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Chapter 5
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A nonlinear identification approach based on Particle Swarm Optimization)(8%0T-S
fuzzy model for describing dynamical behaviour of a thermal-vacuustesy is proposed
in this paper. Employed for space environmental emulation and satellite qualifica
thermal-vacuum systems are inherently nonlinear and present time-delegciristics.
Despite the success of linear techniques of modelling and identification veadingl with
nonlinear dynamic systems, they are usually not appropriate. Nevegheldg recently
has much ongoing research addressed the problem of nonlinear idgiatifiapproach. In
this sense, fuzzy systems based on Takagi-Sugeno (T-S) model besasimgly been em-
ployed for the identification of nonlinear systems. In order to find out dimapbnonlinear
model swarm intelligence methodology (PSO) is employed as a method for optimiging th
premise part of production rules while batch least mean squares techgigugployed
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for consequent part of production rules of a T-S fuzzy model. ThigidyPSO-TS fuzzy
approach is employed here to generate piecewise, gain-schedulimgosldis concerning
diverse operational conditions driven by the reference. Thiserter can additionally be
associated to distinct goals, context, or other exogenous signals.ifaepéal data obtained
from thermal-vacuum system is used for identification process. Numeeisalts indicate
that the PSO succeeded in constructing a piecewise, gain-schedulifiggZySmodel for

nonlinear identification in this particular application.

5.1 INTRODUCTION

Modelling of nonlinear dynamic processes from operating data is fundahendiverse
engineering problems. A model may be understood as any sort of dlsaription that
captures useful relevant features able to represent a system. Findiagnodel for repre-
senting dynamical behaviour is of particular importance when dealing witlnean, time-
delay thermal-vacuum chambers used for satellite qualification. Once ie,spatellites
are exposed, but not limited, to sunshine, Albedo radiation, earth radiatiadow/eclipse
conditions, and earthshine infrared. Thermal-vacuum chambers edetaiseproduce as
close as possible environmental conditions of expected post-launclomménts which
satellites will experience during their in-flight life, that is, their operational [lif5].

Thermal-vacuum systems consist of a chamber, a shroud (set of pipiet) heats or
cools off the environment, and auxiliary equipment (Figure 5.1). In thartakvacuum
system used at Integration and Testing Laboratory (LIT) in the Brazil@ioNal Institute
for Space Research (INPE), the original controller was designeditootthe temperature
on the shroud (Figure 5.2). Nevertheless, requirements for the speie establish that
the controlled variable must be the temperature at the surface of the spaaiiohentest.
This system is characterized for being nonlinear, presenting time-deidywarking in
diverse points of operation. Due to these characteristics operatorairdarade procedure
currently conduct thermal-vacuum testing (Figure 5.3).

Figure 5.1. Thermal-vacuum chamber with passive load.

A first attempt for dealing with this problem was to use a feasible approactecha
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Figure 5.2. Original thermal-vacuum control system.

Fuzzy Reference Gain-Scheduling (FRGS) control system [1] [@ptstood as well as a
mechanism for decision support system [3]. This controller was deasigyasing heuristic
and expertise obtained through knowledge engineering.

Despite the success in using this reference-driven fuzzy contrdmysn immediate
alternative to set up the control parameters is by first finding out a fodel for describ-
ing the thermal-vacuum system and later to use this information to achieve an egtimiz
fuzzy control system.

The interest in obtaining a fuzzy model goes beyond control applicatiatditidnal
advantages of identifying a model for thermal-vacuum systems are, fantes the ability
to detect loss of vacuum, presence of unknown heat sources or seiking of thermal-
vacuum operators, development of a supervisor decision-supsbeins for helping oper-
ators to control the whole system, and checking the instantaneous ojsebatwaviour or
performance.

A question that arises is which modelling approach would be more suitableufor a
tomatically modelling thermal-vacuum systems. System identification is a relevant ste
in system analysis of nonlinear processes as well as model-based cmsign. System
identification allows building mathematical models of dynamic systems based onmegtasu
data. The use of linear mathematical models through identification is adequatyéval
applications. Whilst such an approximation may be acceptable in many sigrealssing
and control applications, there are several advantages that caridieedbif a nonlinear
model identification technique is applied when dealing with a nonlinear modeéqirth
cess [39]. Moreover, conventional modelling approach seems nob@gte for this task
since thermal-vacuum systems are highly nonlinear, presents time-detbghanges its
dynamic behaviour in many different operational conditions.

Nonlinear system identification is more challenging and it has received tesdian
when compared to linear system identification. There are several @bg# nonlin-
ear system identification. Frequency response methods, correlatitysianaegression
methods, wavelets transformations, kernel methods, batch and recigdsntification al-
gorithms based on least mean square technique, fuzzy systems, evojutiomgutation,
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Figure 5.3. Current thermal-vacuum operation.

neural networks, intelligent hybrid systems, and NARMAX (Nonlinear AR&gressive
Moving Average with eXogeneous inputs) models belong to this categofy41J

An alternative for copping with modelling this nonlinear and time-delay system is to
employ fuzzy models since this approach exhibits both high nonlinearity dudtreess to
uncertainty in data. Further, fuzzy models are regarded as unieggaiximators. Advan-
tages of using fuzzy modelling include its simple structure to describe honigstams as
well as its ability to represent human being behaviour [4]. Since humandhbamygle the
thermal-vacuum system this fuzzy approach seems a natural methodHaddsigning a
control system and/or modelling the dynamical system. Fuzzy models aré dasales
such as 'if premise then consequence’ where premises evaluate theinpdsland con-
sequences provide the value of the model output. In this paper, theifakgegno (T-S)
fuzzy model [37] [36] is employed. This approach consists of IF-THEMNSs where the
rule consequents are usually linear functions of the inputs.

Many optimization methods have been proposed to elicit fuzzy models thropgt: in
output data [5] [41]. In a previous work [29] a feasible identificationgass was carried
out for describing the dynamics of the thermal-vacuum system when emglaytybrid
intelligent approach. There, Particle Swarm Optimization (PSO) was empésyad aux-
iliary mechanism for achieving an optimal T-S fuzzy model. Working in symeR$O
allows determining the premise space partition and to obtain membership funcgorts,
extract the best shape, supports and cores membership functionsll as v determine
the statements in the consequent of the rules.

Particle Swarm Optimization (PSO), in turn, is a form of swarm intelligence lfer o
taining optimal solutions. Swarm intelligence is the emergent collective intelligehce
groups of simple autonomous agents. Here, an autonomous agent iystsobthat inter-
acts with its environment but acts relatively with independence from all athents [26].
The PSO method simulates social behaviour of organisms, such as bkihdi@nd fish-
schooling [13] [21]. The idea is that when a bird in a flock tries to find faagses not
only its own knowledge and experience but also its neighbours’ expesehe particles
are flying through a hyperspace of possible solutions and rememberghpdsition that
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Figure 5.4. Block diagram of the thermal-vacuum system.

they have seen. In order to contribute to determine the best global solutioheneof the
swarm communicate their best local positions to each other and adjust thepasition
and velocity computing also the correspondent information receiveddtbar members.

Numerical results indicated that PSO succeeded in constructing a singkd gi&b
fuzzy model through nonlinear identification in this particular application pideshe suit-
ability of this method another question that comes up is concerning its perfoemaren
taking in account the specificity of the distinct operational conditions. Deditph non-
linearities present in thermal-vacuum chambers, instead of using a singkd toaepre-
sent the entire range of operational conditions driven by the referemcalternative is to
model the system by using piecewise, gain-scheduling, referen@ndtizzy T-S models.
Modelling nonlinear systems with gain-scheduling methodology involves app$gaeral
linear models of similar structure over a partitioned input space [42] [38}hik sense,
T-S models are used to represent the best local models to operation nemtiffegions of
thermal-vacuum system. The best model for each region will be obtainectardance
with a basic T-S fuzzy model representation of the process by meangefskh of models.
This approach can be interpreted as a switching multiple model approabht[@jith an
interpolative scheme between linearized models. Computing several suitabhknmadical
models for the system, thus, can be useful for forecasting its behavidar different op-
erating conditions, as well as for designing the control law that will make ti@ersystem
perform in a desired way.

This paper explores the ability of PSO to derive the parameters of premisépa
generating piecewise fuzzy systems for a nonlinear system working indaisfierational
conditions established by an exogenous input. The consequent geddofction rules of
T-S fuzzy system is accomplished by least mean squares approacipapkisfocus on the
nonlinear identification for modelling the relationship between the temperatisatelite
(output) and the controlled temperature of the gas inside shroud (inputhwhicsed to
change the temperature in the interior of the chamber. The simplified diagranettiats
the operational characteristic of the thermal-vacuum chamber and the heidifi block
is presented in Figure 5.4).
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5.2 FJzzY GAIN-SCHEDULING MODELLING

In the data-driven modelling community, two main paradigms have emerged! gtobkas
divide and conquer. Global modelling builds a single functional model orb#sés of
the dataset. Divide and conquer techniques divide a complex probleminmptes ones
whose particular solutions can be combined to provide a global solution doortginal
problem [6]. The main reason for using multiple models is to ensure the exéstdérat
least one model with parameters sufficiently close to the unknown plant. [t@nesdive for
implementing this proceeding is to use in multiple models piecewise, gain-schedwdinyg f
systems [42] [38]. In doing so, the global nonlinear system is obtainedtbypolating
these sub-models generated according to diverse points of operation.
Consider, for instance, a nonlinear system described as:

x=f(x(t),u(t),0)

y=g(x(t),u(t),8)
wheref is a nonlinear functiong is a measurement functionr,s the state vectoy is the
control input vectorg is the vector of possibly time varying parameters, giglthe output
vector.

When dealing with a system that presents different regions of oper#timmodelling
problem may be described as a linearization scheduling in which eq. (5.1e#&iind
with respect to a suitable set of pre-established variables. Thus, &lsetar systems or
approximation for a nonlinear plant is obtained through scheduling vasiable

In linearization scheduling problem, the nonlinear system may be rewritimgnfo
stance, through linearization transformation or through Taylor expaasioig a trajectory
or over operational points( u;) corresponding to ai regions in such a way that eq. (5.1)
becomes:

(5.1)

XL = Ax +Bju

y= GCx (5.2)

where:

=3

A =52 e B =58 |xud) G = 52 [xus)
andx_(t) is a state vector of the linearized system, &ft), u;(t) is the trajectory satisfying
XO(t) = f(XO(t)vlJO(t)veO)'

While this approach is largely employed in nonlinear control systems, named ga
scheduling controllers [31] [23] [24] [32], here this approach isli@gpto model a system
in which its dynamical behaviour is established according to distinct opeghtionditions
driven by the reference (set-points). If the embedded idea behindgaéululing approach
is to design a global system by using associated local linearized plant mfuzhg gain-
scheduling approach interpolates these sub-models through membersttiprfa (Figure
5.5).

For discrete, linear, time-invariant, single-input-single-output, controll@ivlé observ-
able systems the matricés B andC are chosen in such a way that the eq. (5.2) can be
rewritten as:
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Figure 5.5. Gain-scheduling fuzzy system.

n-1 m—1
Yp(k+1) = _%ati(k—i)Jr ;biup<k— i), (5.3)
i= i=

where ai and bj are constant unknown parameters. Each p model(& &qwill represent
a point of operation as a subset in the Tagaki-Sugeno fuzzy model.

5.2.1 Fuzzy Models

A fuzzy system is aonlinear mappingrom the inputs space vector to a scalar output space
represented as a functioh; X — Y, whereX andyY is universe of discourses. This mapping
is accomplished by a set of IF-THEN rules in the form 4&X is A> THEN <Y is B>"
that defines the input-output spaeex Y, and an associated fuzzy inference mechanism.
Different from the classical crisp mathematical function (including crispréatefunction),
in fuzzy function each element inside a fuzzy region assumes a dedtéfmfent between
0 and 1 (Figure 5.6b). Each rule defines a fuzzy region as depicted uimeFig6a, that is
called granule, patch, or cluster, according to diverse fields of resed@he fuzzy subset
of the input spac& is A andB is the fuzzy subset of the output space, and are also known
as membership function or linguistic terms. Along with fuzzy rules, fuzzy sahather
element that is used for partitioning the universe of discourse and dgfimnnumber of
overlapping fuzzy regions. There will be as many fuzzy regions asuhwar of fuzzy sets
in each universe of discourse. For example, if there are three f@tgyrsthe input space
X, that isA1, A, Az, and two fuzzy sets in the output space, tha@isB,, then there may
be six fuzzy regions. However, these fuzzy regions are not all élajlthere must be a set
of rules mapping a fuzzy set in the input space into the output spacepas s Figure
5.6b.

For a multi-input single-output (MISO) fuzzy model the rules have the form:

R :IF (z21SA)AND ... AND (z, ISA,) THEN(y IS B) (5.4)

where the input vector of the premise is givendy [21,...,lzm]T, i=1,...,m yis the
output vector of the conclusio;tk{-J are linguistic input termsB! is a linguistic output term.
The resulting fuzzy function or fuzzy relation is given by the aggregaifdhe set of fuzzy
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Figure 5.6. Nonlinear input-output mapping when fuzzy regions assume a degra#ibf f
ment between 0 and 1.

rules, RI. The aggregation operator for generating the fuzzy relation is assbdiate
t-conorm usually themaxoperation.

In the presence of a singleton (crisp) input, for instance, this data igfissiciated to
one membership functiodi. When a linguistic term is associated to the input data this
process is namefizzyfication The resultingdegree of membership obtained where this
singleton crosses the membership function. When there are divers¢iauaidstatements
in the premise one degree of membership among many from different inpuisiiegnput
variable must be chosen. For this task a t-norm is employed to performzing ¢donjunc-
tion. For example, in a Cartesian space usually a min operator or a prquiretaor carries
out this task. The resulting degree of fulfilment is propagated and weightsotisequent
of each active rule. When there is more than one active ratecmormis employed to
perform the fuzzy disjunction. In a Cartesian space usually a max opegaties out this
task. Adefuzzyficatioprocess accomplishes the final resulting where the ordinary value is
the centre of area.

Basically there are three categories of fuzzy systems models: relatiazsl fuodel,
linguistic fuzzy model also known as Mamdani fuzzy model, and the interpelétnear,
first order functions) model also known as Takagi-Sugeno fuzzy mddmwd. structure for
identification chosen in this approach is the Takagi-Sugeno fuzzy model.

5.2.2 Takagi-Sugeno Fuzzy Models

The essential idea of T-S fuzzy model is the partitioning of the input spacdunty ar-
eas and the approximation of each area through a linear model in suchthatayglobal
nonlinear model is computed. Itis characterized as a set of IF-THEN where the conse-
guent part are linear sub-models describing the dynamical behavidistiofct operational
conditions meanwhile the antecedent part is in charge of interpolating thbssy/stems.
The “IF statements” define the premise part that is featured as linguistic tehites the
THEN functions constitute the consequent part of the fuzzy systenactesized, but not
limited, as linear polynomial terms. The global model is then obtained by the ifgerpo
tion between these various local models. This model can be used to app@ximighly
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nonlinear function through simple structure using a small number of rules fallowing
general form represents the T-S model:

RV : IF (z IS A) AND ... AND (77 1S A;) THEN(y = by +bix} +bl ) (5.5)

The input vector of the premise is given by= [zi,...,zy|", i =1,...,m, andAij are
linguistic terms (labels) of fuzzy sets. The fuzzy sets pertaining to a rulefiazzy regions
within the input spaceA] x A} X ...X Al. The elemenk = [x{,...,x ] represents the

input vector to the consequent partRﬂfthat comprises|j terms;y; =Y; (x}) denotes the
j-th rule output which is a linear polynomial of the consequent input tafmandb =
[b(’),bjl,...,b(‘lj]T are the polynomial coefficients that form the consequent parameter set.
Usually the input vector, is related to the elements xfthat is,z(x), or evenz = x.

Given the input vectorg andx!, j = 1,...,M, the final output of the fuzzy system is
inferred by taking the weighted average of the local outm(bsj)

y= ZVJ -Yj( xJ (5.6)

whereM denotes the number of rules andz) is the normalized firing strength &(1),
which is defined as

P V14
Mi® = SMw(2) &1
and
K (2) = M (Z1) - Ha) (Z2) - g (Zm)- (5.8)

Linguistic IabeIsAiJ may be, for instance, associated with Gaussian membership func-
tions,
: 2
uAi(a):eXp[—;(a 0?’) ] (5.9)
wherem; ands; are the centres (mean value) and the spreads (standard deviations) of
the Gaussian function, respectively, that defines the core and thersabpnembership
functions.

When dealing with fuzzy model identification, instead of static functions (pyt
spaceX is replaced by a finite number of past inputs and past outputs of the sygtem re
resenting the system dynamics [5]. In doing so, the T-S models employssigmneype of
rules that maps the current state and input variable into the output variabkega (5.5) is
related to eq. eq. (5.3) in the following form:

R : IF y(k) ISA AND ... AND y(k—n+1) A}
AND uk) ISB{ AND ... AND uk—m+1) Bl (5.10)
THENYj(k+1) = 575 apy(k—i) + 3575 bpu(k—p) + ¢/

The objective of the optimization process consists of determining (tuning) tirese

known parametersy, b, ¢, A, andB;, (represented aB) when using measured input-
output data so that a performance measure based on the output emovsriized
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N
ming Z Iy(k+1) —y(k+1)]. (5.11)
k=1

In eq. (5.11)y(k+1) is the estimate output (or fuzzy function approximation) used for
computing the square error when compared with the actual outut; 1). This activ-
ity corresponds to the parameter-learning task and, consequently,rdmqiar estimation
process. The identification problem in T-S fuzzy modelling involves not palkameter
identification but structure identification as well. The structure identificatiotyrim con-
sists of determining the premise space partition and extracting the number fande
determining the structure of the output elements (equations), respectively.

The identification of T-S system is realized in this paper based on PSO¢dimige part
optimization while the consequent part optimization is realized by batch leastsgaares
method [27]. The batch least mean squares method requires the wholetdatthe input
and output (all training data) and is implemented off-line.

5.3 RARTICLE SWARM OPTIMIZATION (PSO)

The PSO originally developed by Kennedy and Eberhart in 1995 is algtop+based
swarm algorithm. PSO is a stochastic global optimization technique making ugsopf a
ulation of particles, where the position and velocity of each particle repigsesolution
to the problem being optimized. The PSO has been shown to be effectiveinmisipg
multidimensional discontinuous problems in a variety of fields [8] [11] [35].

Each patrticle in PSO keeps track of its coordinates in the problem spaash aie
associated with the best solution (fithess) it has achieved so far. Thesigatalledpbest
Another “best” value that is tracked by the global version of the partickrswoptimizer
is the overall best value and its location obtained so far by any particle inojingation.
This location is calledybest The PSO concept consists of, in each time step, changing
(accelerating) the velocity of each particle flying toward its pbest and gdaegions (global
version of PSO). Acceleration is weighted by random terms, with separadem numbers
being generated for acceleration toward pbest and gbest locatispectively.

Similarly to genetic algorithms [16], an evolutionary algorithm approach, PS® is
swarm intelligence optimization tool based on a population, where each mengesns
as a particle, and the position and the velocity of each particle is a potentitibadio
the problem under analysis. Each particle in PSO has a randomized veksuyigted to
it, which moves through the space of the problem. However, unlike genetcithigs,
PSO does not have operators, such as crossover and mutation. eSaptdonplement the
survival of the fittest individuals; rather, it implements the simulation of sdmabviour.

The global version of PSO algorithm [11] [22] follows the steps show iroAtgm 5.1.

The first part in equation (5.12) is the momentum part of the particle. Thé&aner
weight, w, represents the degree of the momentum of the particles. Thé vesgable w
(inertia weight) was proposed in [34]. This parameter is in charge ofrdigadly adjusting
the speed of the particles, so it is responsible for balancing betweeralutglobal search.
A low value of inertia weight implies a local search, while a high value leads tolzab
search. Applying a high inertia weight at the start of the algorithm and maikitegay to a
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Algorithm 5.1 Particle Swarm Optimization (PSO) Algorithm

Input: ¢y, C2, N, tmax

Output: X, Vi, Poest Obest

1. Initialization: Initialize a population (array) of particles with random positions and ve-
locities in the n-dimensional problem space using a uniform probability disibfunc-

tion.

2. Evaluation Evaluate the fitness value of each particle.

3. Comparisori: Compare each particle’s fitness with the particjg¥est If the current
value is better thapbest then set the pbest value equal to the current value and the pbest
location equal to the current locationmrdimensional space.

4. Comparisor2: Compare the fitness with the population’s overall previous best. If the
current value is better thagbest then resegbestto the current particle’s array index and
value.

5. Updating Change the velocity and position of the particle according to eq. (5.12) and
(5.13), respectively [34] [35]:

Vi(t+1) =w-vi(t) +c1-ud() - (pi(t) —xi(t)) +c2-Ud() - (pg(t) —xi(t)) (5.12)

X (t+1) =X (t) +At-vi(t+1) (5.13)

6.  Stop criterion Loop to step i) until a stop criterion is met, usually a sufficiently
good fitness or a maximum number of iterations (generations).
end.

low value through the PSO execution makes the algorithm search globally aghmning
of the search, and search locally at the end of the execution. The fojjomgighting
function w is used in eq. (5.12):

Equation eq. (5.14) shows how the inertia weight is updated, consideringisniae
maximum iteration number, t is the current iteration number, and wmax and wmtheare
initial and final weights, respectively.

The second part is the “cognitive” one, which represents the indeperdethaviour
of the particle. In this approacky = [X1,X2,...,Xn]|" stands for the position aneg =
[Vi1,Vi2,...,Vin]" for the velocity of thei-th particle; p; = [pi1, pi2, ..., Pin]" represents the
best previous position of thieth particle (the position giving the best fitness value);
1,2,... tmaxindicates the iterations. Indgxrepresents the index of the best particle among
all the particles in the swarm. Variabled(-) andUd(-) are two random functions in the
range [0, 1]. Equation (13) represents the position update, accddditsgprevious position
and its velocity, considerinfgt = 1.

Positive constants; andc, are called cognitive and social components, respectively.
These are the acceleration constants responsible for varying the peptiele towardpbest
andgbest In this paper, the constriction coefficient method is used in PSO basep-on a
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proach as shown in [10]. In doing so, the velocity equation is updatextdiog to:
Vi(t+1) = K- [vi(t)+c1-ud(-) - (pi(t) —xi(t)) +c2-UD(-) - (pg(t) —xi(t))]  (5.15)
when using a constriction coefficielt
K — 2
2-0- V874

with ¢ = c1+ ¢, ¢ > 4 andK is a function ofc; andc,. Usually, f is setto 4.1¢; = ¢, =
2.05), and the constriction coefficieltis 0.729. Other possible choices for the constriction
coefficients are available.

(5.16)

5.4 THERMAL-VACUUM SYSTEM FOR SPACE QUALIFICATION

A block diagram representing the physical operational activity for therthevacuum sys-
tem is depicted in Figure 5.7. The operation of the thermal-vacuum chambesdsizkd
next. A vacuum environment is accomplished by the use of two separateimyusys-
tems, after what the temperature is modified. The first pumping system is a, single
stage, rotary vane, mechanical pump that produces low pressure irnsidesttmber. Once
the desired pressure is reached, a high vacuum is obtained by usigggeic vacuum
pump with closed cycle helium compressor. The global system produessypes around
1 x 1077 torr to simulate the vacuum present in space. When a satellite is in a vacuum
environment, the thermal cycle starts by modifying the temperature inside thadshirhe
operation of the thermal shroud is achieved by means of a re-circulatinge dend gaseous
nitrogen (GN2) system. To maintain nearly constant heat transfer piegtmroughout the
wide range of system operation, a constant density system is utilized. Cdadingrcu-
lating gas stream is accomplished by spraying liquid nitrogen (LN2) into thaitiktile
resistance type heaters mounted inside the piping network provide hesgquaed. The
GNZ2 thermal system is accomplished by using a dual output, time proportidv@aggcool,
and Proportional-Integral-Derivative (PID) controller. The tempeeatontroller sends out
setpoints to the GN2 pressure PID controller to keep constant heatetrahsiracteristics.
The system pressure is adjusted to the required level by modifying veritiogen gas
through the venting control valve (VCV) or by switching the LN2 supply eal8V1) as
can be seen in Figure 5.7 and Figure 5.3.

Inside thermal-vacuum chamber there is no convective heat transfss,[messure in-
side thermal-vacuum chamber is low. Convective heat transfer comeslyf sacuum
is lost, i.e., internal pressure becomes significant. Furthermore, tempegasutient in-
side payload may be considered negligible if there is fast heat conductiole ipayload.
Heat transfer between payload and shroud in vacuum comes fronticadi@adiation heat
transfer can be written as:

aT,
Mp * Cp * an = oxex A% (Toh— T) + He(Pe) * (Tsh— Tp) (5.17)

wheredT,/dt is the payload transition rat&p, is the payload average temperature (abso-
lute), Tsh is the shroud average temperature (absolig),is the payload mas€y, is the
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Figure 5.7. Block diagram for physical description of a thermal-vacuum chamber.
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payload heat capacity is the Stefan-Boltzmann’s natural constamis the emissivity /
absorptivity of a grey body, anélis the radiating area.

Because radiation is basically the source of heat transfer between yloagand
shroud, thermal vacuum chambers are inherently nonlinear. This hestdr depends non-
linearly on temperaturd,* as presented in eq. (5.17). When this equation is linearized, it is
possible to note that various thermal operational conditions corresponal tefénence lev-
els (set points) used during the space product qualification. The modifi¢atdynamics
occurs independently of linearization considering stationary behaviooif-equilibrium
nominal trajectory. The time-delay is concerned with the thermal optical ctesistics of
the specimen undergoing the test as well as its physical characterisstsieseribed by
specific mass, specific heat, and thermal conductivity [19].

In a glimpse, this nonlinear behaviour may be confirmed by real-world indugir-
namical response corresponding to the thermal-vacuum system withrgpéssil (Figure
5.8). Continuous and dashed lines represent, respectively, tempsratuhe gas of the
shroud and on the satellite. These experimental, measured data are entpleijeid the
fuzzy model through PSO approach. A detailed analysis shows thatdterspresents lo-
cal and global nonlinearities. This system has different conditions efatipns according
to diverse reference values. It means that the subsystems individgatigiate to piece-
wise input values are nonlinear and that the set of piecewise inpuenetes, i.e., the set of
piecewise models for the global system are also nonlinear. Since thermaneferences,
in this example there should be necessary determine nine fuzzy sub-nmduslis the case
of representing (identifying) the global system through multiple models. Thiesenta-
tion may also be understood as a gain-scheduling modelling approach. uisliegerms
and fuzzy logic are employed then this is the case of a fuzzy gain-schgdubtidel. A
solution that fits the features of this system is, thus, to employ piecewisesgfagatuling
fuzzy modelling.

5.5 IDENTIFICATION OF T-S FuzzY SYSTEM BASED ONPSO APPROACH

Identification of dynamic systems can be performed with a series-parapataliel model.
Series-parallel structure is the type of mathematical model adopted for thexmaim
system identification when using the hybrid piecewise, gain-schedulinglEs@odelling
approach as shown in Figure 5.9.

Series parallel model was chosen due to its capability to make one stepfateszbt-
ing with guaranteed stability of the training procedure. The outputs of mussestem are
used as inputs to the T-S fuzzy model. When a one-time ahead predictiorsislpas this
case, the T-S model is said to have external dynamics [40].

For dynamic systems, the mathematical model must incorporate time lags, thatgs, the
must have some memory function in the T-S fuzzy model. In T-S fuzzy modelldg a
in other fuzzy and neural networks approaches, this is performed wigtyed inputs and
outputs that are employed as extra external inputs.

Assume that there is a T-S fuzzy model that produces an oyiiut; 1), based on an
inputu(k) and the noise contribution present in the modelled procgks, The estimated
T-S fuzzy model output based on PS@k + 1), used for computing the minimum square
error when compared with the actual output, y(k) was computed by asiagstep ahead
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Figure 5.9. Series-parallel identification of thermal-vacuum system using T-S moiafgj us
PSO and batch least mean squares methods for one-step aheadifuyecas

forecasting. Denotay, nu, andnn as the time maximum lags of the model output, control
input, and noise, respectively. Depending on the time-lagged inputs thasad for the
T-S fuzzy model, different configurations of models can be used. Inbik, a NARX
(Nonlinear Auto Regressive with eXogenous inputs) model was adagitesh by

y(k) = frsju(k—1),u(k—2),...,u(k—nu),y(k—1),y(k—2),...,y(k—ny),0] (5.18)

where the unknown nonlinear functidis is the T-S fuzzy model of the system akds

the time. This function is parameterized by the ve@erepresenting the elemerds b;,

G, in eq. (5.3) and eqg. (5.10) arAd, andB;, in eq. (5.10) - and depends on premise and
consequent parts of T-S fuzzy model.

One of the most important tasks in building an efficient forecasting modetibageS
fuzzy model is the selection of the relevant input variables. The inputtiaieproblem
can be stated as follows: among a large set of potential input candidabesecthose vari-
ables that highly affect the model output. Unfortunately, there is no systepracedure,
currently available, which can be followed in all circumstances [30]. Inwsk, input
selection is heuristically performed. The inputs of T-S fuzzy system aveeps output
and control input signals of reduced order with= 2, nu= 1, andnn= 0. In this work,
the three vectors of input for the T-S fuzzy system [af&— 1);y(k—1);y(k— 2)] and the
model output ig/(k).

Although, PSO allows to extract the number of rules and to determine the prentse
consequent elements, here this method is applied to obtain membership fuaacitiotsis
to determine the premise space partition. The knowledge and expertiseratarpeare
applied in cooperative approach with experimental input-output dataoitrgdo, it uses
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a predefined number of rules and membership functions arbitrarily clioseach input
Figure 5.10.

Setting up this parameter as 3 production rules, PSO needs to deal with a afcto
particles positions and velocity whose elements are 9 centres and 3 spfe@a@sussian
function, respectively, core and support of membership functiontbidrtase, the spread of
Gaussian membership function adopted for each input of vepiths- 1);y(k—1);y(k—

2)] of T-S fuzzy model is the same.

The system identification by T-S fuzzy model is appropriate if a suitabl@pegnce
index is available according to the necessities of users. Among a populétimtential
solution to a problem, every particle of PSO has a fitness value for ekpyegspropriate
optimization result. The function representing this quality measure employs $itepof
all particlesx;, which is calculated after each iteration.

The performance criterion (fitness function) chosen for evaluate thgoreship be-
tween the real output and the estimate output during the optimization procetiseRaar-
son multiple correlation coefficiemdex. This Coefficient represents the harmonic mean
of R of training and validation phases of T-S fuzzy model conducteBy, i8S given

by:
2
Rﬁarmonic: T 1 (5.19)
thraining+£ I:%alidation"_s
where:
_ SNy -JK)P o2 _ TR0 snasa [Y(K) 9K
Riaining = 1= *spmayigy? - Ruatidaion =1~ "8 02 (5.20)

are, respectively, thB?-training (estimation) an@&?-validation phases of the model; e is
the small tolerance value (1&), Nais the total number of samples evaluated, gigithe
system real output. WheR(-)? is close to unitR(-)? = 1.0, a sufficient accurate model
for the measured data of the system is found RAbetween 0.9 and 1.0 is suitable for
applications in identification and model-based control [33].

The main parameters deeply related to the success of PSO for tuning thegypanisf
T-S fuzzy model are:i) the number of particles (size of population)) the initial position
and velocity of particlesji{) the cognitive and social components &ndc,), (iv) the form
of inertia factor updating, andM) stopping criteriontmax(adoptedmax= 100 iterations).
One of advantage of this technique is that the initial population of particlesxdonaly
generated through a uniform probability distribution function. The sufficrumber of
particles for this application was setup as 10. The main parameters of P$@acippre
shown in Table 5.1 and Table 5.2.

To illustrate the effectiveness of the multi model piecewise, gain-schedli#fuzzy
model several simulations were carried out. Distinct results were obtaurewdhe opti-
mization process according to the number of iterations (tmax) employed. Datapd®n
and input data used for T-S fuzzy modelling using PSO (for premise partes) and batch
mean least squares method (for consequent part of rules) is piégemtble 5.3. This op-
timization process was carried out several times and the best fithess Vyednauging 30 (or
50) iterations was of multiple model approach in terms of cost function precisamform
Table 5.4 and Table 5.5.



Piecewise Reference-driven Takagi-Sugeno Fuzzy Modelling asedrticle ... 101

Setup of Takagi-Sugeno fuzzy Model:

Select input linguistic variables

Select the number of rules

Choice of structure of fuzzy system

Choice of premise and consequent structures
Choice of membership functions

!

Divide data into training and validation data groups
(from thermal-vacuum system)

'

Select the control parameters of PSO: ¢y, cz, 1, trax

'

Iteration, t=0

L e

Optimization of the parameters in the premise of
IF-THEN rules by using PSO

Initialize population of particles with
position, x, and velocity, v, vetors

!

Evaluate fintess of all population particles

'

IF fitness(x) > fitness(gbest)
THEN gbest = x

!

IF NOT but IF fitness(x) > fitness(pbest)
THEN pbest = x

'

Update position and velociy

Optimization of the parameter in the consequence of
IF-THEN rules by using batch least mean square method

!

Compute fitness function (Pearson multiple correlation
coefficient, tham) using both training and validation
data for one-step ahead forecasting

'

Up-to-date iteration: t=t+ 1

Satisfy stop condition
£= by ?

gbest = parameters of best solution

!

End
(Takagi-Sugeno Fuzzy Modsl Optimization)

Figure 5.10.Flow chart of PSO algorithm.
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Table 5.1.Parameters for PSO application in T-S fuzzy model.

Parameters Selection

Number of particles 10

Number of iterations*, tmax 30 or 50 (see also Table 5.2 and Table 5.3)
Inertia weight setup constriction factorK = 0.729

Cognitive component c1=2.05

Social component c; =205

* stopping criterion

Table 5.2. Data description employed in both single and Piecewise, GS T-S fuzzy mod-

elling.

Model Region Initial Samples Final Samples Steady-state output
1 200 655 46.30
2 656 1100 9.33
3 1100 1545 23.32
4 1546 2004 65.96

Piecewise 5 2005 2450 -6.62

Model* 6 2451 2895 25.84
7 2896 3354 86.23
8 3355 3764 -19.45
9 3765 4202 25.53

Single Modef* 1-9 1 4202 Multiples

* n sub-models according to each reference signal
** one model for all references
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Table 5.3.Input data used in both single and Piecewise, GS T-S fuzzy modelling.

Model Region Initial Samples Training Samples Validation Samples
(50 % data) (50 % data) (50 % data)
1 200 228 227
2 656 222 222
3 1100 222 222
4 1546 229 229
Piecewise Modei 5 2005 223 222
6 2451 222 222
7 2896 229 229
8 3355 205 204
9 3765 219 218
Single Model*  1-9 200 2001 2001

* n sub-models according to each reference signal
** one model for all references

Table 5.4.Input data for both singular and Piecewise, Gain-scheduling T-S fuzdelling
by using PSO and mean least squares method (after tmax using PSO).

Model tmax
of Region Rﬁarmonic I:‘)tzraining R6alidation

1 0.998660 0.999913 0.997409 30
2 0.997624 0.999425 0.995829 30
3 0.980940 0.994708 0.967547 30
4 0.993825 0.999354 0.988356 30
Piecewise 5 0.936217 0.994821 0.884133 *30
Model* 6 0.963058 0.997760 0.930689 *30
7 0.998747 0.999970 0.997526 30
8 0.947673 0.992144 0.907017 30
9 0.969982 0.983553 0.956780 30
mean 0.990913 0.996629  0.985326 -
Single Modet*  1-9 0.990613 0.996818 0.984484 30

** when using 50 iterations were obtained for
region 5— RZ,. .= 0.980140,Rt2raming = 0.993389,R2, i1 1ion = 0-967240,
region 6— RZ,.onic= O.998876,Rt2raning =0.999912R2_ .\ iion = 0.997841,
*** when using 100 iterations were obtained for
region 8— RZ,. 1 onic= 0'9994251Rt2raning = 0.999439 R2, .1 iion = 0.999411,
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Table 5.5. Comparison of multiple models and single model.

Model Rfz‘larmonic Rﬁarmonic I:\>t2raining Rtzraining I:%alidation I:%alidation

of region (multiple (single (multiple (single  (multipleifgle
model) model) model) model) model) model)

1 0.998660 44 x 1016 0.999913 0.998432 0.997409 0.000000

2 0.997624 0.923552  0.999425 0.999449 0.995829 0.858369

3 0.980940 0.972558  0.994708 0.999267 0.967547 0.947240

4 0.993825 0.000000  0.999354 0.996003 0.988356 0.000000
Piecewiseb 0.980140 0.956528  0.993389 0.998001 0.967240 0.918365
Model* 6 0.998876 0.637106  0.999912 0.999443 0.997841 0.467588

7 0.998747 0.000000  0.999970 0.998072 0.997526 0.000000

8 0.999425 0.961618  0.999439 0.998058 0.999411 0.927744

9 0.969982 0.000000  0.983553 0.994789 0.956780 0.000000

mean  0.990913 0.494595  0.996629 0.997946 0.985326 0.457700

Both single T-S fuzzy model and multiple, piecewise fuzzy model fitted the training
data with thraimng = 0.983553. Although single PSO-TS fuzzy model achieved a good
approximation for experimental data, it has not generalised well to newatedd regions
when compared to the proposed multi-model approach.

These models were obtained through PSO by using different samplingofadesa.
Continuous and dashed lines represent measured and simulated outputgés bid 1 to
5.16. Experimental results had shown that the hybrid T-S fuzzy systdiR@® approaches
presented successful results due precision in predicting nonlineantigs

5.6 SUMMARY

Identification of nonlinear systems is a difficult task. Models derived firsh principles
are usually difficult and/or costly to develop for processes that arevetitunderstood
or very complex. Fuzzy identification is an effective tool for the approxiomaof un-
certain nonlinear systems on the basis of measured data. The basic stafctufuzzy
model consists of a rule base, a database and a reasoning mechanistiis parpose,
T-S fuzzy model are widely investigated. T-S fuzzy models use if-thers alelescribe
the process through a set of locally valid relationships. In this case, tiiepn of non-
linear system identification is reduced to identification of sub-systems dediresduzzy
input sub-spaces driven by the reference. In order to obtain an d@ppeoximation the
T-S fuzzy model was employed in a cooperative approach with an effioimization
procedure for premise and consequent part of IF-THEN rules.

Different approaches for eliciting T-S fuzzy models from data have Ipeeposed. In
this work is presented a hyperspace search mechanism based onistesligence known
as Particle Swarm Optimization (PSO) to find out the premise part of rules-& fuZzzy
model for a thermal-vacuum system. For T-S fuzzy-like models, paramptienipation
techniques of premise part can be chosen independently form eachTitleebatch mean
least squares method is then employed to identify the parameters for censgaut of
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rules (this problem is linear in the parameters). PSO is a population-baskdi@vary
algorithm that presents advantages, such as, initial population of parsiclezdomly gen-
erated through uniform distribution, there are no operators such ssoser and mutation
in genetic algorithm, simple rules describe complex behaviour, and theragile £ode
and low computational cost.

Results of piecewise gain-scheduling T-S fuzzy model indicate that theaRf®@thm
is a suitable method for tuning T-S fuzzy model for this class of problem. Imibik, input
of reduced order was tested. The elicited fuzzy model with only three mehipdunc-
tions determining the premise space partition demonstrated its effectivenessilatiag
the time response for the thermal-vacuum system. The resulting models exhilnit-a
ber of desirable characteristics such as accurate and robust capbilitye step-ahead
forecasting.

According to the suitable results obtained it must be of interest to explorefthenne
of other parameters in obtaining the model. For example, the number of meipfers:
tions may be increased, and since there is large amount of data otheretelfatecasting
modes may be exploited. As well, results has shown that the proposed {siecgain-
scheduling fuzzy T-S model seem adequate to be applied to control simiyeemploying
Parallel Distributed Controller (PDC) or Fuzzy Reference Gain-Sdivefl(FRGS) con-
troller. The idea behind PDC to generate fuzzy controllers is to design ctajme for
each rule of the fuzzy model. Since the method employed in this paper suppligsenu
models, each sub-model is assumed to be an appropriate model for eaglcdumtroller
synthesis generating a piecewise, gain-scheduling T-S fuzzy contfeR&S approach, in
turn, is a fuzzy controller synthesis in which the parameters of the cont(slipport and
core) change according to exogenous signals, such as, multiple goahges in the en-
vironment, or diverse context. Since the identification process supplizg fub-models
whose membership functions change their shape and distribution in thesasmividis-
course according to the reference, each sub-model would genexgtecantroller in which
their membership functions fit their support and core to accommodate omlilreal-time
changes in the dynamics of fuzzy models.
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