A.8c)6 4,4 4,3 3,4

(n) 2 2r 5 [e 3gh 1 e 2gh 1 e g 1 e 3g h5 4,4 4,3 4,2 3,4

2 31 e g 1 e g ] (A.8d)3,3 2,4

(n) 3 2r 5 [e h 1 e h 1 e h 1 e4 4,4 4,3 4,2 4,1

21 e 3gh 1 e 2gh 1 e g3,4 3,3 3,2

2 2 31 e 3g h 1 e g 1 e g ] (A.8e)2,4 2,3 1,4

(n) 3 2 2r 5 [e h 1 e h 1 e h 1 e 1 e 3gh3 3,4 3,3 3,2 3,1 2,4

2 21 e 2gh 1 e g 1 e 3g h 1 e g ] (A.8f)2,3 2,2 1,4 1,3

(n) 3 2 2r 5 [e h 1 e h 1 e h 1 e 1 e 3gh2 2,4 2,3 2,2 2,1 1,4

1 e 2gh 1 e g] (A.8g)1,3 1,2

(n) 3 2r 5 [e h 1 e h 1 e h 1 e ] (A.8h)1 1,4 1,3 1,2 1,1
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and , j 5 1, . . . , 7, have the same formulation of(n)sj

, except that for i, j 5 1, . . . , 4, are replaced by(n) (n)r ej ij

. The (n) has been omitted from the rhs of (A.8) for(n)f ij

simplicity.
These expressions can be presented in a concise form

making the numerical code easy to write. Defining the
vectors

e [ (e , e , e , e ) (A.9a)1 1,1 1,2 1,3 1,4

e [ (e , e , e , e ) (A.9b)2 2,1 2,2 2,3 2,4

e [ (e , e , e , e ) (A.9c)3 3,1 3,2 3,3 3,4

e [ (e , e , e , e ) (A.9d)4 4,1 4,2 4,3 4,4

2 3h [ (1, h, h , h ) (A.9e)
2gh2 [ (0, g, 2gh, 3gh ) (A.9f)

2 2g2h [ (0, 0, g , 3g h) (A.9g)
3g3 [ (0, 0, 0, g ) (A.9h)

f [ ( f , f , f , f ) (A.9i)1 1,1 1,2 1,3 1,4

f [ ( f , f , f , f ) (A.9j)2 2,1 2,2 2,3 2,4

f [ ( f , f , f , f ) (A.9k)3 3,1 3,2 3,3 3,4

f [ ( f , f , f , f ), (A.9l)4 4,1 4,2 4,3 4,4

one can write
(n)r 5 [e · h] (A.10a)1 1

(n)r 5 [e · h 1 e · gh2] (A.10b)2 2 1

(n)r 5 [e · h 1 e · gh2 1 e · g2h] (A.10c)3 3 2 1

(n)r 5 [e · h 1 e · gh2 1 e · g2h 1 e · g3] (A.10d)4 4 3 2 1

(n)r 5 [e · gh2 1 e · g2h 1 e · g3] (A.10e)5 4 3 2

(n)r 5 [e · g2h 1 e · g3] (A.10f)6 4 3

(n)r 5 [e · g3]. (A.10g)7 3

The computation of , j 5 1, . . . , 7 is performed with(n)sj

f replacing e in (A.10).

APPENDIX B

Step-by-Step Numerical Procedure in the
Alternative Algorithm

1) Find the 16 grid points forming 9 grid cells, the
departure position being within the central cell.

2) Compute the coefficients of the bicubic interpola-
tion for the velocities u and y at t 5 t0 and t 5 t1:

cu0; cy 0ij; cu1ij; cy 1ij with i, j 5 1, 2, 3, 4.

3) Compute with (A.4)

auij; buij; ay ij; by ij, i, j 5 1, 2, 3, 4.

4) Find u0 5 u(x0, y0, t0) and y 0 5 y(x0, y0, t0) using
the coefficients obtained in step (2) above.

5) Compute and with Eq. (12).(1) (1)x y1 1

6) Define X 5 , Y 5 , and n 5 0.(1) (1)x y1 1

7) Redefine n 5 n 1 1.
8) Compute a (n) , b (n) , c (n) , d (n) using (A.5), replacing

x (n) and y (n) by X and Y, respectively.
9) If a (n) 5 0 and c (n) ± 0, replace a (n) and b (n) by c (n)

and d (n) , respectively.
10) If a (n) 5 0 and c (n) 5 0, compute with (A.6)(n11)x1

and a similar relation for , and go to step 16(n11)y1

below.
11) Compute g (n) , and h (n) using (A.3a).
12) For auij, buij, using (A.3b), compute

, , i, j 5 1, 2, 3, 4.(n) (n)e fij ij

13) Using (A.8), (A.9), and (A.10), compute

; and C (n) for i 5 1, 2, . . . , 7.(n) (n)r si i

14) Compute using (A.7).(n11)x1

15) Repeat steps 12, 13, and 14 with ay ij and by ij, and
compute .(n11)y1

16) Compute the difference between two consecutive
iterations, and decide if a new iteration will be per-
formed. If so, define X 5 , Y 5 , and(n11) (n11)x y1 1

return to step 7.

Observation: if the parcel arrives at a position distanced
more than 0.4Dx from the central cell, the Dt is divided
by 2, and the computation is carried out in 2 smaller
time steps.

APPENDIX C

Stationary Linear Flows

Rotational and deformational flows can be repre-
sented by

u(x, y) 5 2ry 2 dx; y(x, y) 5 rx 1 dy,

where r 5 0 for the deformational flow, and d 5 0 for
the rotational flow. They can be generalized by a linear
spatial representation in the form

u(x, y) 5 a x 1 b y 1 cu u u

y(x, y) 5 a x 1 b y 1 cy y y

where a, b, and c (with the subscripts u and y) are
constant coefficients.

The alternative method applied to the linear velocity
gives

t1

(k)x 5 x 1 (a F (t) 1 b F (t) 1 c ) dt, (C.1)1 0 E u x u y u

t0

where
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(k21)x 2 x0(k21) (k21) (k21)F (t) 5 a t 1 b ; a 5 ;x Dt
(k21)x 2 x1 0(k21)b 5 x 2 t ;0 0Dt

(k21)y 2 y1 0(k21) (k21) (k21)F (t) 5 c t 1 d ; c 5 ;y Dt
(k21)y 2 y1 0(k21)d 5 y 2 t ,0 0Dt

and a similar relation holds for . Integrating Eq. (16)(k)y1

and substituting the coefficients, after some manipula-
tions one has

(k) (k21) (k21)x 5 x 1 [(a x 1 b y 1 c )1 0 u 1 u 1 u

Dt
1 (a x 1 b y 1 c )] 3 , (C.2)u 0 u 0 u 2

which is exactly the Petterssen formulation. Therefore,
the two methods are reduced to the same result in sta-
tionary linear flows.
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