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[1] Earlier work showed that Amazonian biomass burning produces both lofted and
initially unlofted emissions in large amounts. A mobile, Fourier transform infrared
spectrometer (FTIR) measured the unlofted emissions of 17 trace gases from residual
smoldering combustion (RSC) of logs as part of the Tropical Forest and Fire Emissions
Experiment (TROFFEE) during the 2004 Amazonian dry season. The RSC emissions
were highly variable and the few earlier RSC measurements lay near the high end of
combustion efficiency observed in this study. Fuel consumption by RSC was �5% of total
for a planned deforestation fire. Much regional RSC probably occurs in the residual
woody debris burned during pasture maintenance fires. RSC could increase estimated total
fire emissions for the Amazon region by 20–50% for several important VOC. FTIR
emissions measurements of burning dung (in a pasture) showed high emission ratios for
acetic acid and ammonia to CO (6.6 ± 3.4% and 8.9 ± 2.1%). Large emissions of nitrogen
containing trace gases from burning dung and crop waste could mean that biomass
burning in India produces more particle mass than previously assumed. Measurements of
late-stage kiln emissions suggested that VOC/CO may increase as carbonization is
extended. A cook stove emitted many VOC and NH3 far outside the range observed for
open wood cooking fires. Enclosed/vented cooking stoves may change the chemistry
of the smoke that is emitted.
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1. Introduction

[2] This paper describes ground-based FTIR measure-
ments of trace gas emissions from residual smoldering
combustion (RSC) in Brazil. RSC implies that the initial
emissions are not lofted by fire-induced convection and so
cannot be measured from the air. These measurements are
part of the Tropical Forest and Fire Emissions Experiment
(TROFFEE), a combination of airborne, ground-based, and
laboratory experiments designed to more fully characterize

VOC emissions from tropical forests and tropical defores-
tation and pasture fires [Yokelson et al., 2007]. The ground-
based portion of TROFFEE included detailed prefire and
postfire fuels inventory measurements on a 4 ha planned
deforestation fire, and trace gas measurements by FTIR on
this fire and on fires of opportunity in the surrounding area.
The work was carried out in the Amazonian state of Mato
Grosso in Brazil from 27 August to 9 September 2004. The
timing of these field experiments overlapped the spatial and
temporal peak of global deforestation fires for 2004 (http://
satelite.cptec.inpe.br/). This paper presents more extensive
field measurements of the trace gas emissions from RSC
than previously available. Results from the airborne and
laboratory measurements are presented in detail elsewhere
[Yokelson et al., 2007; Karl et al., 2007a, 2007b; T. J.
Christian et al., The tropical forest and fire emissions
experiment: Laboratory fire measurements and synthesis
of campaign results, manuscript in preparation, 2007].
[3] Brazil has �4 � 106 km2 of evergreen tropical forest,

mostly in the Amazon basin. This represents �25% of the
world’s total ‘‘rain forest’’ and is five times the amount in
the Democratic Republic of the Congo or Indonesia. The
Brazilian space agency (Instituto Nacional de Pesquisas
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Espaciais, INPE) monitors deforestation in the Amazon
basin (http://www.obt.inpe.br/prodes/). Deforestation rates
since 1977 have ranged from 11–29 � 103 km2 y�1.
Cumulative deforested area through 2005 is estimated by
INPE at 564,585 km2 with 85% of this occurring in just
19% of the Amazon basin, mainly in the states of Pará,
Mato Grosso, Maranhão, and Rondônia. Deforestation fires
are characterized by enormous dry weight total above-
ground biomass (TAGB) loading: e.g., 292, 265, 349 ± 21
(n = 7), 402, and 288 megagrams per hectare (Mg ha�1)
reported by Ward et al. [1992], Fearnside et al. [1993],
Guild et al. [1998], and Carvalho et al. [1998, 2001],
respectively. In these studies the percentage of the TAGB
consumed by the fires was 53, 29, 48 (n = 7), 21, and 50,
respectively, and large diameter fuels (>10 cm) typically
accounted for > 50% of the total fuel consumption. Ground-
based measurements of trace gas emissions from deforesta-
tion fires are limited (e.g., carbon dioxide (CO2), carbon
monoxide (CO), methane (CH4), and selected hydrocarbons
[Greenberg et al., 1984; Ward et al., 1992]).
[4] Following initial slash fires of primary forest, lands

may be converted directly to cropland or pasture, or they
may be used for several cycles of shifting cultivation prior
to conversion to pasture. In shifting cultivation the plots are
used for 2–3 years, left fallow for 4–6 years while
secondary forest grows, then burned and reused. Pastures
are burned every 2–3 years and usually have a lifetime of
10–20 years [Guild et al., 1998]. As a result, according to
Barbosa and Fearnside [1996] and Kauffman et al. [1998],
pastures in the Amazon occupy the most deforested land,
pasture burning is the most common type of fire, and the
total emissions from pasture fires are comparable to the
emissions from deforestation fires. Unlike Brazilian savan-
nas, in which the majority of the fuel is grass, Brazilian
pastures commonly include a substantial amount of residual
wood debris (RWD) that persists for many years. Reported
TAGB ranges from 119 Mg ha�1 (with 87% of TAGB being
RWD in a 4 year old pasture) to 53 Mg ha�1 (47% RWD, in
a 20 year old pasture) [Barbosa and Fearnside, 1996; Guild
et al., 1998; Kauffman et al., 1998]. Large-diameter RWD is
reported to account for 38–49% of the fuel consumption in
the above studies. Mechanized agriculture is expanding in
the Brazilian Amazon. Direct conversion of forest to crop-
land in Mato Grosso for the years 2001–2004 averaged
17% of total deforested area [Morton et al., 2006]. The
average clearing size for conversion to cropland (333 ha)
was twice the average size for conversion to pasture
(143 ha). In addition, unlike pastures, virtually all of the
vegetation from cropland is removed at once and burned
within a few weeks.
[5] Because Brazilian fires consume large quantities of

large diameter material, RSC could be important. There is
mixed evidence in this respect for fires in Brazil. In two
studies Carvalho et al. [1998, 2001] found that RSC did not
account for a significant fraction of the fuel consumption for
primary deforestation fires. In contrast, Kauffman et al.
[1998] reported that for pasture fires, 10–20 Mg ha�1 of
grass burned in �2 hours and 10–20 Mg ha�1 of RWD
burned by smoldering over the course of �3 days.
Fearnside [1990] observed that smoldering of logs persisted
for days in a secondary forest fire. The RWD in secondary
forests and pastures may be older, drier, more cracked, or

smaller than the fuel at primary deforestation sites. Any of
these attributes might promote more complete combustion
and more RSC. Babbitt et al. [1996] measured ground-
based emission factors (EF) for CH4 and CO for pasture and
primary forest fires that were about double the EF measured
for the same compounds on the same fires from an aircraft.
This could be due to large amounts of weakly lofted
smoldering emissions. During SCAR-B Reid and Hobbs
[1998] observed a smoke albedo (550 nm) of 0.35 for
flaming grass, 0.79 on average for nascent plumes, 0.9 for
smoldering slash, and an average of 0.85 in the regional
haze. Thus RSC may contribute a significant amount of the
total Amazonian emissions. Our goal was to measure the
chemical composition of RSC emissions and explore how
RSC might affect regional-global atmospheric chemistry.
[6] In addition to emissions measurements of RSC from

deforestation and pasture fires, we also obtained a few
measurements of the emissions from smoldering dung, a
charcoal cooking kiln, and a wood cooking fire. These data
are presented in a single section following the RSC results.

2. Experimental Details

2.1. Site Descriptions

[7] Table 1 gives a brief description of the sites and fuels
sampled for this study. Of the 27 IR sample spectra acquired
from RSC (not including numerous background spectra),
about half (14) were from smoldering logs and branches on
a planned 4 ha deforestation fire in primary forest on a farm
(fazenda Caiabı́) �30 km ESE of Alta Floresta in the state
of Mato Grosso (09�580S, 56�210W). This fazenda com-
prises �7000 ha and produces primarily cattle with some
coffee, soy, honey, Brazil nuts, guaraná, etc. During the
month of June, vegetation on the 4 ha plot was felled and
left to dry until September. There was an unusual amount of
regrowth and there may have been higher-than-normal
rainfall during the intervening months. It was necessary to
work for several days cutting new growth prior to burning.
The freshly cut vegetation and the potentially anomalous
rainfall might have affected the combustion. However, these
conditions were probably widespread and this fire was
likely representative of many deforestation fires for the
2004 burning season in northern Mato Grosso, southwestern
Pará, and southeastern Amazonas. Measurements in other
years would be needed to explore how much regional and
interannual variability may occur.
[8] For samples outside the boundaries of the fazenda we

ranged (by dirt road) approximately 35 km east and 80 km
south and west of the fazenda. Ten of these 13 IR sample
spectra of smoldering logs and brush were acquired on
small, subsistence farms (sites A, C, and D) where several
hectares of secondary forest had been cut, dried, and burned
for crop expansion. The other three RSC sample spectra
were taken on a pasture maintenance fire on a subsistence
farm (site B), where we also sampled smoldering dung and
flaming grass.
[9] The charcoal kiln spectra were taken from the exhaust

plume of a relatively large, brick, beehive kiln built into the
side of a hill. It had a walk-in door that had been closed off
by stacking bricks in the opening, and a small vent near the
top for the smoke to escape. It was loaded with �600 kg of
logs approximately 20–40 cm in diameter and 1–2 m in
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length. According to the kiln owner, the charcoal making
cycle was in its sixth day since ignition and within about
2 days of completion. The cooking fire sample spectrum
was collected from the exterior chimney outlet of a cast iron
wood cooking stove in a small family home.

2.2. Fuels Inventory and Consumption

[10] The central hectare of the 4 ha Caiabı́ planned fire
site was divided into 100 square plots of 100 m2 each
(10 m � 10 m), of which six were randomly chosen for
inventory and consumption estimates (Figure 1). The total
mass of logs and larger branches with diameter at breast
height (DBH) > 10 cm was estimated according to the
allometric equation of Santos [1996]:

FW ¼
X

exp 3:323þ 2:546 ln DBHð Þ½ 
 ð1Þ

where FW is the fresh weight (103 kg) and DBH is in
meters. The consumption of these large fuels was estimated
using the log-wiring procedure of Sandberg and Ottmar
[1983]. Small-size material was composed of leaves, small
bushes, branches (with DBH < 10 cm), litter, and lianas.
Consumption of these smaller fuels was estimated by
weighing all the biomass, before and after the fire, in
subplots A and B of all six plots (see Figure 1). The
subplots were bounded with wires for identification after the
fire. Weighing was performed on site with a portable scale
with a precision of 0.01 kg. The fire was ignited with drip
torches along one edge of the site and took approximately
one hour to advance to the opposite border.

2.3. Description of FTIR

[11] We designed and built a mobile, ground-based FTIR
system that is easily transported, can be set up and deployed
relatively quickly by one person, and can negotiate rough
terrain (Figure 2). The optical bench is based on the same
spectrometer (MIDAC 2500) and detector (Graseby FTIR-

M16) as our airborne and open path FTIR systems [e.g.,
Yokelson et al., 2003a] but with a smaller, multipass White
cell (Infrared Analysis, Inc. 16-V) and more compact
geometry. There are two off-axis parabolic mirrors and a
flat mirror (Janos Technology) to transfer the IR signal from
the spectrometer through the cell to the detector. Outside air
is drawn through a 3 m section of corrugated 0.635 cm
Teflon tubing into the cell by a 12V, 40 slpm diaphragm
pump (Gast 22D). A pair of Teflon shutoff valves allow
trapping the sample in the cell for signal averaging. Tem-
perature and pressure inside the cell are monitored in real
time (Minco TT176 RTD, MKS Baratron 722A). The
optical bench is isolated from the chassis by helical, wire
rope shock absorbers (Aeroflex C1260 Series) sized pri-

Table 1. Site Descriptions and Locations, Number of Samples, and Basic Fuel Types (in Chronological Order)

Site ID

Number of FTIR
Sample Spectra

(Number of Logs) Sample Type Description Latitude Longitude

Fazenda Caiabı́ 14 (12) RSC primary forest clearing fire
(4 ha) on �7000 ha cattle
farm, smoldering logs/brush

�9.965 �56.342

Kiln A 3 charcoal
production

single brick beehive kiln,
built underground in hillside
with walk-in door, �600 kg
capacity

�10.074 �56.178

Site A 2 (2) RSC secondary forest clearing fire
on subsistence farm,
smoldering logs

�10.085 �56.199

Site B 7a (3) RSC, dung,
grass

pasture maintenance fire on
subsistence cattle farm,
smoldering logs and dung,
some flaming grass

�10.356 �56.354

Site C 2 (2) RSC secondary forest clearing fire
on subsistence farm,
smoldering logs

�10.398 �56.420

Site D 6 (6) RSC secondary forest clearing fire
on subsistence farm,
smoldering logs

�9.925 �56.766

Site E 1 cooking fire exterior chimney exhaust
from cast iron woodstove

�9.925 �56.766

aSeven sample spectra as follows: three smoldering logs, three smoldering dung, and one flaming grass.

Figure 1. A schematic of the biomass loading and fuel
consumption sampling scheme for the Caiabı́ planned fire.
Lines point to subplots A and B.
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marily to absorb large shock loads associated with bouncing
and jostling. The rolling chassis is a simple pushcart design
that can be dragged and cajoled over logs, roots, and
stumps. A marine deep cycle battery (42 AH, 100 min.
RC) provides more than enough power to run the system for
several hours before recharging. The tubeless semipneu-
matic tires are removable, provide good traction, especially
on off-camber trails, and do not go flat.
[12] Spectra were averaged in real time over a period of

1–2 min and stored for analysis. We used spectral subtrac-
tion [Yokelson et al., 1997] to retrieve excess mixing ratios
for water (H2O), formaldehyde (HCHO), acetic acid (HAc),
formic acid (HFo), and hydroxyacetone (acetol). The H2O
data are available from the authors, but not reported here.
We used classical least squares spectral analysis [Griffith,
1996; Yokelson et al., 1996; Yokelson and Bertschi, 2002] to
retrieve excess mixing ratios for H2O, ethylene (C2H4),
acetylene (C2H2), methanol (CH3OH), phenol, furan, NO,
NO2, and hydrogen cyanide (HCN). (NO2 was near or
below the detection limit in all spectra and is not included
in the tables.) Because of the high smoke concentrations
sampled in this study, the IR throughput dropped to near
zero in some spectral regions. Therefore, for H2O, ammonia
(NH3), CO, CH4, propylene (C3H6), and CO2 we used a
new, nonlinear least squares, synthetic calibration method
[Griffith, 2002]. This new technique is very robust for
spectral regions that contain saturation. The retrieval meth-
ods described above were based on line parameters from
HITRAN (http://www.cfa.harvard.edu/HITRAN/) and/or
reference spectra from Infrared Analysis, Inc. (QASoft,
http://www.infraredanalysisinc.com), Pacific Northwest Na-
tional Laboratory [Sharpe et al., 2004], and our laboratory.
[13] The molecules discussed above account for all the

significant, sharp (i.e., full width at half height < �5 cm�1)
features observed from 600 to 3400 cm�1 in all the IR
spectra. The path length of the mobile FTIR used here was
11.2 m, shorter than typical path lengths used previously
with the same spectrometer (60–100 m). This had the effect
of raising previously obtained detection limits using the
same spectrometer by a factor of �10. [e.g., Bertschi et al.,

2003b; Yokelson et al., 2003a]. Therefore the detection limit
for most gases was �50–200 ppb. Smoke samples in this
study were quite concentrated and, except where noted,
signals were many times higher than the detection limit. For
the first deployment of this new FTIR system, the typical
uncertainty in the VOC mixing ratios was ±10% (1s), and
±50% for acetol. For CO2, CO, CH4, and NH3, the uncer-
tainties were 3–5%.

3. Results and Discussion

3.1. Planned Fire Fuel Measurements

[14] One goal of this work was to obtain more insight into
the amount of fuel consumption by RSC in tropical defor-
estation fires. To accomplish this, detailed biomass fuel
consumption measurements were made on the 4 ha planned
deforestation fire at fazenda Caiabı́. On the basis of the
variation between plots (not shown) we estimate that an
uncertainty of about 30% is appropriate for the biomass
loading and fuel consumption values in Table 2 and the rest
of this paragraph. Table 2 summarizes the results of the
prefire fuels inventory on the site. Fuels are loosely defined
here as biomass exposed to the fire and likely to burn (e.g.,
small diameter live biomass and all dead biomass). Fuels are
divided according to size classes from smallest to largest.
We calculated TAGB of 306 Mg ha�1 on the site before
ignition (238 Mg ha�1 trees > 10 cm DBH and 68 Mg ha�1

litter, leaves, and small branches, assuming 42% moisture
content on a wet weight basis [Carvalho et al., 1995]). This
lies between the 288 and 402 Mg ha�1 determined by
Carvalho et al. [1998, 2001] on similar sites near Alta
Floresta and Manaus, and corresponds to 153 Mg ha�1 of
carbon on the ground before burning if we make the
common assumption of 50% carbon content on a dry weight
basis. If we instead assume 48% carbon as has also been
measured on some similar sites [Carvalho et al., 1995] then
the carbon loading on the site was 147 Mg ha�1. Either
estimate is close to that of Fearnside et al. [1993] who
estimated the Amazon rain forest carbon content at 151 ±
39 Mg ha�1. In Table 2, the postfire measurement of

Figure 2. Basic configuration of the custom mobile FTIR system.

D18308 CHRISTIAN ET AL.: SMOLDERING COMBUSTION IN BRAZIL

4 of 14

D18308



combustion completeness by mass is divided into size
classes. Using percent combustion of each class measured
on this fire and the distribution of these classes measured by
Carvalho et al. [2001], we calculate 23.8% as the total
combustion completeness for this fire. This corresponds to a
total fuel consumption of 73 ± 22 Mg ha�1.
[15] It was not possible to access the site immediately

after convection ceased to measure intermediate fuel con-
sumption before the onset of RSC. However, a rough idea
of the magnitude of RSC fuel consumption was obtained as
follows. The number of smoldering logs on the 4 ha site at
noon on 6 September (the day after the fire) was 190 and at
noon on 7 September, 39 logs were still smoldering.
Extrapolation of a linear fit to these data suggests that the
last log on the site finished smoldering at 1800 local time
(LT) on 7 September and that at �1500 LT on 5 September,
when convection from the site ceased, about 322 logs would
have been smoldering. Using the average log diameter
(measured at 15 cm), the average linear smoldering rate
for a log (measured at 4 cm h�1), and an average wood
density of 0.5 g cm�3, we estimate that �12 megagrams of
fuel were consumed on the site by RSC. Thus about 3 Mg
ha�1 of the total 73 Mg ha�1 fuel consumption (or about
4%) was by RSC. This is likely a lower limit since W. M.
Hao and R. E. Babbitt (unpublished data, 2007) found that
the rate of fuel consumption by RSC actually dropped off in
exponential fashion. We would have needed additional
counts of smoldering logs, especially some right after
flaming had ceased, to support an exponential fit and the
higher initial rate and extended smoldering time that it
would imply. However, even if our rough estimate of

RSC fuel consumption is doubled it is still a fairly small
percentage and in relatively good agreement with what can
be gleaned from past fuel consumption measurements on
tropical deforestation fires. In addition, the linear smolder-
ing rate measured on this fire was slightly higher than
measured on similar fires in similar fuels (0.6–2.4 cm h�1

[Carvalho et al., 2001]; 0.7–3.8 cm h�1 [Rabelo et al.,
2004]).
[16] Rabelo et al. [2004] counted 59 smoldering logs

greater than 10 cm diameter on a 4 ha planned deforestation
fire 1 day after ignition. This constituted 2.9% of the
estimated 2028 total logs on the site. They collected
samples from 11 of these logs and subjected them to
thermogravimetric analysis in the laboratory. Those 11 logs
showed an average mass loss of 79.7% (±6.5%) during a
controlled temperature change from 30�C to 700�C. As-
suming the laboratory experiment was a fair simulation of
smoldering on the deforestation site, 2.3% (2.9% � 0.797)
of the total mass loss from the fire after 1 day was from
smoldering. The authors noted some logs smoldering after
several days and a single, large log still smoldering 43 days
after the burn.
[17] As mentioned earlier, Carvalho et al. [1998, 2001]

did not witness significant RSC for six planned deforesta-
tion fires, five of which were cut in one year and burned in
the same year and one of which was burned the year after it
was cut. However, while traveling to and from the sites
listed in Table 1 we noted that widespread, thick, ground-
level biomass burning haze developed in the early afternoon
and persisted late into the evening. This indicates the
presence of a significant regional RSC source. This source
was most likely the common, concurrent pasture mainte-
nance fires in the area. Kauffman et al. [1998] observed
significant smoldering of residual wood debris for several
days by three pasture fires where the initial burn covered the
entire pasture in less than two hours. The biomass con-
sumed on these fires was divided approximately in half
between grass and RSC of wood debris. In this work we do
not further quantify the regional fuel consumption by RSC.
We do explore the effect on estimates of regional fire
emissions based on reasonable assumptions about the
amount of fuel consumed by RSC using our newly available
regional RSC emission factors measured as described next.

3.2. Residual Smoldering Combustion Emission Ratios
and Emission Factors

[18] Fourteen emissions measurements were made on
RSC of logs on the planned deforestation fire and 10 on
RSC of logs on the 3 deforestation fires that we were able to
find in the area. One pasture maintenance fire was located in
the area and it had smoldering logs from which we obtained
3 emissions measurements. This data set on smoldering logs
is more extensive than previously published work on RSC.
Bertschi et al. [2003a] reported the results for one spot
measurement of a smoldering log in Zambia and the average
of 11 spot measurements over the course of 34 hours on one
cottonwood log that was burned in the Missoula Fire
Sciences Laboratory. The spot measurements for the smol-
dering cottonwood log in that study were generally within
±20% of the fire-integrated emission factor for the whole
fire; the emissions were relatively constant throughout the
combustion of the whole log. Thus it may be appropriate to

Table 2. Distribution and Consumption of Biomass by Size Class

for the Caiabı́ Planned Fire

Size Class
(DBH)

Individual
Logs

Dry
Weight,a

Mg ha�1
Dist.,b

%
nind,

c

%
Ctb,d

%

Litter n/ae nmf 4.8 88.6 4.3
Leaves n/ae nmf 5.2 88.6 4.6
Branches < 10 cm n/ae nmf 6.5 88.6 5.8
All Fuels < 10 cm n/ae 68 16.5 n/ae 14.7
Branches > 10 cm n/ae nmf 23.5 16.9 4.0
Logs 10–20 cm 396 nmf nmf nmf nmf

Logs 20–30 cm 105 nmf nmf nmf nmf

Logs 30–40 cm 34 nmf nmf nmf nmf

Logs 40–50 cm 8 nmf nmf nmf nmf

Logs 50–60 cm 2 nmf nmf nmf nmf

Logs 60–70 cm 0 nmf nmf nmf nmf

Logs 70–80 cm 3 nmf nmf nmf nmf

Logs > 80 cm 4 nmf nmf nmf nmf

All Fuels > 10 cm nmf 238 83.5 n/ae 9.2
All Logs 10–30 cm 501 nmf 19.1 16.9 3.2
All Logs > 30 cm 51 nmf 40.9 4.82 2.0
Total 552 306 23.8 (7)g

aMeasured in this work, assumes 42% moisture on a wet weight basis.
bDist. (%) is the mass distribution among size classes, from Carvalho et

al. [2001].
cnind (%) is the consumption for each size class measured in this work

(see text).
dCtb (%) is the percent of the total prefire biomass that was consumed in

the biomass category.
en/a, not applicable.
fnm, not measured for this specific classification, but measured for a

broader classification, in this work.
gTotal estimated percentage combustion completeness. Uncertainty

estimate in parentheses (see text).
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assume that each spot measurement in the current work is
reasonably representative of the total emissions for each log
sampled.
[19] The emission ratios (ER) reported here are quotients

of excess mixing ratios (DX/DY); the excess amount of
compound X above background is divided by the excess
amount of compound Y (CO or CO2) above background.
Emission factors (EF) are calculated using the carbon mass
balance method [Ward and Radke, 1993], which assumes
that all of the carbon from burned fuel is volatilized and
measured. We assumed a fuel carbon content of 50% by
mass on a dry weight basis. This is probably accurate to
±5% (1s) of the actual value [Susott et al., 1996]. More
details of the calculations are given by Yokelson et al.
[2003a]. The ER and EF for logs are reported in Table 3
along with the previously published values of Bertschi et al.
[2003a]. The study averages differ to some degree, but such
a simple comparison is a bit misleading as explained next.
[20] The modified combustion efficiency (MCE) for a

sample is the ER DCO2/(DCO + DCO2). The MCE is
related to the amount of fuel carbon converted to CO2 and is
useful as an indicator of the relative amount of flaming and
smoldering in a fire. Low MCE near 0.8 are typical of
smoldering combustion and higher MCE near 0.95 are
typical of the more efficient, mostly flaming combustion

occurring in fine fuels such as grasses. Emission factors for
fires featuring both flaming and smoldering are usually
tightly correlated with MCE [Yokelson et al., 2003a]. In
contrast, Figure 3 shows EF versus MCE from this study
and they are not tightly correlated. This is in agreement with
EF from several smoldering fuels published by Bertschi et
al. [2003a], who speculated that the scatter was due to fuel
differences. However, in this study we find scatter even for
nominally similar log fuels. Thus part of the scatter may be
caused by varying degrees of log decomposition or differ-
ences in log-log spacing and the resulting heat transfer
[Bertschi et al., 2003a]. We encountered a broad range of
MCE for the measurements of smoldering logs, roughly
from 0.69 to 0.92. The average MCE for smoldering logs in
the current study (0.788 ± 0.059) is lower than for the
Zambian and cottonwood logs (0.855). However, the two
MCE reported by Bertschi et al. [2003a] fall in the upper
third of our range. More importantly, with the exception of
formic acid, the previous EF fall within the range of our EF
at similar MCE, as seen in Figure 3. Our current observation
of lower formic acid in Brazil is consistent with the
observation of lower than ‘‘normal’’ formic acid emissions
in the concurrent airborne measurements of Brazilian fires
by Yokelson et al. [2007]. Thus a tendency for burning
Brazilian logs to emit less formic acid than burning logs

Table 3. Normalized Excess Emission Ratios (ER) and Emission Factors (EF) for All Smoldering Logs in This

Study

Current Study (n = 27)

Average stdev Zambian Loga (n = 1) Cottonwood Loga (n = 11b)

ER, mol/mol
MCE 0.788 (0.059) 0.854 0.856
DCO/DCO2 0.275 (0.093) 0.171 0.166
DCH4/DCO 0.143 (0.086) 0.256 0.182
DC2H4/DCO 0.0071 (0.005) 0.0133 0.0152
DC2H2/DCO 0.0005 (0.001) 0.0006
DC3H6/DCO 0.0046 (0.0036) 0.0086 0.0101
DHFo/DCO 0.0007 (0.0011) 0.0044 0.0046
DHAc/DCO 0.042 (0.028) 0.025 0.020
DHCHO/DCO 0.0080 (0.0046) 0.0205 0.0116
DCH3OH/DCO 0.0411 (0.0243) 0.0446 0.061
DPhenol/DCO 0.0036 (0.0070) 0.0042 0.0092
DAcetol/DCO 0.0164 (0.0139)
DFuran/DCO 0.0038 (0.0015) 0.0053 0.0053
DNH3/DCO 0.0128 (0.0110) 0.0199 0.0056
DHCN/DCO 0.0015 (0.0013)

EF, g kg�1 dry fuel
CO2 1343 (123) 1454 1469
CO 229 (64.6) 158 155
CH4 17.1 (10.0) 23.2 16.2
C2H4 1.42 (0.79) 2.11 2.36
C2H2 0.07 (0.10) 0.08
C3H6 1.43 (1.12) 2.04 2.36
HFo 0.26 (0.40) 1.15 1.16
HAc 19.7 (12.9) 8.43 6.73
HCHO 1.88 (1.10) 3.48 1.92
MeOH 10.3 (6.03) 8.09 10.8
Phenol 2.42 (4.49) 2.26 4.78
Acetol 8.89 (7.53)
Furan 2.08 (0.88) 2.04 2.01
NH3 1.64 (1.44) 1.92 0.53
HCN 0.35 (0.34)

aData from Bertschi et al. [2003a].
bAverage of 11 samples of one log from Bertschi et al. [2003a]. Current study is 27 samples of 25 different logs.
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from elsewhere could underlie the observation of lower
formic acid emissions in both the ground-based and air-
borne work in Brazil. However, with the exception of
formic acid, the differences in study averages shown in
Table 3 might not represent real differences between Brazil
and Africa or temperate regions. It might be that the means
of the current, larger data set give a better view of the
average emissions for RSC of smoldering logs globally. In
turn, the estimate of the effect of RSC on fire-integrated
savanna fire EF by Bertschi et al. [2003a] could be
reevaluated using our newer EF for RSC of logs. We have
not done this, but note that the largest increases in a new
analysis would be about 10% and 40% in the fire-integrated

EF respectively for CO and acetic acid. The largest
decreases would occur for formic acid and formaldehyde.
[21] Acetol was not measured previously in the field for

smoldering logs and is high relative to other gases (�1.6%
of CO). This is comparable to laboratory measurements of
acetol emissions from smoldering Indonesian biomass
[Christian et al., 2003]. During that study we compared
our acetol determinations by FTIR to the mass 75 signal on
a proton transfer reaction mass spectrometer (PTR-MS) and
found good agreement for high signal to noise (S/N)
samples but higher than expected FTIR retrievals for low
S/N samples [Christian et al., 2004]. The current study
acetol determinations by FTIR were complicated by lower

Figure 3. EF (g kg�1 dry fuel) versus MCE for 12 trace gases emitted from smoldering logs in the
current study (solid circles) and in the study by Bertschi et al. [2003a] (open triangles). HFo, formic acid;
HAc, acetic acid.
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S/N in general. Acetol also has a relatively small absorption
cross section and relatively broad spectral features that are
overlain by, e.g., H2O, NH3, and molecules with C-O
stretching vibrations.
[22] In general, Brazilian biomass fire and biofuel emis-

sions (section 3.4) showed higher acetic acid than previ-
ously reported values. Acetic acid has relatively weak
reactivity in the atmosphere [Chebbi and Carlier, 1996]
with a low rate constant for reaction with OH [Dagaut et al.,
1988], can contribute to rainwater acidity [Chebbi and
Carlier, 1996] with high solubility (k�H ffi 5500 mol/kg
bar, http://webbook.nist.gov/), and has been observed to
increase in aging biomass burning plumes [Goode et al.,
2000; Hobbs et al., 2003; Yokelson et al., 2003a].

3.3. Impact of RSC on Regional Emissions

[23] We can estimate the total fire emissions for a trace
gas using RSC EF for unlofted emissions from the current
study; EF for lofted emissions from the concurrent, airborne
study of Yokelson et al. [2007]; a realistic range of estimates
for the relative amount of biomass consumed by RSC; and
the equation of Bertschi et al. [2003a]:

EFi;tot ¼ f � EFi;RSC þ 1� fð Þ � EFi;conv ð2Þ

[24] EFi,RSC and EFi,conv are the emission factors mea-
sured for compound i during RSC and in the lofted (con-
vected) plume, and f is the fraction of the fuel consumed by
RSC. Although the pasture logs, or RWD, could have been
considerably more aged than the logs on the deforestation
fire, the average MCE for these two fuels were within 1% of
each other (Table 4). The emissions results for these sites
are explicitly incorporated in the analysis that follows.
Figure 4 depicts the calculated effect of RSC on some
selected emission factors. Each bar represents the range of
EFi,tot expected for that compound for an assumed range
of% RSC contribution. The deforestation data are airborne
EF and ground-based EF (measured the next day) at the
Caiabı́ planned fire. The airborne EF for pasture mainte-
nance fires were acquired at a pasture fire SE of Alta
Floresta on 29 August. The ground-based EF for pasture
fires were made at site B (SW of Alta Floresta) on
2 September. Both sites are in the same, but diverse,
vegetation classification. On the basis of limited published

data and our own observations we assumed ranges of 1–
20% contribution of RSC to deforestation fires, and 10–
50% for pasture fires. The dark bars are for deforestation
fires and the light bars are for pasture maintenance fires.
The arrows above each bar in Figure 4 indicate whether
total EF increased (upward arrow) or decreased (downward
arrow) with increasing % RSC. Note that CO2, CO, CH4,
and acetic acid have been scaled to fit on the chart and their
actual EF were 3, 2, 1, and 1 orders of magnitude greater
than depicted, respectively. Also, we do not have acetylene
or NO data for the convected plume from a pasture fire.
[25] One might anticipate that the difference between the

EF determined in the lofted plume and the ‘‘true’’ EF that
considers RSC as well would be small for deforestation fires
since the lofted plume contains emissions from burning logs
and the % RSC is small. In fact, there are fairly large
increases in the improved fire-average estimate of the EF
for CH4, acetic acid, methanol, and propylene if 20% RSC
is assumed (Figure 4). However, assuming a ‘‘typical’’ RSC
of 5% (Table 4) leads to changes of no more than 22%,
except for propylene. The propylene effect is large because
the RSC EF for propylene at Caiabı́ was �19 times larger
than that measured in the lofted plume at Caiabı́ and�4 times
larger than the airborne study average EFC3H6. Overall,
the effect of RSC on the fire-averaged EF for deforestation
fires is not major and mostly a ‘‘fine-tuning.’’ On the other
hand, a realistic assumption of 40% RSC for pasture fires
(see introduction) leads to adjustments on the order of
50% for 4 of 12 compounds considered (CO, CH4, HCHO,
and CH3COOH). Thus RSC is of more concern when
measuring or estimating emissions from this common type
of Amazonian fire.
[26] Regional, bottom-up, emissions estimates are usually

the product of an amount of biomass burned times an
emission factor. By the early 1990s enough land had been
converted to pasture in the Amazon basin to cause several
authors to estimate that roughly equal amounts of biomass
were consumed annually in pasture maintenance and pri-
mary deforestation fires [Guild et al., 1998; Kauffman et al.,
1998]. If this is the case, then our EF for RSC could
increase estimates of the annual regional fire emissions for
several important VOC within the range of 10–50%.
Photochemical box models indicate that an important effect
of increased VOC would be to speed up the initial smoke

Table 4. Calculated Effect of RSC on Emission Factorsa for Deforestation and Pasture Firesb

CO2 CO NH3 CH4 C2H4 C2H2 C3H6 CH3OH Phenol Acetol HCHO HFo HAc Furan HCN

Deforestationc

EFRSC 1360 218 2.51 17.6 1.60 0.09 1.75 10.4 1.33 9.53 1.90 0.16 19.1 2.10 0.36
EFconv 1683 60.0 1.24 3.36 0.64 0.92 0.09 2.26 1.74 0.98 3.59 2.10
EFtot 1667 67.9 1.30 4.07 0.69 0.88 0.17 2.66 1.75 0.94 4.36 2.02
EFtot/EFconv 0.99 1.13 1.05 1.21 1.07 0.95 1.91 1.18 1.00 0.96 1.22 0.96

Pastured

EFRSC 1386 233 1.53 15.7 1.33 0.14 0.91 4.36 0.56 1.98 0.22 0.35 10.1 1.62 0.40
EFconv 1596 112 1.37 6.93 1.24 0.73 2.88 1.92 0.52 4.18 0.54
EFtot 1512 161 1.43 10.4 1.28 0.80 3.47 1.24 0.45 6.55 0.48
EFtot/EFconv 0.95 1.43 1.05 1.50 1.03 1.10 1.21 0.64 0.87 1.57 0.90

ag kg�1 dry fuel.
bAssumes 5% of the emissions from deforestation and 40% from pasture fires are from RSC.
cRSC and convected emissions data from the planned fire on fazenda Caiabı́ [see also Yokelson et al., 2007].
dRSC data from site B, convected emissions data from a fire of opportunity in Mato Grosso [Yokelson et al., 2007].
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photochemistry [Mason et al., 2001, 2006; Trentmann et al.,
2005].

3.4. Emissions From Burning Dung, Late Stages of a
Charcoal Kiln, and a Wood Cooking Fire in a Stove

3.4.1. Emissions From Burning Dung
[27] We measured the emissions from three separate

burning cattle dung piles at the site B pasture fire. Table 5
gives the average ER and EF for these samples, with a
comparison to data from laboratory fires burning dung
collected in India [Keene et al., 2006]. That study reported
an average of 22 g carbon per kg dry fuel emitted in
particles and 32.6% fuel carbon content on a dry weight
basis for three dung samples. Our EF calculations incorpo-
rate those values. Without also making measurements in
India and China, we cannot be sure how well our measure-
ments represent burning dung in those areas. However, we
can compare to the limited emissions data available for
those regions. The samples of Keene et al. [2006] were from
India and burned with nearly identical average MCE as the
dung in the Brazil pasture. The MCE of �0.84 is the same
as the average for glowing combustion measured by
Yokelson et al. [1997] and may indicate that this is an
important burning mode for dung. (Glowing combustion
produces about half the heat in a typical western fireplace.)
On the other hand, Smith et al. [2000] sampled dung from
India, burned it in a laboratory simulation of a rural kitchen,
and observed a range of MCE from 0.88 to 0.97. Thus the
MCE observed by Keene et al. [2006] and us might be
lower than the average value in real Indian kitchens. If that
were the case, the relevant EF for smoldering compounds
could be lower than we report. However, Smith et al. [2000]
report EF for one smoldering compound (CH4) and they
observed a range for EFCH4 of 3–18 g/kg. The midpoint of
their range, 10.5 g/kg is not much different from our

average EFCH4 of 11 g/kg. On the basis of the reasonable
agreement shown above and the expanded amount of trace
gases we measured (see below) we believe our data is of
value in understanding global dung fuel use, at least until
more detailed measurements from Asia become available.
[28] Only 3 and 5 of the 13 compounds we report were

measured by Smith et al. [2000] and Keene et al. [2006],
respectively. Thus this work considerably expands our
knowledge of the nature of these emissions. In comparison
to Keene et al. [2006], our ER are �1.5 times higher and
our EF �1.7 times higher, on average, for formic acid,
acetic acid, and NH3. Ammonia is a particle precursor and it
influences particle inorganic composition and the gas/parti-
cle conversion of inorganic and organic anionic species
[Trebs et al., 2005, and references therein]. Organic acids
are also of interest as particle precursors. Since the direct
emission of particles is already quite large, direct emission
and secondary formation of particles from burning dung
could be quite significant in both India and sections of
China where dung is a major biofuel. This is discussed in
more detail in section 3.4.2.
[29] Yevich and Logan [2003] estimated global use of

dung as a biofuel in 1985 at 136 (±50%) Tg DM (dry
matter), of which India and China were responsible for the
majority (93 and 20 Tg, respectively). Habib et al. [2004],
using the novel approach of basing biofuel use calculations
on food consumption statistics, estimated 35–108 Tg yr�1

dung burned in India for the year 2000. Yevich and Logan
[2003] also predicted a 17% increase in total biofuel use
from 1985 to 1995. If we assume an equal relative increase
for all biofuel types then the 1995 global estimate for dung
use is 159 Tg. (There is no direct indication in that study of
whether dung use was expected to increase at the same rate
as other biofuels. Also, declining fuelwood supply and
increased use of mechanization will have had some effect

Figure 4. Varying effect of RSC on overall emission factor (EFi,tot) for 12 trace gases emitted from
smoldering logs measured during the planned deforestation fire (dark bars) and a pasture maintenance fire
of opportunity (light bars). The length of each bar represents a range of calculated EFi,tot based on an
assumed fractional contribution of RSC to the total mass of emissions (1–20% RSC contribution for
deforestation, 10–50% for pasture maintenance). Each arrow depicts whether increasing the RSC
contribution caused the level of that trace gas to increase (upward arrow) or decrease (downward arrow).
Note that CO2, CO, CH4, and acetic acid (HAc) have been scaled to fit. HFo, formic acid.
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on the relative use of various biofuel types.) Combining this
estimate with the EF for formic acid, acetic acid, and NH3

from Keene et al. [2006] and our work (Table 5) leads us to
estimated ranges of 0.08–0.14 Tg formic acid, 1.25–
2.27 Tg acetic acid, and 0.56–0.88 Tg NH3 emitted per
year from dung in the mid 1990s. These represent �2, 14,
and 7% of the total annual emissions of these compounds
from biomass burning in the late 1990s as estimated by
Andreae and Merlet [2001]. By comparison, Christian et al.
[2003] combined their laboratory EFNH3 measurements for
Indonesian peat with the estimate of Page et al. [2002] for
peat consumption during the anomalous 1997/1998 Indo-
nesian fire events to calculate an estimated 28 Tg NH3

emitted in that single fire season. This is nearly three times
the Andreae and Merlet [2001] annual estimate of 10.3 Tg
for NH3 from biomass burning.
3.4.2. New Information Relevant to INDOEX
[30] The Indian Ocean Experiment (INDOEX) focused

on pollutants transported from the Indian subcontinent over
the Indian Ocean [Ramanathan et al., 2001]. The acetoni-
trile/CO ratio observed was similar to that measured from
burning savanna and woodland fuels and this suggested that
most of the CO was due to biomass burning [de Gouw et al.,
2001; Reiner et al., 2001]. On the other hand, the SOy (SO2

+ particle sulfate) ratio to CO was 3–10 times higher than
previously observed for biomass burning. This along with
other particle chemistry results suggested that fossil fuel

burning produced most of the observed particles [Novakov
et al., 2000; Lelieveld et al., 2001; Reiner et al., 2001]. We
briefly discuss the unusual energy use situation in India and
propose preliminary evidence for a slightly modified
interpretation.
[31] Habib et al. [2004] recently estimated biofuel use in

India and reviewed earlier literature on this topic.
Venkataraman et al. [2006] recently estimated open burning
of crop waste, forest, and grasslands in India. Dickerson et
al. [2002] reviewed fossil fuel burning in India. If we take
the average of all the measurements both obtained and cited
in the above papers, the following energy/burning picture
emerges for India: all open forest and savanna burning,
32 Tg y�1; open burning of crop waste, 148 Tg y�1; total
biofuel, 444 Tg y�1; wood biofuel, 261 Tg y�1; dung
biofuel, 98 Tg y�1; crop waste biofuel, 85 Tg y�1; fossil
fuel, 96 Tg y�1. Some things to note are that total biomass
burning is more than 6 times fossil fuel use and �70% of
biomass burning is biofuel use. The biomass burning and
fossil fuel use are not segregated between urban and rural
areas and mixing of the emissions can occur before signif-
icant transport from the source region. The chemistry of
Indian fuel or emissions is also noteworthy. For instance,
Dickerson et al. [2002] note that two thirds of vehicles in
India have 2-stroke engines to which they ascribe an
enormous EFCO (�800 g/kg). Thus burning a unit amount
of fossil fuel in representative fashion likely produces far
more CO in India than in developed countries. In addition,
according to the energy data given above, about 40% of
biofuel use and >50% of total biomass burning involve crop
waste or dung. Both of these fuels are much higher in N and
S than forest or grassland fuels [Smith et al., 2000; Keene et
al., 2006], which indicates potential for much higher emis-
sions of N- and S-containing trace gases. In fact, Christian
et al. [2003] report an acetonitrile/CO emission ratio for
burning rice straw that is about 12.5 times greater than that
for savanna fuels. Thus observation of an acetonitrile/CO
ratio in INDOEX that is ‘‘normal’’ for savanna burning does
not imply that all the CO was produced by biomass burning.
It would also not be surprising if the aerosol from Indian
biomass burning was higher in sulfate than the global
average. Finally, the mix of biomass burning that is com-
mon in India could produce far more particles than the mix
of biomass burning that is common elsewhere. To support
this we note the large EF for particles from burning dung
measured by Keene et al. [2006] and also make another
relevant point. Our EFNH3 for dung is 5.6 ± 1.2 g/kg
and Christian et al. [2003] report an EFNH3 of 4.1 g/kg
for burning rice straw and 0.3 g/kg for savanna fuels.
According to Brasseur et al. [1999], about 93% of emitted
NH3 is sequestered in particles and the average particle in
INDOEX was about 8% ammonium by mass [Chowdhury
et al., 2001; Lelieveld et al., 2001]. The NH3 emitted by
Indian biomass burning will combine with particles, SO2,
and other gases from both biofuel and fossil fuel burning
to generate additional particle mass downwind from
the source region. If most of the NH3 participated in
new particle formation, then on the order of 50 g/kg of
secondary aerosol would be generated. If most of the
emitted NH3 condenses on existing particles then this still
generates an additional 5 g/kg of particle mass. Even this
lower limit is significant since it is comparable to a typical,

Table 5. Normalized Excess Emission Ratios (ER) and Emission

Factors (EF) for Cattle Dung

Current Study
(n = 3) Keene et al. [2006]

(n = 2), AverageAverage stdev

ER, mol/mol
MCE 0.837 (0.013) 0.836
DCO/DCO2 0.195 (0.019) 0.196
DCH4/DCO 0.19 (0.059)
DC2H4/DCO 0.011 (0.002)
DC3H6/DCO 0.012 (0.003)
DHFo/DCO 0.0056 (0.004) 0.0037
DHAc/DCO 0.066 (0.034) 0.043
DCH3OH/DCO 0.036 (0.011)
DPhenol/DCO 0.0063 (0.001)
DAcetol/DCO 0.036 (0.012)
DFuran/DCO 0.0038 (0.001)
DNH3/DCO 0.089 (0.021) 0.068
DHCN/DCO 0.0053 (0.003)

EF, ag kg�1 dry fuel
CO2 832 (15) 899
CO 104 (10) 106
CH4 11.0 (3.3)
C2H4 1.12 (0.23)
C3H6 1.89 (0.42)
HFo 0.91 (0.61) 0.50
HAc 14.3 (6.2) 7.85
MeOH 4.14 (0.88)
Phenol 2.16 (0.36)
Acetol 9.60 (2.38)
Furan 0.95 (0.22)
NH3 5.55 (1.17) 3.54
HCN 0.53 (0.30)

aEF calculations for current study include 22 g carbon per kg dry fuel
emitted in particles and 32.6% fuel carbon content on a dry weight basis
measured by Keene et al. [2006].
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total savanna fire EFPM2.5 of �5 g/kg. A complete
analysis of Indian sources is beyond the scope of this
paper, but the mostly new information discussed above
suggests that fossil fuels and biomass burning contribute
more evenly than previously believed to both the trace gas
and particulate pollutants observed in the INDOEX haze.
3.4.3. Late Stage Charcoal Kiln Emissions
[32] Our spot measurements of emissions from a char-

coal-making kiln are given in Table 6. Here we compare our
results with the only other detailed trace gas emissions
measurements from a kiln, which were obtained in Africa
[Bertschi et al., 2003b]. We present ER only since EF
calculations rely on carbon content, which changes con-
stantly during the charcoal making process. We do not know
the carbon content at the time of our spot measurements and
we were only able to make one set of measurements on a
single day. There are some glaring differences between the
two sets of data. For example, DX/DCO for CH4, acetic
acid, and NH3 were �5, 12, and 43 times higher from the
Brazilian kiln than from the African kiln, while the Brazil-
ian kiln means for HCHO and furan were �60–70% lower.
A number of factors might have contributed to these results.
For example, the measurements in Africa were taken for
1–2 hours per day over the course of 4 days, which spanned
the time from ignition to completion. These data were likely
representative of the overall emissions from that particular
kiln. The Brazilian kiln measurements were taken for
1–2 hours on a single day approximately 6 days into the
carbonization process, and represent only a snapshot with
respect to overall emissions.
[33] Interestingly enough, the Brazilian kiln measure-

ments may partially reflect the continuation of patterns
exhibited in the multiday record from the African kiln.
For instance, CH4 and acetic acid emissions increased from
the African kiln from day 1 to day 4 and were very large in
the day 6 measurements from the Brazilian kiln. Figure 5
shows steadily increasing total VOC to CO emission ratios
over the course of 6 days after combining the African and
Brazilian kiln measurements. Despite the agreement with a
possible trend in total VOC, the CH4 and acetic acid

emissions from the Brazilian kiln were huge in comparison
to other work and likely do not represent a defensible
average situation for any overall charcoal-making process.
We also note that not all species were consistent with
increased emissions with time. For instance, HCHO emis-
sions decreased in Africa and were ‘‘low’’ from the day 6
sample of the Brazilian kiln while methanol increased
strongly with time from the African kiln but was also low
from the Brazilian kiln. We do not know the uncertainties in
the daily values for the African kiln and some of the patterns
discussed may not be statistically significant. However, the
possibility that VOC/CO increases with time is intriguing
and may help interpret this and other work. The much
higher average NH3 emissions from the Brazilian kiln
(factor of �43) almost certainly indicate a much higher N
content for the kiln charge in Brazil. In general, the
measured, average MCE were within �5% of each other
and the similar MCE with some widely varying ER suggests
that some real differences could occur in the chemistry or
geometry of the kiln charge and/or the combustion chem-
istry versus time. More work would be needed to determine
the relative importance of the fuel chemistry and geometry
as opposed to any trends in the combustion chemistry that
may occur as the carbonization process is extended in time.
3.4.4. Wood Cooking Fire in a Stove
[34] The single cooking fire measurement during this

study was taken from the home of the family-owned site
E (Table 1). A small fire was burning, mostly by glowing
combustion, in the firebox of a cast iron wood stove/oven.
Smoke from the stove rose through a metal chimney to exit
through the roof, where the FTIR sample was taken. The
emissions from this fire were quite different from those
reported by Bertschi et al. [2003b], who measured the
emissions from three open, indoor, wood cooking fires in
rural Zambia. Table 7 gives ER and EF for both these
studies. The EFNH3 for the Brazilian, enclosed cooking fire
was 221 times lower than for the open cooking fire in
Zambia. Since our Brazilian kiln, which also used local
wood, had an EFNH3 that was 43 times higher than a
Zambian kiln, the extremely low Brazilian stove values
suggest that adsorption and/or reaction of NH3 on the walls

Table 6. Normalized Excess Emission Ratios (ER, mol/mol) for

Spot Measurements of Charcoal-Making Kilns

Current Study
(n = 3) (Day 6)

Bertschi et al.
[2003b] (n = 3)
(Days 1–4)

Average SD Average SD

MCE 0.826 (0.014) 0.783 (0.042)
DCO/DCO2 0.212 (0.020) 0.280 (0.071)
DCH4/DCO 1.27 (0.050) 0.242 (0.073)
DC2H4/DCO 0.028 (0.002) 0.013 (0.002)
DC2H2/DCO 0.003 (0.0001)
DC3H6/DCO 0.007 (0.003) 0.010 (0.005)
DHFo/DCO 0.003 (0.001)
DHAc/DCO 0.497 (0.272) 0.043 (0.031)
DHCHO/DCO 0.003 (0.002) 0.011
DCH3OH/DCO 0.067 (0.014) 0.111 (0.070)
DPhenol/DCO 0.021 (0.007) 0.009 (0.007)
DAcetol/DCO 0.038 (0.062)
DFuran/DCO 0.002 (0.001) 0.005 (0.003)
DNH3/DCO 0.257 (0.295) 0.006 (0.002)
DHCN/DCO 0.001 (0.0008)

Figure 5. Increasing total DVOC/DCO over the course of
several days for charcoal making kilns. The open triangles
represent data of Bertschi et al. [2003b]; the solid circle is
from the current study. The dashed line visually indicates
the trend.
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of the chimney made a major contribution to the very low
NH3 emissions from the stove [Yokelson et al., 2003b].
Phenol, which is also known as a ‘‘sticky’’ compound had
an EF from the Brazilian stove that was �50 times lower
than from the open cooking fires. However, acetic acid,
which is also subject to some surface losses [Yokelson et al.,
2003b] was �3.5 times higher from the Brazilian stove. The
higher acetic acid emissions could be rooted in fuel chem-
istry since all fuels investigated in both Brazil and Africa
showed 2–10 times higher acetic acid in Brazil (Tables 3, 6,
and 7). We also note that hydrocarbon emissions were lower
from the Brazilian stove than the open cooking fires in
Africa. Acetylene was about 90 times lower and the other
hydrocarbons were �4–8 times lower; even though MCE
was lower for the Brazil stove. This is not easily rationalized
and more work would be needed to determine the natural
variability and the relative impacts of fuel, combustion, and
surface chemistry on the emissions.
[35] Cooking fires are a major global public health issue.

The latest WHO/UNICEF estimates give total global annual
mortality for children under 5 as 10–11 million [Wardlaw et
al., 2006; http://www.who.int/mdg/goals/goal4/en/]. About

1 million of those deaths are attributed by WHO to acute
respiratory infections that resulted from exposure to smoke
from indoor cooking fires [Murray and Lopez, 1996; Table
in annex 11 on web at http://www.who.int/whr/2002/annex/
en/index.html; K. Smith, personal communication, 2007].
Stoves with chimneys could be an important public health
measure since they vent the emissions outside the home
[Naeher et al., 2001]. However, the chimney will still add
pollutants to the ambient air and surfaces in the chimney
may modify the emissions. Detailed measurements of both
open and closed cooking fire emissions are still very
limited. Our initial data suggest that changes in both indoor
smoke concentration and outdoor smoke chemistry might
impact the health of rural inhabitants switching to stoves
with chimneys.

4. Conclusions

[36] Earlier work showed that both lofted, and initially
unlofted emissions from residual smoldering combustion
(RSC), are emitted in significant amounts by fires associat-
ed with tropical deforestation in the Brazilian Amazon. In
this work, fuel consumption measurements on a planned
deforestation fire during the 2004 dry season were consis-
tent with earlier estimates that RSC accounts for about 5%
of fuel consumption on deforestation burns and that Ama-
zonian RSC occurs mostly in the residual woody debris that
is a major fuel component for pasture maintenance fires.
[37] We used a cart-based FTIR to measure the RSC

emissions from 25 smoldering Brazilian logs of H2O, CO2,
CO, CH4, three hydrocarbons, seven oxygenated volatile
organic compounds, NH3, HCN, and NO. This probably
represented 17 of the �25 most abundant trace gas emis-
sions. The RSC emissions from Brazilian logs were highly
variable and the few, earlier RSC emissions measurements
for logs in Zambia and in the Missoula combustion facility
were found to lie near the high end of combustion efficiency
observed in this study. Thus this study suggests that both
lower combustion efficiency and higher emissions for
several VOC could be widely appropriate for RSC com-
pared to the findings of the earlier, less extensive measure-
ments. However, more work would be needed to explore
variation that might occur in RSC emissions globally or
interannually. When the RSC EF are compared to EF
measured on the same or nearby fires in lofted plumes they
are 2–3 times higher for most smoldering compounds such
as VOC [Yokelson et al., 2007] and EFCH3OH and EFCH3-

COOH were 4 and 5.7 times higher, respectively.
[38] We estimated the effect that RSC emissions could

have on the total fire emissions for the Amazon region.
For deforestation fires, we derive increases on the order of
20% for methanol, propylene, and acetic acid. For pasture
fires, which may be the most common fire-type in the
Amazon, increases of 20–50% were derived for 4 VOC.
Overall, RSC could increase regional emissions of several
reactive VOC by 20–50% and lead to faster regional
photochemistry.
[39] We obtained the most chemically comprehensive

measurements to date of the emissions from burning dung
in a pasture. The emission ratios for acetic acid and NH3 to
CO for burning dung were very high (�7–9%). The large
EFNH3 of �5.6 g/kg represents potential for a large post-

Table 7. Normalized Excess Emission Ratios (ER) and Emission

Factors (EF) for Wood Cooking Fires

Current Study
(Stove Exhaust)

(n = 1)

Zambiaa

(Open Fire) (n = 3)
Average

Current/
Zambia

ER, mol/mol
MCE 0.856 0.910
DCO/DCO2 0.168 0.0989
DCH4/DCO 0.051 0.19
DC2H4/DCO 0.0030 0.0245
DC2H2/DCO 0.0002 0.019
DC3H6/DCO 0.0010 0.0066
DHFo/DCO 0.0019 0.0043
DHAc/DCO 0.138 0.039
DHCHO/DCO 0.0163 0.0342
DCH3OH/DCO 0.0665 0.0351
DPhenol/DCO 0.0002 0.0103
DAcetol/DCO 0.0468
DFuran/DCO 0.0023 0.0017
DNH3/DCO 0.0001 0.0221
DHCN/DCO 0.0005
DNO/DCO2 0.0016
DNO2/DCO2 0.0003

EF, g kg�1 dry fuel
CO2 1449 1525 0.95
CO 155 96 1.62
CH4 4.5 10.6 0.43
C2H4 0.47 2.35 0.20
C2H2 0.03 1.67 0.02
C3H6 0.22 0.95 0.24
HFo 0.48 0.68 0.70
HAc 45.9 8.12 5.66
HCHO 2.71 3.52 0.77
MeOH 11.8 3.61 3.27
Phenol 0.08 3.32 0.02
Acetol 19.2
Furan 0.88 0.4 2.19
NH3 0.005 1.29 0.004
HCN 0.07
NO 0.24 1.72 0.14
NO2 0.49

aFrom Bertschi et al. [2003b].
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emission increase in particle mass. Dung is an important
household fuel in south Asia. The extrapolation of our
Brazilian EF to Asia, along with other recent information,
suggests that biomass burning and fossil fuel use may have
contributed more evenly than previously believed to the
particles and trace gases found in the dry season haze over
the Indian Ocean.
[40] One spot measurement of the emissions from a

charcoal kiln was made later in the charcoal-making process
than in earlier studies and the results suggested that the
VOC/CO emission ratio may increase as the carbonization
period is extended.
[41] One spot measurement of the chimney exhaust from

a cast iron wood cooking stove showed many compounds in
amounts that were far below the range observed for indoor,
open, wood cooking fires in Zambia. Stoves with chimneys
improve indoor air quality and public health, but enclosed/
vented combustion devices may also impact outdoor air
quality. For instance, the stove exhaust contained extremely
low NH3, possibly because of adsorption on chimney walls.
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