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Overview

• Concurrent Engineering at The Aerospace 
Corporation 

• Complex Product Development
• The Concept Design Center
• Risk Mitigation
• Results of Concurrent Engineering
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Concurrent Engineering: A Definition
• Concurrent Engineering: “A design team working together to 

improve efficiencies in product development”
– Faster development cycles
– Better quality products
– Lower total cost

• Example of successful Concurrent Engineering
– NASA Apollo 13 Anomaly: from lunar module to lifeboat

• Time critical integrated design solutions developed within hours

• Examples that Concurrent Engineering could improve:
– Urban planning – avoiding traffic congestion

• Design, build, and maintain continually evolving network that functions well for 
all its users – better transport of goods and people, fewer disruptions/delays

– Emergency response – to tsunami, hurricane, earthquake, etc.
• Pre-planned coordination of relief, recovery, and rebuilding efforts; timely 

placement of people, equipment, and donated goods

Sounds like faster, better, cheaper…
…but there is an unstated assumption here

which makes the process work…
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The Aerospace Corporation

• A California nonprofit corporation 
that operates a Federally Funded 
Research and Development Center 
(FFRDC) sponsored by the United 
States Air Force

• Space Stewardship Accountabilities:
– Provide highly knowledgeable 

technical staff, available throughout 
the engineering development cycle

– Apply broad technical expertise to 
assess and solve complex, 
multidisciplinary technical issues

Dedicated to Space Mission Success 
Supports All Phases of Program Acquisition
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An Engineering Matrix Organization
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Complex Product Development
• Space systems are some of the most complex products ever 

devised
– Drive for cutting edge performance
– Integration of diverse subsystem technologies 
– Need for high quality materials, manufacturing procedures, workforce
– Long design and procurement cycles
– Severe consequences of failure

• Successful products start with good designs

• Most projects use some combination of design methodologies
– Top down: start with a vision
– Bottom up: start with some pieces
– Sequential: develop the pieces, then integrate
– Concurrent: plan to integrate the pieces

• Concurrent design, as part of a complete concurrent 
engineering approach, is vital to success
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Conceptual Design & Program Life Cycle
Conceptual Design…
• Helps define requirements via 

performance, risk, & cost trades

• Identifies internal element coupling

• Examines impact of new  
technologies

• Assesses business cases/models

• Supports RFP generation, source 
selections, & independent 
assessments 

• Helps determine block upgrade 
strategies

70% Of All Decisions Affecting Life 
Cycle Costs Are Made During the 
Concept Definition Phase1,2

1 Wade, D.I. and C.S. Welch. 1996. "Spacecraft Manufacturing Implications 
for Volume Production Satellites."  Paper No. IAF-96-U.4.08, presented at 
the 47th International Astronautical Congress, Beijing, China.

2“The Affordable Acquisition Approach Study (A3 Study), Part II, Final 
Briefing,” Headquarters Air Force Systems Command, Andrews AFB, MD, 
1983.
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The Concept Design Center (CDC)
Aerospace’s Primary Example of Successful Concurrent Engineering

Teams provide full breadth & 
depth of required expertise

• Experience across many,   
many space programs

• Can include regional site 
experts as needed

• 26 avg. years of experience 
since bachelor degree*

Process integrates team & design 
tools to produce quality results quickly

* Based on Aerospace MTS population

Facilities enable 
the customer to 
interact efficiently 
with a team of 
experts

Process Results

Time to perform a study 

Cost of a study

Trade space exploration 

Consistency
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CDC Teams vs Design Cycles
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CDC teams address transition into preliminary design
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Time Facility Tools Studies
SST SAT EOPT GST CPT per Year Customer Corporate

1990 Ad Hoc Early CEM
1991
1992 Linked CEM
1993
1994
1995
1996
1997 CDC Created 6 6
1998 10 2 2 14
1999 10 2 1 13
2000 8 1 0 2 14
2001 CDC Moved 10 1 1 2 16
2002 16 3 3 2 24
2003 IDEA 18 6 2 8 34
2004 17 1 1 1 20
2005 CDC Upgraded 25 0 2 3 30
2006 24 8 0 3 1 36

2007 From anywhere 
to anywhere 13 2 0 3 0 19 YTD

Future

Funding TrendTeams (# of Studies)

Concept Design Center - Evolution & History

SST = Space Systems Team
SAT = Space Architecture Team
EOPT = Electro-Optical Payload Team

GST = Ground Systems Team
CPT = Communications Payload Team

CEM = Concurrent Engineering Methodology
IDEA = Integrated Data Exchange Architecture

Investments in Concurrent Design Tools have
resulted in greater productivity, lower cost to design

Early Years:
No formal 
tracking
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Types of Success in the CDC
• Design Validation

– CDC design validated contractor design very close to what will fly 
• Requirements Validation

– Rapid exploration of configurations provided better insight into system needs; 
requirements rewritten to be unambiguous and verifiable

• “Path Pruning”
– Killing off unfeasible ideas early, saving program cost that would be needed to 

explore or develop them
• Launch Cost Reduction

– Careful orbit selection to optimize SV duty cycle  and power sizing reduced the 
initial estimated SV mass, allowing spacecraft to fly on smaller launch vehicle

• Technical Improvements
– Optimized constellations and replenishment strategies to save costs
– Developed alternate SV transfer orbit designs, increasing available SV mass for 

payloads or propellant
• Team Building

– Accelerated customer education – early-on, program personnel are still learning 
about their system-to-be, and will carry early knowledge and decisions with them

– Sharpen skills for other activities such as source selection or cost estimation

Concurrent design provides customers with
timely, integrated, lower risk solutions 
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Risk is multidimensional
and must also be 

managed concurrently

The Unstated Assumption: Risk Management

• Four variables in project 
management: 
– Schedule
– Performance
– Cost
– Risk

• Need to define risk 
rigorously and cap it at an 
acceptable level

• If you cap the other three 
variables, risk grows
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General Methods to Reduce Risk
• Plan out the effort among stakeholders
• Leave time to fail early in the program
! Nail down requirements
! Perform scenario planning
! Ensure technology is or will be available
! Have margins for schedule, cost, performance, 

resources
! Use models, prototypes, and simulations
• Have alternative sources
• Perform non-stakeholder reviews
• Improve production models
• Implement continuous customer feedback cycles

! Defined concurrently during Conceptual Design
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Concurrent Engineering and
Risk Mitigation Strategies 

! Know what the risks are
– Consistent and complete risk identification

! Implement executable plans and off-ramps
– Early review of risks, and handling plans
– Preserve margin for unknowns
– Limit risk exposure

• Track aggregate risk & keep risk constant or decreasing
– Continuous monitoring & review against milestone targets
– Take off-ramps or modify requirements as necessary
– Independent reviews of program risk level
– Actively allocate resources

• Integrate with other engineering areas
– Reliability
– Safety
– Parts, Materials and Processes
– Mated to WBS to show program hot spots

! Risk management strategies are further developed
and defined during conceptual design activities
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Key Ways Aerospace Manages Risk
• Develop disciplined mindset early in program development

– Aerospace standardized Mission Assurance Framework captures program risk 
management “To Do’s” from historical baselines

– Include entire Customer/Aerospace/Industry team
– Significant success demonstrated on EELV program
– Don’t “catch up later”

• Establish environment that encourages problem reporting
– Weekly Watchlist shared across programs, where possible
– Broad dissemination of Problem/Failure Reports
– Formal lessons learned management

• Manage risk at a sufficiently senior level
– Lower levels trading mission success for cost and schedule increases risk
– Perform “What If” scenarios – don’t stop at the “obvious” quick fix

• Government/Industry team manages risk incrementally
– Robust mission assurance tailored to program phase
– Use “buildup” process in design and test to identify and manage risk

Find and fix defects early, by using broadly based 
teams versed in concurrent methodologies
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Results: Actual vs. Design Lifetime
• Analysis of U.S. civil and 

military satellites
– 2005 Aerospace 

internal study
– Using our Space 

Systems Engineering 
Database

• On average, most 
satellites live well 
beyond their original 
design life

• Satellites with >8 year 
design life launched too 
recently to accurately 
assess
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Conclusions
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• Disciplined, integrated, multidisciplinary approach 
applied early in life cycle significantly reduces risk

• Concurrent risk management is a critical part of good  
concurrent engineering practice

• Concurrent engineering facilities, tools, and teams 
are an investment that pay back in reduced program 
costs and increased system life



18

Backup
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