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Abstract In this work we give special attention to the bimetric theory of gravitation

with massive gravitons proposed by Visser in 1998. In his theory, a prior background

metric is necessary to take in account the massive term. Although in the great part of

the astrophysical studies the Minkowski metric is the best choice to the background

metric, it is not possible to consider this metric in cosmology. In order to keep the

Minkowski metric as background in this case, we suggest an interpretation of the

energy-momentum conservation in Visser’s theory, which is in accordance with the

equivalence principle and recovers naturally the special relativity in the absence of

gravitational sources. Although we do not present a general proof of our hypothesis we

show its validity in the simple case of a plane and dust-dominated universe, in which

the ‘massive term’ appears like an extra contribution for the energy density.

Keywords Theory of gravitation · Massive graviton · Cosmology

1 Introduction

Could the graviton have a non-zero rest mass? The observations have shown that this is

a possibility. One of the most accurate bounding on the mass of the graviton comes from

the observations of the planetary motion in the solar system. Variations on the third

Kepler law comparing the orbits of Earth and Mars can lead us to mg < 7.8×10−55g [1].

Another bound comes from the analysis of galaxy clusters that lead to mg < 2×10−62g

[2] which is considerably more restrictive but less robust due to the uncertainties in the

content of the universe in large scales. Studying rotation curves of galactic disks, [10]
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has found that we should have a massive graviton of mg ≪ 10−59g in order to obtain

a galactic disk with a scale length of b ∽ 10 kpc.

The above tests are obtained from static fields based on deviations of the newtonian

gravity. In the weak field limit has been proposed [3] to constraint mg using data on the

orbital decay of binary pulsars. From the binary pulsar PSR B1913+16 (Hulse-Taylor

pulsar) and PSR B1534+12 it is found the limit mg < 1.4 × 10−52g, which is weaker

than the bounds in static field.

It is worth recalling that the mass term introduced via a Pauli-Fierz (PF) term

in the linearized approximation produces a theory whose predictions do not reduce

to those of general relativity for mg → 0. This is the so called van Dam Veltmann

Zakharov discontinuity [4]. Moreover the Minkowski space as background metric is

unstable for the PF theory [5]. However, there is no reason to prefer the PF term over

any other non-PF quadratic terms.

It is important to emphasize that these mass terms do not have clear extrapolation

to strong fields. A way to do that was proposed by Visser [6]. To generalize the theory

to strong fields, Visser makes use of two metrics, the dynamical metric (gµν) and a non-

dynamical background metric ((g0)µν) that are connected by the mass term. Although

adding a prior geometry is not in accordance with the usual foundations underlying

Einstein gravity, it keeps intact the principles of equivalence (at least in its weak form)

and general covariance in the Visser’s work. Some interesting physical features emerge

from the theory such as extra states of polarizations of the gravitational waves [7].

In the present article, we explore some aspects which are not treated by Visser in

his original paper. In the great part of the astrophysical studies the Minkowski metric

is the most appropriate choice to the background metric. However, in the study of

cosmology, it is not possible to consider this kind of metric, and we need some prior

considerations regarding a background metric. Once this problem emerges from the

coupling of the two metrics and the energy’s conservation condition, we analyze an

alternative interpretation of this condition. We also show that this interpretation is in

accordance with the equivalence principle and recovers naturally the special relativity in

the absence of gravitational sources. Arguments in favor of a Minkowskian background

metric in Visser’s theory are also considered.

This paper is organized as follows: in section 2 we show how to introduce a mass

for the graviton through a non-PF term. We present the strong field extrapolation as

given by Visser in section 3. In section 4 we show that the theory is not in accordance

with a Minkowski background metric in the study of cosmology. In section 5 we re-

interpret the stress-energy conservation in order to keep Minkowski as background

in any case. In particular, we show that our re-interpretation is in accordance with

the equivalence principle. In section 6 we show why Minkowski is the most natural

choice to the background metric. We briefly study some cosmological consequences of

our interpretation of the energy-momentum conservation in section 7. And finally, we

present our conclusions in the last section.

2 The linearized approximation

The action of a massive gravity in weak field limit may be given by

I =

Z

d
4
x


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h
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h
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hµν − 1

2
h
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+
8πG

c4
h

µν
Tµν

ff
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where the first term is the linearization of the usual Einstein-Hilbert Lagrangian and

the second term is the mass term for the graviton that is a non-PF one. This fact is

essential to have a well-behaved classical limit as the graviton mass goes to zero. From

equation (1) we have the field equation in the weak field regime

�
2

»

hµν − 1

2
ηµνh

–

− m2
gc2

~2

»

hµν − 1

2
ηµνh

–

= −16πG

c4
Tµν (2)

or
 

�
2 − m2

gc2

~2

!

h̄µν = −16πG

c4
Tµν (3)

where

h̄µν = hµν − 1

2
ηµνh (4)

The equation (3) is a Klein-Gordon type. Note that this equation in the limit

mg → 0 gives us the weak field equations as in general relativity and the newtonian

potential in the non-relativistic limit.

Taking the mass term as above we obtain the condition

∂ν h̄
µν = 0. (5)

as a natural consequence of the energy’s conservation [6], instead of a gauge condition

as in general relativity. But, as we will see later, this is not the case when one considers

strong fields.

3 The Visser’s strong field equations

Following Visser, the extrapolation of the mass term in the equation (1) to strong fields

could be made by introducing a background metric g0, which would not be subject to

a dynamical equation. So, the mass term of strong fields is given by the action

Imass =
1

2

m2
gc2

~2

Z

d
4
x
√
−g0



(g−1
0 )µν(g − g0)µσ(g−1

0 )σρ(g − g0)ρν

−1

2

h

(g−1
0 )µν(g − g0)µν

i2
ff

(6)

that recovers the action (1) when we consider the weak field limit:

gµν = (g0)µν + hµν , |h| << 1. (7)

Then, the full action considered by Visser is

I =

Z

d
4
x

»√−g
c4R(g)

16πG
+ Lmass(g, g0) + Lmatter(g)

–

(8)

in which the background metric shows up only in the mass term for the graviton. The

equations of motion that comes from (8) may be written such as the Einstein equations

Gµν = −8πG

c4

ˆ

Tµν + T
mass
µν

˜

, (9)
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where the contribution of the mass term appears like an extra contribution to the

stress-energy tensor, namely

T
µν
mass = − m2

gc6

8πG~2



“

g
−1
0

”µσ
ˆ

(g − g0)σρ

−1

2
(g0)σρ

“

g
−1
0

”αβ
(g − g0)αβ

˜

“

g
−1
0

”ρν
ff

. (10)

Following equation (5), the natural extrapolation to strong fields is

∇νT
µν
mass = 0. (11)

4 Visser’s field equations with a Minkowski background metric

As pointed out by Visser [6], the most sensible choice for almost all astrophysical

applications is to choose g0 as Minkowski. However, some problems appear when we

consider this kind of background in cosmology.

To show how these problems emerges, we take the Robertson-Walker as dynamical

metric and we consider k = 0 for simplicity:

ds
2 = c

2
dt

2 − a
2(t)

h

dr
2 + r

2(dθ
2 + sin

2
θdφ

2)
i

. (12)

To the background metric, we take the following class of metrics:

ds
2
0 = b

2
0(t)c

2
dt

2 − a
2
0(t)

h

dr
2 + r

2(dθ
2 + sin

2
θdφ

2)
i

. (13)

Using these two metrics in the mass tensor and applying (11) we obtain

ȧ

a

»„

a

a0b0

«2

+
1

4

„

a

a0

«4

+
1

4b40
− 1

b20

–

+
1

2

ȧ0

a0

„

a

a0b0

«2

− ḃ0
b0

»

1

2

„

a

a0b0

«2

+
1

3b40
− 2

3b20

–

= 0, (14)

where dots represent time derivatives.

Thus, a0(t), b0(t) and the scale factor a(t) are related to by the differential equation

(14). For example, if we choose the background metric as Minkowski (a0 = b0 = 1),

we obtain that the dynamical metric is Minkowski too. Obviously this is not the case

in an expanding Universe, for example.

So, in this case, we cannot consider Minkowski and we need some particular choice

to the background metric. Some of these possible choices are discussed in the Visser’s

paper [6].

If a consistent gravitation theory is based on a prior metric, we expect that such a

metric would be compatible with any astrophysical case. Once the problems regarding

the Minkowskian background metric arises from the condition (11), we will explore

an alternative interpretation of the energy-momentum conservation in the remaining

of the paper. Such a interpretation has the intention of to keep Minkowski as the

background metric in any astrophysical study in Visser’s theory.



5

5 The energy-momentum conservation revisited

From the field equations in the Visser’s theory we may adopt an alternative energy-

momentum conservation condition. Taking the divergence of (9), the left-hand-side is

a Bianchi identity that is automatically null and from the right-hand-side we get

∇ν

ˆ

T
µν + T

µν
mass

˜

= 0 (15)

We will verify if this equation is in accordance with the equations of motion of a free

fall test particle describing a geodesic and, therefore, if it is in accordance with the

equivalence principle. In the well known Rosen bimetric theory of gravitation [8], for

example, it was pointed out the importance of the field equations be in accordance

with the geodesic equation which is obtained independently.

To proceed, we adopt the energy momentum tensor to a perfect-fluid:

T
µν = (ρ + p)Uµ

U
ν + pg

µν
. (16)

Substituting this into equation (15) we have

ˆ

(ρ + p)Uµ
U

ν + pg
µν˜

;ν
= −T

µν
mass ;ν (17)

ˆ

(ρ + p)Uν˜

;ν
U

µ + (ρ + p)Uµ
;νU

ν = −T
µν
mass ;ν (18)

where “; ” denotes the covariant derivative.

Multiplying (18) by Uµ and using

U
µ
Uµ = 1, (19)

we obtain
ˆ

(ρ + p)Uν˜

;ν
+ (ρ + p)UµU

µ
;νU

ν = −T
µν
mass ;νUµ. (20)

Manipulating (19) we have

U
µ

;νU
ν = −U

µ
U

ν
;ν ; (21)

from which we can rewrite equation (20) as

ˆ

(ρ + p)Uν˜

;ν
− (ρ + p)Uµ

UµU
ν
;ν = −T

µν
mass ;νUµ. (22)

From (19) we can find that the second term in the left-hand-side of (22) is zero,

therefore
ˆ

(ρ + p)Uν˜

;ν
= −T

µν
mass ;νUµ. (23)

Now substituting (23) in (18) we get

− UαT
αν
mass ;νU

µ + (ρ + p)Uµ
;νU

ν = −T
µν
mass ;ν . (24)

Since the strong field equations are in accordance with the geodesic equation we

have

U
µ

;νU
ν = 0 (25)

which can be rewritten as

d2xµ

dτ2
+ Γ

µ
αν

dxα

dτ

dxν

dτ
= 0. (26)
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The last equation can be obtained independently by considering a free fall test

particle and the equivalence principle, just as the general relativity theory. Therefore,

we conclude that since the energy-momentum conservation condition (15) is in accor-

dance with the equivalence principle, the following relation to the mass term needs to

be respected:

T
µν
mass ;ν = U

µ
UαT

αν
mass ;ν . (27)

If we adopt the four-velocity in the rest frame

Uµ = (1, 0, 0, 0), (28)

then, we will need to have non null components of the divergence of the mass term

when µ = 0 and ν = 0, 1, 2, 3.

Note that the condition imposed for the mass term (27) is not dependent on the

form of the tensor T
µν
mass, so the expression (15) is valid to any second rank tensor

“interacting” with the perfect fluid.

6 Arguments in favor of a Minkowski background

A classical theory of gravity with a massive graviton apparently needs a background

metric for the propagation of this particle. But what is the best physical choice to a

background metric? In the Rosen theory [8] the second metric is a flat metric that

describes the inertial forces. We will analyze this issue in Visser’s theory.

To do that, we take the field equations (9) in the absence of gravitational source:

G
µν =

8πG

c4
T

µν
mass. (29)

In this particular case, following the treatment that we give in this paper, the covariant

divergence produces:

∇νT
µν
mass = 0. (30)

Once the mass tensor is constructed by the dynamical metric and by the background

metric (and not by derivatives of the metrics), we can conclude that the most simple

way of satisfying (30) is:

∇ν(g0)
µν = 0 (31)

since the divergence of gµν is null by construction of the covariant derivatives. Then,

the natural solution of (31) is:

(g0)µν = gµν . (32)

Which by the construction of the mass term (10) leads to

T
µν
mass = 0 (33)

and therefore

Gµν = 0. (34)

In the absence of gravitational sources the simplest solution of (34) is:

gµν = ηµν (35)
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where ηµν is the Minkowski metric and by (32) we get:

(g0)µν = ηµν . (36)

The meaning of our result may be summarized saying that in the absence of gravi-

tational sources the two metrics coincide and we have only one flat metric: Minkowski.

In fact this is a simplicity criterion since we expect to recover the results of special

relativity in the absence of gravitation. Take, for example, our energy-momentum con-

servation condition (15), if the background metric is Minkowski, when the dynamical

metric is Minkowski too, we get naturally the energy conservation as given in special

relativity:

∂ν(T µν) = 0, (37)

once the mass term vanishes.

If the background metric is not Minkowski the special relativity is not recovered,

because the mass term would not disappear due the coupling of the two metrics.

With all these features the bases of the theory is very close to the foundations of

general relativity.

7 Cosmological consequences?

To illustrate the condition (15), let us consider the simple case of matter in the form

of an ideal pressure-less fluid, i.e., a cloud of dust particles:

T
µν = ρU

µ
U

ν
, (38)

the Robertson-Walker metric as the dynamic metric and Minkowski as the background

one. Then, applying the condition (15) we have

ρ̇ +

"

3ρ +
3m2

gc6

16πG~2
(4a

2 + a
4 − 3)

#

ȧ

a
= 0, (39)

and equation (18) is automatically satisfied.

Solving (39) we obtain the evolution of the energy density as a function of the scale

factor:

ρ(a) =
ρ0

a3
− 3m2

gc6

8πG~2

„

a4

14
+

2a2

5
− 1

2

«

, (40)

here, the first term is the evolution of the energy density as calculated in general rela-

tivity, and we have an additional term due to the mass term. This may be an interesting

treatment of the mass of the graviton in cosmological scenarios, once we can interpret

it like a fluid and maybe explain some observational effects that has been attributed

to the cosmological constant, quintessence and other exotic fluids [9].

Another interesting feature emerges from our treatment. It is not possible to obtain

a de Sitter solution for the vacuum.

Einstein gravity has a family of solutions given by:

Gµν − Λgµν = −8πG

c4
Tµν (41)
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that is in accordance with the conservation laws for any small constant Λ. The vacuum

solution of this equation with the Robertson-Walker metric with k = 0, gives us the

de Sitter space-time:

ds
2 = dt

2 − [exp 2( 1
3Λ)

1

2 t][dr
2 + r

2(dθ
2 + sin2

θdφ
2)] (42)

If we add a cosmological constant in the vacuum equations of Visser gravity:

Gµν − Λgµν = −8πG

c4
T

mass
µν , (43)

and taking the covariant divergence, from the right-hand-side we reobtain equation

(30). Since the background metric is Minkowski, from (14) the dynamical metric gµν

is Minkowski too and we obtain

Gµν = T
mass
µν = 0, (44)

and from (43) we have

Λ = 0. (45)

Thus, in order to have consistency, Λ must be rigorously zero. Since the background

metric needs to be Minkowski, the cosmological vacuum solution in Visser’s theory is

the static flat Minkowski space-time or, e.g., some kind of cosmological parameter (like

Λ(t)). For this last alternative, we would have a coupling equation like (39), which

would describe the evolution of the energy density of the vacuum component.

8 Conclusion

Our interpretation of the energy-momentum conservation in the Visser’s massive grav-

ity is in accordance to the equivalence principle and recover naturally the results of

special relativity in the absence of gravitational sources.

The point of view considered in this paper allow us to consider Minkowski as

background metric in Visser’s theory in all astrophysical cases including cosmology.

This new interpretation may lead to interesting cosmological results once we can

construct a cosmological model in a theory with massive gravitons with a Minkowski

background. Additional contributions to the cosmological fluids will appear due to the

modifications in the interaction potential, which, maybe, would be a way of treat the

dark-energy problem. The analyses of the theory in the absence of gravitational sources

lead us to exclude the de Sitter space-time as a vacuum solution of the massive gravity,

once a constant Λ term is rigorously zero in a flat background.

Another interesting feature is that our interpretation of the energy conservation in

strong fields is independent of the form of the tensor which interact with the perfect-

fluid tensor, so this can be used to other models with additional energy-momentum

contribution.

Acknowledgements MESA would like to thank the Brazilian Agency FAPESP for support
(grant 06/03158-0). ODM and JCNA would like to thank the Brazilian agency CNPq for
partial support (grants 305456/2006-7 and 303868/2004-0 respectivelly).



9

References

1. Talmadge, C., Berthias, J.P., Hellings, R.W., Standish, E.M.: Model-independent con-
straints on possible modifications of Newtonian gravity. Phys. Rev. Lett. 61, 1159 (1988)

2. Goldhaber, A.S., Nieto, M.M.: Mass of the graviton. Phys. Rev. D. 9, 1119 (1974)
3. Sutton, P.J., Finn, L. S.: Bounding the graviton mass with binary pulsar observation. Class.

Quantum Grav. 19, 1355 (2002)
4. van Dam, H., Veltman, M.: Massive and mass-less yang-mills and gravitational fields. Nucl.

Phys. B22, 397 (1970)
5. Gabadadze, G., Gruzinov, A.: Graviton mass or cosmological constant? Phys. Rev. D 72,

124007 (2005)
6. Visser, M.: Mass for the graviton. Gen. Relativ. Gravit. 30, 1717 (1998)
7. de Paula, W. L. S., Miranda, O. D., Marinho, R. M.: Polarization states of gravitational

waves with a massive graviton. Class. Quantum Grav. 21, 4595 (2004)
8. Rosen, N.: A theory of gravitation. Annals of Physics 84, 455 (1973)
9. Alves, M. E. S., Miranda, O. D., de Araujo, J. C. N.: submitted for publication
10. de Araujo, J. C. N., Miranda, O. D.: A solution for galactic disks with Yukawian gravita-

tional potential. Gen. Relativ. Gravit. in press; arXiv:gr-qc/0702092

http://arxiv.org/abs/gr-qc/0702092

	Introduction
	The linearized approximation
	The Visser's strong field equations
	Visser's field equations with a Minkowski background metric
	The energy-momentum conservation revisited
	Arguments in favor of a Minkowski background
	Cosmological consequences?
	Conclusion

