
Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Comparison of Artificial Neural Network and Regression Models in
Software Effort Estimation

Iris Fabiana de Barcelos Tronto, Jose Demisio Simoes da Silva, Nilson Sant'Anna

Abstract- Good practices in software project management
are basic requirements for companies to stay in the market,
because the effective project management leads to
improvements in product quality and cost reduction.
Fundamental measurements are the prediction of size, effort,
resources, cost and time spent in the software development
process. In this paper, predictive Artificial Neural Network
(ANN) and Regression based models are investigated, aiming at
establishing simple estimation methods alternatives. The results
presented in this paper compare the performance of both
methods and show that artificial neural networks are effective
in effort estimation.

I. INTRODUCTION

The continuous hardware and software development,
jointly with the world economical interaction has

contributed to the competitiveness increase between
producing and delivering companies of software product and
services. In addition, there has been a growing need to
produce low cost high quality software in a short time.
A quality level and international productivity can be

achieved through the use of effective software management
process, focalizing people, product, process, and project.
The project requires planning and accompaniment supported
by a group of activities, among which the estimates are
fundamental, because they supply a guide for the other
activities. The predictive process involves the set of
procedures presented in the Figure 1 [1]. Software size
estimates are important to determine the software project
effort [2], [3,] [4], [5]. However, according to the last
research reported by the Brazilian Ministry of Science and
Technology - MCT, in 2001, only 29% of the companies
accomplished size estimates and 45,7% accomplished
software effort estimate [6]. There is not a specific study that
identifies the causes of the effort low estimates index, but
the reliability level of the models can be a possible cause.
These data presented by MCT evidences the importance to
use an effort estimate alternative approach, through which

Manuscript sent January 30, 2007. This work was supported in part by
the Brazilian National Institute for Space Research - INPE. The authors
would like to thanks the CAPES for the financial support.

I. F. Barcelos Tronto is with the Brazilian National Institute for Space
Research, Sao Jose dos Campos, BRA (phone: +551138138684; e-mail:
iris barcelos lac.inpe.br).

J.D. Simoes da Silva is with the Brazilian National Institute for Space
Research, Sao Jose dos Campos, BRA (phone: +551239456543; e-mail:
demisiog lac.inpe.br)..

N. Sant'Anna is with the Brazilian National Institute for Space Research,
Sao Jose dos Campos, BRA (phone: +551239456537; e-mail: nilsong
lac.inpe.br).

one can have reliable estimates with simple execution
model.

Fig. 1. The predictive process [1]

Predicting software development effort with high
precision is still a great challenge for project managers.
Consequently, there is an ongoing, high level activity in this
research field in order to build, to evaluate, and to
recommend prediction techniques [7], [8], [9], [10], [11],
[12] [13], [14]. A large number of different predictive
models (estimation models and predictive models are
considered synonyms) have been proposed over the last
years. They range from mathematical functions (e.g.
regression analysis [11] and COCOMO [7]) to machine
learning models - ML (e.g., estimation by analogy [9],
clustering techniques [10], Artificial Neural Network -

ANN [14], and regression trees [15]). In contrast to a
regression model which is defined by a mathematical
formula, ML models are not defined by a mathematical
formula but may take on many different shapes.

Despite the number of research activities, there is still a
doubt to advise practitioners as to what prediction models
they should select, because the studies have not converged
to similar answers.

There are a number of factors that should be considered in
the selection of a prediction technique, and it is likely that
trade-offs will need to be made in the process. Technique
selection should be driven by both organizational needs and
capability. In terms of need, the most common aim is to

1-4244-1 380-X/07/$25.00 ©2007 IEEE

maximize the accuracy in prediction; however, other issues
may also need to be considered. For instance, a technique
that produces slightly less accurate but generally more
robust models might be preferred, especially in cases where
the organizations do not have access to locally calibrated,
well-behaved data sets. While it is very positive that more
sophisticated (and potentially more useful) techniques are
being employed to build predictive models, genuine benefits
will be achieved if the techniques are appropriately used.

The artificial neural network approach is adaptable and
nonparametric; thus predictive models can be tailored to the
data at a particular site. Once the ANN is not limited to a
linear function, it can deal more successfully with
observations that lie far from the best straight line. In this
paper, however, the main focus is on investigating the
accuracy of the predictions using ANN-based and regression
models. A case study was performed to examine the
potential of two approaches: a multi-layer perceptron neural
network and a linear regression model, using the COCOMO
database (7).
The paper is organized as follows: Section 2 provides

some background information on the different prediction
techniques that are used as the basis for the study
accomplished. It is followed by a description of the ANN
and regression techniques (Sections 3 and 4, respectively)
and the case study itself presented in the Section 5. The
paper concludes with discussion on the significance of the
results and ideas to the continuity of the research.

II. THE PREDICTION TECHNIQUES

Accurate and consistent prediction of resource
requirements is a crucial component in the effective
management of software projects. Despite of extensive
research over the last 20 years, the software community is
still significantly challenged when it comes to effective
resource prediction. On the whole, research efforts have
focused on the development of techniques that are
quantitatively based, in an effort to remove or reduce
subjectivity in the estimation process. Examples of this work
include the original parametric and regression-based models:
Function Points Analysis [16], COCOMO Models [7], [17]
and Ordinal Regression Model [11].

However, other techniques for the exploratory data
analysis, such as clustering, case-based reasoning and ANN
have been effective as a means of predicting software
project effort. Zhong et al. [10] describe the use of clustering
to predict software quality. A case-based approach called
ESTOR was developed for software effort estimation [18].
Vicinanza et al. have shown that ESTOR was comparable to
a specialist and it performs significantly better than
COCOMO and Function Points on restricted samples of
problems. Karunanithi et al. [19] reports the use of neural
networks for predicting software reliability, including
experiments with both feedforward and Jordan networks
with a cascade correlation learning algorithm. Wittig and

Finnie [20] describe their use of back propagation learning
algorithms on a multilayer perceptron in order to predict
development effort. An overall error rate (MMRE) obtained
which compares favorably with other methods.

Another study by Samson et al. [14] uses an Albus
multiplayer perceptron in order to predict software effort.
They use Boehm's COCOMO dataset. The work compares
linear regression with a neural networks approach using the
COCOMO dataset. But, both approaches seem to perform
badly with MMRE of 520,7% and 428,1%, respectively.

Srinivasan and Fisher [14] also report the use of a neural
network with a back propagation learning algorithm. They
found that the neural network outperformed other techniques
and gave results with MMRE= 70%. However, it is not clear
how the dataset was divided for training and validation
purposes.

Khoshgoftaar et al. [21] presented a case study
considering real time software to predict the testability of
each module from source code static measures. They
consider ANNs as promising techniques to build predictive
models, because they are capable of modeling non linear
relationships.

Finally, in the last years, a great interest on the use of
ANNs has grown. ANNs have been successfully applied to
several problem domains, in areas such as medicine,
engineering, geology, and physics, in general to design
solutions for estimate problems, classification, control, etc.
They can be used as predictive models because they are
modeling techniques capable of modeling complex
functions.

In this work, the artificial neural networks methodology is
used to predicting software development effort (in man-
hour) from the project size (given by the amount of source
code lines). A comparative analysis was accomplished
between a regression model and an ANN model that were
calibrated and tested in this study.

III. ARTICIAL NEURAL NETWORKS

ANNs are massively parallel systems inspired by the
architecture of biological neural networks, comprising
simple interconnected units (artificial neurons). The neuron
computes a weighted sum of its inputs and generates an
output if the sum exceeds a certain threshold. This output
then becomes an excitatory (positive) or inhibitory
(negative) input to other neurons in the network. The
process continues until one or more outputs are generated.
An artificial neuron computes the weighted sum of its n
inputs, and generates an output ofy.
The neural network results from the arrangement of such

units in layers, which are interconnected one to another. The
resulting architectures solve problems by learning the
characteristics of the available data of related to the problem.
There exist many different learning algorithms. Feed-
forward Multilayer Perceptrons are the most commonly used
form of ANN, although many more sophisticated neural

networks have been proposed. Multi-layer architectures are
mostly trained by the error back propagation algorithm that
requires a differentiable activation function.

The ANN is initialized with random weights and
gradually learns the relationships implicit in a training data
set by adjusting its weights when presented to these data.
Among the several available training algorithms the error
back propagation is the most used by software metrics
researchers.

In general the studies concerned with the use of ANNs to
predict software development effort have focused mostly on
the accuracy comparison of algorithmic models rather than
on the suitability of the approach for building software effort
prediction systems. An example is the work of Witting and
Finnie [22]. They explore the use of a multilayer neural
network on the Desharnais and Australian Software Metrics
Association (ASMA) data sets. For the Desharnais data set
they randomly split the projects three times between 10 test
and 71 training (a procedure we largely follow in our
analysis). The results from three validations sets are
aggregated and yield a high level of accuracy (Desharnais
MMRE = 27% and ASMA MMRE = 17%) although some
outlier values are excluded. However, other factors such as
exploratory value and configurability are equally important
and also need to be investigated.

IV. LINEAR REGRESSION

Linear regression attempts at finding linear relationship
between one or more predictor parameters and a dependent
variable, minimizing the mean square of the error across the
range of observations in the data set. Some researchers have
tried building simple local models, e.g. Kok et al. [23], using
this type of approach. The philosophy is essentially one of
solving local prediction problems before attempting at
constructing universal models. The resulting prediction
systems take the form:

YlXt = ° +AXX * * * XA (1)

where Ye,t is the estimated value and Xl, ..., X, are
independent variables, for example project size (in source
code lines), that the estimator has found to significantly
contribute to the prediction of effort. A disadvantage with
this technique is its vulnerability to extreme outlier values
although robust regression techniques, that are less
sensitivity to such problems, have been successfully used
[5]. Another potential problem is the impact of co-linearity -
the tendency of independent variables to be strongly
correlated with one another - upon the stability of a
regression type prediction system.

V. THE CASE STUDY

The analysis undertaken in this study deals with a set of
measures taken from COCOMO dataset [7]. The aim of the
case study was to compare two different prediction

techniques: ANN and regression models.
In this section, we describe the data set used in our

analysis, summarize the data preparation activities, and
explain the approach followed in to build the models and
application, and discusses the results.

A. The dataset
The dataset used in this work is COCOMO a public

available data set consisting of a total of 63 projects at the
time of this study. It was used for describing and testing one
of the most important effort estimative methods: the
COCOMO model, implemented by Boehm [7]. Furthermore,
various methods have been already applied on it [11]. The
variables that describe each project are presented in [7]. The
effort is represented by the variable EsforcolT (the amount
of man-hour for the software integration and test phase). The
systems are mainly written using the programming
languages COBOL, PLI, HMI and FORTRAN. The area
types are mainly business, scientific and system software.

B. The preparation ofthe independent variables
Number All ofthe 63 completed projects were used in our

analysis. The dataset doesn't include effort measures for
development phase, but the total effort is given by the
variable Esfor,olT (which is MMACT on COCOMO
dataset). However, the objective is to generate a model that
allows predicting effort for each development phase. Thus,
we calculated the effort for the requirements specification,
product design, detailed design, code and unit test, and
integration and test phases, based on the MMACT and in the
effort indicators given in [7]. The Esfor,olT was considered
to be the dependent variable.

The choice of the independent variables was
accomplished using the General Regression Models -GRM
module, implemented by the software package
STATISTICA. It was implemented the best-subset model-
building technique for finding the "best" model from a
number of possible models. The subset adjusted R-square
statistic allowed direct comparisons and choice of the "best"
subset between ten models. The independent variables that
compose this model are RELY, ACAP, AEXP, MODP, and
TOTKDSI (software size in source lines of code). The effort
driver variables considered in this work and a briefly
description are presented in Appendix A.
We performed a stepwise regression for the COCOMO

projects using the variables presented above. The stepwise
regression builds a prediction model by adding to the model,
at each stage, the variable with the highest partial correlation
to the response variable, taking into account all variables
currently in the model. Its aim is to find the set of predictors
that maximize F. F assesses whether the regressors, taken
together, are significantly associated with the response
variable. The criteria used to add a variable is whether it
increases the F value for the regression by some specified
amount k. When a variable reduces F, also by some
specified amount w, it is removed from the model.

The stepwise regression results show that only the
variable TOTKDSI present a beta value significant (beta =

0,671) and F = 14,85257. When we use only the variable
TOTOKSI, the F-value (used as an overall F-test of the
relationship between the dependent variable and the set in
independent variables) is more strong: F = 50,05215.

Consequently, in this work only TOTKDSI is used to
build the ANN and regression model. Future works will
involve the COCOMO cost drivers and modes. Likewise,
Boehm [7] has shown that the most important predictor for
these projects is TOTKDSI - thousands of delivered source
instructions.

C. Training and evaluation
Estimates of the accuracy of prediction obtained from the

training data set are always optimistic. To get a more
realistic estimate of the accuracy of prediction we followed
the similar procedure as in [11]. Based on this process, we
omitted a subset of projects (the test dataset), we next
developed a model with the remaining projects (the learning
data set), and finally we assessed the predictive accuracy of
the model on the test dataset. In this way, we constructed the
learning dataset by removing every sixth project starting
from the sixth project.

Thus, the learning dataset was constructed by removing
the projects 6, 12,18,24,30,36,42,48,54 and 60. Since we
used all 63 projects of the COCOMO database in order to
build our models, the learning dataset contained 53 projects.

It is to be noticed that each system imposes a set of
constraints on data representation. When there are several
variables with nominal values in the project database, the
data are normalized to fit the interval [0,1]. No
normalization was required for the regression analysis.

The neural network was implemented with 1 input, 9 units
in the first hidden layer, 4 units in the second layer, and 1
output neuron, using the logistic function. The input variable
was TOTKDSI and the neural network was trained to
estimate effort IT. The training phase was repeated 15 times,
in a search for the best network to solve the problem.
Besides, different neural network architectures were tried.
But, the results presented in this paper correspond to the
neural network with the best generalization performance.

The linear regression model was calibrated using stepwise
backward method. After a number of experiments, we
achieved a final regression model.
The predictions obtained from the ANN and the

regression model (after training on the COCOMO data)
using the test dataset are shown in Table 1.
We performed a linear regression/correlation analysis to

"calibrate" the predictions, with Mest treated as the
independent variable and Mact treated as the dependent
variable. The R2 value indicates the amount of variation in
the actual values accounted for by a linear relationship with
the estimated values. R2 values close to 1.0 suggest a strong
linear relationship and those close to 0.0 suggest no such
relationship.

TABLE I
REGRESSION AND ANN ESTIMATES

EsforyolT Regression ANN
6,753 26,026 26,5586
59,3 93,678 52,37
3705 673,847 859,7053

120,05 202,332 165,4667
1,12 21,885 25,5485

12,93 48,577 33,0107
10,58 111,104 63,0066

375,24 969,057 638,4523
3,5 26,846 26,7646

9,98 31,561 27,9878

Different error measurements have been used by various
researchers, but for this project the main measure for model
accuracy is the Mean Magnitude of Relative Error (MMRE)
and R2. MMRE is the mean of absolute percentage errors:

MMRE-
M act act

n
(2)

where there are n projects; Mact is the actual effort; and Mest
is the predicted effort.

Others researchers have used the adjusted R squared or
the coefficient of determination to indicate the percentage of
variation in the dependent variable that is "explained" in
terms of the independent variables. In this paper, we have
decided to adopt the MMRE and the adjusted squared R as
prediction performance indicators since these are widely
used.

Table 2 summarizes the MRE and R2 values resulting
from a linear regression of Mest and Mact values for the
stepwise backward regression and the ANN models, and
results obtained by Kemerer [24] with COCOMO-Basic,
Function Points and SLIM models.

ANN
Regression
FPA
COCOMO
SLIM

TABLE II
THE PREDICTIVE ACCURACY

Regress. Eq. R- square

-1,68+1,676*x 0,85
- 1,71+1,623 *x 0,83

-37 +0,96x 0,58
27,7 + 0,156x 0,70
49,9 +0,082x 0,89

MMRE
420
462
103
610
772

These results indicate that stepwise regression's and
ANN's predictions show a strong linear relationship with the
actual development effort values for the ten test projects. On
this dimension, the performance of the ANN model is less
then SLIM' s performance in Kemerer' s experiments, but
better than the stepwise regression models. In terms of
MMRE, the ANN performs strikingly well compared to the
other approaches, and regression model.

This experiment illustrates two points. In an absolute
sense, none of the models perform particularly well at
estimating software development effort, particularly along

the MMRE dimension, but in a relative sense ANN
approach is competitive with traditional models. In general,
even though MMRE is high in the case of all models, a high
R2 suggests that by "calibrating" a model's prediction in a
new environment, the adjusted model prediction can be
reliably used. Along the P3 dimension, the ANN method
provides significant fits to the data.

The authors defend the use of artificial neural networks;
witch presents competitive results with other approaches. A
primary advantage of ANN is that they are adaptable and
nonparametric; predictive models can be tailored to the data
at a particular site.

VI. CONCLUSION AND FUTURE WORKS

This paper has compared the neural network method to
traditional approaches for software effort estimation. A
neural network and a stepwise regression analysis were
applied to Boehm's COCOMO dataset in order to predict
effort from size. The results of the ANN prediction compare
favorably with those obtained from linear regression.
The neural network performed better than linear

regression on this data set and we can see why. As
illustrated in Figure 2, in this dataset there is one observation
with very large efforts that are out of all proportions to their
sizes, as well as one with a small effort for its size, and a
linear function of size will not be very successful at
predicting these. On the other hand, an attempt to solve
these outliers could influence negatively in the accuracy
regression in accomplishing prediction for other
observations. Once the ANN not is limited to a linear
function, it can deal more successfully with observations
that lie far from the best straight line.
A more homogeneous dataset with no outliers would

show the regression method to better advantage. ANN
would also perform better on such a dataset.

Although ANN has demonstrated significant advantages
in certain circumstances, it does not replace regression and
should be regarded as another powerful tool to be used in
the calibration of software effort models.

Consequently, new experiments will be conducted to
combine the neural network and regression techniques to
calibrate and to test prediction models on other datasets,
such as, the ISBSG database (International Software
Benchmarking Standard Group). It contains information on
software projects developed with modern software
development techniques which permit the impact assessment
of current, newer, software development processes (using
object-oriented programming languages, C++, Java, legacy
code interfaces, validation and verification tools, UML,
other requirements documentation, distributed software
application, etc.) on the input parameters for software level-
of-effort prediction models. The aim is improve the
performance of the neural network models obtained in this
work and to obtain a model that can safely be used in
software development.

Fig. 2. The COCOMO dataset - effort vs. size

APPENDIX

Following is a brief description of the attributes and their
influence on development effort. Refer to Boehm (1981) for
a detailed f .

1. Required Software Reliability (RELY): It measures the
reliability ofthe software.
2. Database Size (DATA): The size of the database to be
used by a software system may affect the effort.
3. Product Complexity (CPLX): The application area has a
bearing on the software development effort.
4. Execution Time Constraint (TIME): If there are
constraints on processing time, the time may be greater.
5. Main Storage Constraint (STOR): If there are memory
constraints, then the effort will tend to be high.
6. Virtual Machine Volatility (VIRT). If the underlying
hardware and/or software system change frequently, then
development effort will be high.
7. Analyst Capability (ACAP): If the analysts working on
the software project area highly skilled, the effort of the
software will be less than projects with less-skilled analyst.
8 Application Experience (AEXP): The experience of
project personnel influences the software effort.
9. Programmer Capability (PCAP): This is similar to ACAP,
but it applies to programmers.
10. Virtual Machine Experience (VEXP): Programmer
experience with the underlying hardware and the operating
system has a bearing on development effort.
11. Language Experience (LEXP): Experience of the
programmers with the implementation language affects the
software development effort.
12. Personnel Continuity Turnover (CONT): If the same
personnel work on the project from beginning to end, then
the development effort will tend to be less than similar
projects experiencing greater personnel turnover.
13. Modern Programming Practices (MODP): Modern
programming practices like structured software design
reduces the development effort.
14. Use of Software Tools (TOOL): Extensive use of

software tools like source-line debuggers and syntax-
directed editors reduces the software development effort.
15. Required Development Schedule (SCED): If the
development schedule of the project is highly constrained,
then the development effort will tend to be high.

REFERENCES

[1] R. Agarval, "Estimating Software projects," Software
Engineering Notes, Julho 2001, vol. 26, no 4, pp. 60-57.

[2] C. Jones, Estimating Software Costs, McGraw-Hill,
1986.

[3] R. Lai, and S. Huang, "A model for estimate size of a
formal communication protocol specification and its
implementation," IEEE Transaction on Soft.
Engineering, January 2003, vol.29, no 1. pp.. 46-62.

[4] T.E Hasting, and A.S.M. Sajeev, "A vector based
approach to software size measurement and effort
estimation," IEEE Transactions on Soft. Engineering,
April 2001, vol 27., no.4.

[5] L.C. Briand, I. Wieczorek, "Software resource
estimation," Encyclopedia of Software engineering,
2002, vol. P-Z, no.2, pp. 1160-1196.

[6] MCT Ministerio da Ciencia e Tecnologia, "Qualidade e
Produtividade no setor de software," In:
http://www.mct.gov.br/Temas/info/Dsi/Quali200l/2001
Tab4O.htm, Tabela 40 - Praticas de Engenharia de
Software no Desenv. e Manuten,co de Software, 2001.

[7] B.W. Boehn, Software engineering economics,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[8] A.J. Albrecht, and J.R. Gaffney, "Software function,
source lines of code, and development effort prediction:
a software science validation," IEEE Transactions on
Software Engineering, 1983, vol. 9, no. 6, pp. 639-648.

[9] M. Shepperd, and C. Schofield, "Estimating Software
Project Effort Using Analogies," IEEE Transactions on
Software Engineering, November 1997, vol.23, no.12,
pp.736-743.

[10]Zhong, S.; Khoshgoftaar, T.M.; Seliya, N.: Analysing
Software Measurement Data with Clustering Techniques.
IEEE Intelligent Systems, 2004, pp.20-27.

[11] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris,
"Software productivity and effort prediction with ordinal
regression," Journal Information and Software
Technology, 2005, no. 47, pp.17-29.

[12] R. Bisio, and F. Malabocchia, "Cost estimation of
software projects through case base reasoning," 1st Intl.
Conf. on Case-Based Reasoning Research &
Development, Springer-Verlag, 1995, pp.11 -22.

[13]I. Myrtveit, E. Stensrud, and M. Shepperd, "Reliability
and Validity in Comparative Studies of Software
Prediction Models," IEEE Transaction on Soft.
Engineering, May 2005, vol.3 1, no. 5, pp. 46-62.

[14] B. Samson, D. Ellison, and P. Dugard, "Software Cost
Estimation Using Albus Perceptron (CMAC),"
Information and Software Technology, 1997, vol.39, pp.
55-60.

[15] K. Srinivazan, and D. Fisher, "Machine Learning
Approaches to Estimating Software Development
Effort,". IEEE Transactions on Software Engineering,
February 1995, vol.21, no.2, pp.126-137.

[16]A. Albrecht, "Measuring application development
productivity," Proc. IBM Application Development
Symposium, 1979, pp. 83-92.

[17]W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B.K.
Clark, B. Steece, A.D. Brown, C. Abts, Software Cost
Estimation with COCOMOII, Prentice-Hall, 2000.

[18] S. Vicinanza, M.J. Prietula, and T. Mukhopadhyay,
"Case-based reasoning in software effort estimation," In
Proc.1 i Int. Conf. Info. Syst, 1990, pp.149-158.

[19] N. Karunanitthi, D.Whitley, and Y.K.Malaiya, "Using
Neural Networks in Reliability Prediction," IEEE
Software, 1992, vol. 9, no.4, pp.53-59.

[20] G. Witting, and G. Finnie, "Using Artificial Neural
Networks and Function Points to Estimate 4GL Software
Development Effort", J. Information Systems, 1994, vol.
1, no. 2, pp. 87-94.

[21] T. M. Khoshgoftaar, E.B. Allen, and Z. Xu, "Predicting
testability of program modules using a neural network,"
Proc. 3rd IEEE Symposium on Application-Specific
Systems and Sof. Eng. Technology, 2000, pp. 57-62.

[22] G. Witting, and G. Finnie, "Estimating software
development effort with connectionist models," Inf.
Software Technology, 1997, vol. 39, pp. 369-476.

[23] P. Kok, B.A. Kitchenham, J. Kirakowski, "The
MERMAID approach to software cost estimation,"
Espirit Technical Week, 1990.

[24] C.F. Kemerer, "An empirical validation of software cost
estimation models," Comunication of ACM, May 1987,
vol.30, pp.416-429.

