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Chapter 5
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A nonlinear identification approach based on Particle Swarm Optimization (PSO) and T-S
fuzzy model for describing dynamical behaviour of a thermal-vacuum system is proposed
in this paper. Employed for space environmental emulation and satellite qualification,
thermal-vacuum systems are inherently nonlinear and present time-delay characteristics.
Despite the success of linear techniques of modelling and identification when dealing with
nonlinear dynamic systems, they are usually not appropriate. Nevertheless, only recently
has much ongoing research addressed the problem of nonlinear identification approach. In
this sense, fuzzy systems based on Takagi-Sugeno (T-S) model have increasingly been em-
ployed for the identification of nonlinear systems. In order to find out an optimal nonlinear
model swarm intelligence methodology (PSO) is employed as a method for optimizing the
premise part of production rules while batch least mean squares techniqueis employed

1E-mail address: ernesto.araujo@lit.inpe.br, http://www.lit.inpe.br/ ernesto
2E-mail address: leandro.coelho@pucpr.br, http://www.produtronica.pucpr.br/leandro



86 Ernesto Araujo and Leandro dos Santos Coelho

for consequent part of production rules of a T-S fuzzy model. This hybrid PSO-TS fuzzy
approach is employed here to generate piecewise, gain-scheduling sub-models concerning
diverse operational conditions driven by the reference. This reference can additionally be
associated to distinct goals, context, or other exogenous signals. Experimental data obtained
from thermal-vacuum system is used for identification process. Numericalresults indicate
that the PSO succeeded in constructing a piecewise, gain-scheduling T-Sfuzzy model for
nonlinear identification in this particular application.

5.1 INTRODUCTION

Modelling of nonlinear dynamic processes from operating data is fundamental to diverse
engineering problems. A model may be understood as any sort of abstract description that
captures useful relevant features able to represent a system. Findingout a model for repre-
senting dynamical behaviour is of particular importance when dealing with nonlinear, time-
delay thermal-vacuum chambers used for satellite qualification. Once in space, satellites
are exposed, but not limited, to sunshine, Albedo radiation, earth radiation, shadow/eclipse
conditions, and earthshine infrared. Thermal-vacuum chambers are used to reproduce as
close as possible environmental conditions of expected post-launch environments which
satellites will experience during their in-flight life, that is, their operational life [15].

Thermal-vacuum systems consist of a chamber, a shroud (set of pipes)which heats or
cools off the environment, and auxiliary equipment (Figure 5.1). In the thermal-vacuum
system used at Integration and Testing Laboratory (LIT) in the Brazilian National Institute
for Space Research (INPE), the original controller was designed to control the temperature
on the shroud (Figure 5.2). Nevertheless, requirements for the space sector establish that
the controlled variable must be the temperature at the surface of the specimenunder test.
This system is characterized for being nonlinear, presenting time-delay, and working in
diverse points of operation. Due to these characteristics operators in a hand made procedure
currently conduct thermal-vacuum testing (Figure 5.3).

Figure 5.1. Thermal-vacuum chamber with passive load.

A first attempt for dealing with this problem was to use a feasible approach named
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Figure 5.2. Original thermal-vacuum control system.

Fuzzy Reference Gain-Scheduling (FRGS) control system [1] [2] understood as well as a
mechanism for decision support system [3]. This controller was designed by using heuristic
and expertise obtained through knowledge engineering.

Despite the success in using this reference-driven fuzzy control system, an immediate
alternative to set up the control parameters is by first finding out a fuzzymodel for describ-
ing the thermal-vacuum system and later to use this information to achieve an optimized
fuzzy control system.

The interest in obtaining a fuzzy model goes beyond control application. Additional
advantages of identifying a model for thermal-vacuum systems are, for instance, the ability
to detect loss of vacuum, presence of unknown heat sources or sinks, training of thermal-
vacuum operators, development of a supervisor decision-support system for helping oper-
ators to control the whole system, and checking the instantaneous operator’s behaviour or
performance.

A question that arises is which modelling approach would be more suitable for au-
tomatically modelling thermal-vacuum systems. System identification is a relevant step
in system analysis of nonlinear processes as well as model-based control design. System
identification allows building mathematical models of dynamic systems based on measured
data. The use of linear mathematical models through identification is adequate for several
applications. Whilst such an approximation may be acceptable in many signal processing
and control applications, there are several advantages that can be obtained if a nonlinear
model identification technique is applied when dealing with a nonlinear model of the pro-
cess [39]. Moreover, conventional modelling approach seems not appropriate for this task
since thermal-vacuum systems are highly nonlinear, presents time-delay, and changes its
dynamic behaviour in many different operational conditions.

Nonlinear system identification is more challenging and it has received less attention
when compared to linear system identification. There are several approaches to nonlin-
ear system identification. Frequency response methods, correlation analysis, regression
methods, wavelets transformations, kernel methods, batch and recursive identification al-
gorithms based on least mean square technique, fuzzy systems, evolutionary computation,
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Figure 5.3. Current thermal-vacuum operation.

neural networks, intelligent hybrid systems, and NARMAX (Nonlinear Auto-Regressive
Moving Average with eXogeneous inputs) models belong to this category [17] [27].

An alternative for copping with modelling this nonlinear and time-delay system is to
employ fuzzy models since this approach exhibits both high nonlinearity and robustness to
uncertainty in data. Further, fuzzy models are regarded as universalapproximators. Advan-
tages of using fuzzy modelling include its simple structure to describe nonlinearsystems as
well as its ability to represent human being behaviour [4]. Since human beings handle the
thermal-vacuum system this fuzzy approach seems a natural method for both designing a
control system and/or modelling the dynamical system. Fuzzy models are based on rules
such as ’if premise then consequence’ where premises evaluate the modelinputs and con-
sequences provide the value of the model output. In this paper, the Takagi-Sugeno (T-S)
fuzzy model [37] [36] is employed. This approach consists of IF-THENrules where the
rule consequents are usually linear functions of the inputs.

Many optimization methods have been proposed to elicit fuzzy models through input-
output data [5] [41]. In a previous work [29] a feasible identification process was carried
out for describing the dynamics of the thermal-vacuum system when employing a hybrid
intelligent approach. There, Particle Swarm Optimization (PSO) was employedas an aux-
iliary mechanism for achieving an optimal T-S fuzzy model. Working in synergy, PSO
allows determining the premise space partition and to obtain membership functions,i.e., to
extract the best shape, supports and cores membership functions, as well as to determine
the statements in the consequent of the rules.

Particle Swarm Optimization (PSO), in turn, is a form of swarm intelligence for ob-
taining optimal solutions. Swarm intelligence is the emergent collective intelligenceof
groups of simple autonomous agents. Here, an autonomous agent is a subsystem that inter-
acts with its environment but acts relatively with independence from all otheragents [26].
The PSO method simulates social behaviour of organisms, such as bird-flocking and fish-
schooling [13] [21]. The idea is that when a bird in a flock tries to find foodit uses not
only its own knowledge and experience but also its neighbours’ experiences. The particles
are flying through a hyperspace of possible solutions and remember the best position that
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Figure 5.4. Block diagram of the thermal-vacuum system.

they have seen. In order to contribute to determine the best global solution members of the
swarm communicate their best local positions to each other and adjust their own position
and velocity computing also the correspondent information received fromother members.

Numerical results indicated that PSO succeeded in constructing a single global T-S
fuzzy model through nonlinear identification in this particular application. Despite the suit-
ability of this method another question that comes up is concerning its performance when
taking in account the specificity of the distinct operational conditions. Due the high non-
linearities present in thermal-vacuum chambers, instead of using a single model to repre-
sent the entire range of operational conditions driven by the reference, an alternative is to
model the system by using piecewise, gain-scheduling, reference-driven fuzzy T-S models.
Modelling nonlinear systems with gain-scheduling methodology involves applying several
linear models of similar structure over a partitioned input space [42] [38]. In this sense,
T-S models are used to represent the best local models to operation in different regions of
thermal-vacuum system. The best model for each region will be obtained in accordance
with a basic T-S fuzzy model representation of the process by means of finite set of models.
This approach can be interpreted as a switching multiple model approach [9]but with an
interpolative scheme between linearized models. Computing several suitable mathematical
models for the system, thus, can be useful for forecasting its behaviour under different op-
erating conditions, as well as for designing the control law that will make the whole system
perform in a desired way.

This paper explores the ability of PSO to derive the parameters of premise part for
generating piecewise fuzzy systems for a nonlinear system working in distinct operational
conditions established by an exogenous input. The consequent part ofproduction rules of
T-S fuzzy system is accomplished by least mean squares approach. Thispaper focus on the
nonlinear identification for modelling the relationship between the temperature onsatellite
(output) and the controlled temperature of the gas inside shroud (input) which is used to
change the temperature in the interior of the chamber. The simplified diagram that depicts
the operational characteristic of the thermal-vacuum chamber and the identification block
is presented in Figure 5.4).
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5.2 FUZZY GAIN -SCHEDULING MODELLING

In the data-driven modelling community, two main paradigms have emerged: global versus
divide and conquer. Global modelling builds a single functional model on thebasis of
the dataset. Divide and conquer techniques divide a complex problem into simpler ones
whose particular solutions can be combined to provide a global solution for the original
problem [6]. The main reason for using multiple models is to ensure the existence of at
least one model with parameters sufficiently close to the unknown plant. One alternative for
implementing this proceeding is to use in multiple models piecewise, gain-scheduling fuzzy
systems [42] [38]. In doing so, the global nonlinear system is obtained byinterpolating
these sub-models generated according to diverse points of operation.

Consider, for instance, a nonlinear system described as:

ẋ = f (x(t),u(t),θ)
y = g(x(t),u(t),θ)

(5.1)

where f is a nonlinear function,g is a measurement function,x is the state vector,u is the
control input vector,q is the vector of possibly time varying parameters, andy is the output
vector.

When dealing with a system that presents different regions of operation,the modelling
problem may be described as a linearization scheduling in which eq. (5.1) is linearized
with respect to a suitable set of pre-established variables. Thus, a set of linear systems or
approximation for a nonlinear plant is obtained through scheduling variables.

In linearization scheduling problem, the nonlinear system may be rewriting, for in-
stance, through linearization transformation or through Taylor expansionalong a trajectory
or over operational points (xi , ui) corresponding to ai regions in such a way that eq. (5.1)
becomes:

ẋL = AixL +BiuL

y = CixL
(5.2)

where:

Ai = ∂( f )
∂(x)

∣∣
(xi ,ui ,θi) , Bi = ∂( f )

∂(u)

∣∣
(xi ,ui ,θi) , Ci = ∂(g)

∂(x)

∣∣
(xi ,ui ,θi) ,

andxL(t) is a state vector of the linearized system, andxi(t), ui(t) is the trajectory satisfying
ẋ0(t) = f (x0(t),u0(t),θ0).

While this approach is largely employed in nonlinear control systems, named gain-
scheduling controllers [31] [23] [24] [32], here this approach is applied to model a system
in which its dynamical behaviour is established according to distinct operational conditions
driven by the reference (set-points). If the embedded idea behind gainscheduling approach
is to design a global system by using associated local linearized plant models, fuzzy gain-
scheduling approach interpolates these sub-models through membership functions (Figure
5.5).

For discrete, linear, time-invariant, single-input-single-output, controllable, and observ-
able systems the matricesA, B andC are chosen in such a way that the eq. (5.2) can be
rewritten as:
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Figure 5.5. Gain-scheduling fuzzy system.

yp(k+1) =
n−1

∑
i=0

aiyp(k− i)+
m−1

∑
j=0

biup(k− j), (5.3)

where ai and bj are constant unknown parameters. Each p model in eq.(5.3) will represent
a point of operation as a subset in the Tagaki-Sugeno fuzzy model.

5.2.1 Fuzzy Models

A fuzzy system is anonlinear mappingfrom the inputs space vector to a scalar output space
represented as a function,f : X →Y, whereX andY is universe of discourses. This mapping
is accomplished by a set of IF-THEN rules in the form “IF<X is A> THEN <Y is B>”
that defines the input-output space,X x Y, and an associated fuzzy inference mechanism.
Different from the classical crisp mathematical function (including crisp interval function),
in fuzzy function each element inside a fuzzy region assumes a degree offulfilment between
0 and 1 (Figure 5.6b). Each rule defines a fuzzy region as depicted in Figure 5.6a, that is
called granule, patch, or cluster, according to diverse fields of research. The fuzzy subset
of the input spaceX is A andB is the fuzzy subset of the output space, and are also known
as membership function or linguistic terms. Along with fuzzy rules, fuzzy set isanother
element that is used for partitioning the universe of discourse and defining the number of
overlapping fuzzy regions. There will be as many fuzzy regions as the number of fuzzy sets
in each universe of discourse. For example, if there are three fuzzy sets in the input space
X, that isA1, A2, A3, and two fuzzy sets in the output space, that isB1, B2, then there may
be six fuzzy regions. However, these fuzzy regions are not all available; there must be a set
of rules mapping a fuzzy set in the input space into the output space, as shown in Figure
5.6b.

For a multi-input single-output (MISO) fuzzy model the rules have the form:

R( j) : IF (z1 IS Aj
1) AND . . . AND(zm ISAj

m) THEN(y IS Bj) (5.4)

where the input vector of the premise is given byz = [z1, . . . ,zm]T , i = 1, . . . ,m; y is the
output vector of the conclusion;A j

i are linguistic input terms;B j is a linguistic output term.
The resulting fuzzy function or fuzzy relation is given by the aggregationof the set of fuzzy
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Figure 5.6. Nonlinear input-output mapping when fuzzy regions assume a degree of fulfil-
ment between 0 and 1.

rules, Rj . The aggregation operator for generating the fuzzy relation is associated to a
t-conorm, usually themaxoperation.

In the presence of a singleton (crisp) input, for instance, this data is firstassociated to
one membership function,Ai. When a linguistic term is associated to the input data this
process is namedfuzzyfication. The resultingdegree of membershipis obtained where this
singleton crosses the membership function. When there are diverse conditional statements
in the premise one degree of membership among many from different input linguistic input
variable must be chosen. For this task a t-norm is employed to perform the fuzzy conjunc-
tion. For example, in a Cartesian space usually a min operator or a product operator carries
out this task. The resulting degree of fulfilment is propagated and weights the consequent
of each active rule. When there is more than one active rule at-conorm is employed to
perform the fuzzy disjunction. In a Cartesian space usually a max operator carries out this
task. Adefuzzyficationprocess accomplishes the final resulting where the ordinary value is
the centre of area.

Basically there are three categories of fuzzy systems models: relational fuzzy model,
linguistic fuzzy model also known as Mamdani fuzzy model, and the interpolative (linear,
first order functions) model also known as Takagi-Sugeno fuzzy model.The structure for
identification chosen in this approach is the Takagi-Sugeno fuzzy model.

5.2.2 Takagi-Sugeno Fuzzy Models

The essential idea of T-S fuzzy model is the partitioning of the input space intofuzzy ar-
eas and the approximation of each area through a linear model in such a waythat a global
nonlinear model is computed. It is characterized as a set of IF-THEN rules where the conse-
quent part are linear sub-models describing the dynamical behaviour ofdistinct operational
conditions meanwhile the antecedent part is in charge of interpolating these sub-systems.
The “IF statements” define the premise part that is featured as linguistic terms while the
THEN functions constitute the consequent part of the fuzzy system characterized, but not
limited, as linear polynomial terms. The global model is then obtained by the interpola-
tion between these various local models. This model can be used to approximate a highly
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nonlinear function through simple structure using a small number of rules. The following
general form represents the T-S model:

R( j) : IF (z1 IS Aj
1) AND . . . AND(zm IS Aj

m) THEN(y = b j
0 +b j

1x j
1 +b j

q j
x j

q j
) (5.5)

The input vector of the premise is given byz= [z1, . . . ,zm]T , i = 1, . . . ,m, andA j
i are

linguistic terms (labels) of fuzzy sets. The fuzzy sets pertaining to a rule form fuzzy regions
within the input space,A j

1 x A j
2 x . . . x A j

m. The elementx = [x j
1, . . . ,x

j
q j ]

T represents the
input vector to the consequent part ofRj that comprisesq j terms;yi = y j(x j) denotes the
j-th rule output which is a linear polynomial of the consequent input termsu j

1; andb =

[b j
0,b

j
1, . . . ,b

j
q j ]

T are the polynomial coefficients that form the consequent parameter set.
Usually the input vector,z, is related to the elements ofx, that is,z(x), or evenz= x.

Given the input vectorsz andx j , j = 1, . . . ,M, the final output of the fuzzy system is
inferred by taking the weighted average of the local outputsy j(x j)

y =
M

∑
j=1

v j(z) ·y j(x
j) (5.6)

whereM denotes the number of rules andv j(z) is the normalized firing strength ofR( j),
which is defined as

v j(z) =
µj(z)

∑M
j=1µj(z)

(5.7)

and
µj(z) = µA j

1
(z1) ·µA j

2
(z2) · · ·µA j

m
(zm). (5.8)

Linguistic labelsA j
i may be, for instance, associated with Gaussian membership func-

tions,

µA j
1
(zi) = exp

[
−1

2
(zi −mi j )

2

σ2
i j

]
(5.9)

wheremi j and si j are the centres (mean value) and the spreads (standard deviations) of
the Gaussian function, respectively, that defines the core and the support of membership
functions.

When dealing with fuzzy model identification, instead of static functions (5.5),input
spaceX is replaced by a finite number of past inputs and past outputs of the system rep-
resenting the system dynamics [5]. In doing so, the T-S models employ regression type of
rules that maps the current state and input variable into the output variable and eq. (5.5) is
related to eq. eq. (5.3) in the following form:

R( j) : IF y(k) IS Aj
1 AND . . . AND y(k−n+1) A j

n

AND u(k) IS Bj
1 AND . . . AND u(k−m+1) B j

m

THENŷ j(k+1) = ∑n−1
i=0 a j

p y(k− i) + ∑n−1
p=0 b j

p u(k− p) + c j
(5.10)

The objective of the optimization process consists of determining (tuning) theseun-
known parameters,ai , bi , ci , Ai , andBi , (represented asθ) when using measured input-
output data so that a performance measure based on the output errors isminimized
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minθ

N

∑
k=1

‖ŷ(k+1)−y(k+1)‖ . (5.11)

In eq. (5.11),̂y(k+1) is the estimate output (or fuzzy function approximation) used for
computing the square error when compared with the actual output,y(k+ 1). This activ-
ity corresponds to the parameter-learning task and, consequently, the parameter estimation
process. The identification problem in T-S fuzzy modelling involves not onlyparameter
identification but structure identification as well. The structure identification, inturn, con-
sists of determining the premise space partition and extracting the number of rules and
determining the structure of the output elements (equations), respectively.

The identification of T-S system is realized in this paper based on PSO for premise part
optimization while the consequent part optimization is realized by batch least meansquares
method [27]. The batch least mean squares method requires the whole data set of the input
and output (all training data) and is implemented off-line.

5.3 PARTICLE SWARM OPTIMIZATION (PSO)

The PSO originally developed by Kennedy and Eberhart in 1995 is a population-based
swarm algorithm. PSO is a stochastic global optimization technique making use of apop-
ulation of particles, where the position and velocity of each particle represents a solution
to the problem being optimized. The PSO has been shown to be effective in optimising
multidimensional discontinuous problems in a variety of fields [8] [11] [35].

Each particle in PSO keeps track of its coordinates in the problem space, which are
associated with the best solution (fitness) it has achieved so far. This value is calledpbest.
Another “best” value that is tracked by the global version of the particle swarm optimizer
is the overall best value and its location obtained so far by any particle in the population.
This location is calledgbest. The PSO concept consists of, in each time step, changing
(accelerating) the velocity of each particle flying toward its pbest and gbest locations (global
version of PSO). Acceleration is weighted by random terms, with separate random numbers
being generated for acceleration toward pbest and gbest locations, respectively.

Similarly to genetic algorithms [16], an evolutionary algorithm approach, PSO isa
swarm intelligence optimization tool based on a population, where each member isseen
as a particle, and the position and the velocity of each particle is a potential solution to
the problem under analysis. Each particle in PSO has a randomized velocity associated to
it, which moves through the space of the problem. However, unlike genetic algorithms,
PSO does not have operators, such as crossover and mutation. PSO does not implement the
survival of the fittest individuals; rather, it implements the simulation of socialbehaviour.

The global version of PSO algorithm [11] [22] follows the steps show in Algorithm 5.1.
The first part in equation (5.12) is the momentum part of the particle. The inertia

weight, w, represents the degree of the momentum of the particles. The use of variable w
(inertia weight) was proposed in [34]. This parameter is in charge of dynamically adjusting
the speed of the particles, so it is responsible for balancing between localand global search.
A low value of inertia weight implies a local search, while a high value leads to a global
search. Applying a high inertia weight at the start of the algorithm and makingit decay to a
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Algorithm 5.1 Particle Swarm Optimization (PSO) Algorithm
Input: c1, c2, n, tmax

Output: xi , vi , pbest gbest

1. Initialization: Initialize a population (array) of particles with random positions and ve-
locities in the n-dimensional problem space using a uniform probability distribution func-
tion.
2. Evaluation: Evaluate the fitness value of each particle.
3. Comparison1: Compare each particle’s fitness with the particle’spbest. If the current
value is better thanpbest, then set the pbest value equal to the current value and the pbest
location equal to the current location inn-dimensional space.
4. Comparison2: Compare the fitness with the population’s overall previous best. If the
current value is better thangbest, then resetgbestto the current particle’s array index and
value.
5. Updating: Change the velocity and position of the particle according to eq. (5.12) and
(5.13), respectively [34] [35]:

vi(t +1) = w·vi(t)+c1 ·ud() · (pi(t)−xi(t))+c2 ·Ud() · (pg(t)−xi(t)) (5.12)

xi(t +1) = xi(t)+∆t ·vi(t +1) (5.13)

6. Stop criterion: Loop to step (ii ) until a stop criterion is met, usually a sufficiently
good fitness or a maximum number of iterations (generations).
end.

low value through the PSO execution makes the algorithm search globally at the beginning
of the search, and search locally at the end of the execution. The following weighting
function w is used in eq. (5.12):

w = wmax−
wmax−wmin

tmax
t. (5.14)

Equation eq. (5.14) shows how the inertia weight is updated, considering tmax is the
maximum iteration number, t is the current iteration number, and wmax and wmin arethe
initial and final weights, respectively.

The second part is the “cognitive” one, which represents the independent behaviour
of the particle. In this approachx1 = [xi1,xi2, . . . ,xin]

T stands for the position andv1 =
[vi1,vi2, . . . ,vin]

T for the velocity of thei-th particle;p1 = [pi1, pi2, . . . , pin]
T represents the

best previous position of thei-th particle (the position giving the best fitness value);t =
1,2, . . . , tmax indicates the iterations. Indexg represents the index of the best particle among
all the particles in the swarm. Variablesud(·) andUd(·) are two random functions in the
range [0, 1]. Equation (13) represents the position update, accordingto its previous position
and its velocity, considering∆t = 1.

Positive constantsc1 andc2 are called cognitive and social components, respectively.
These are the acceleration constants responsible for varying the particlespeed towardspbest
andgbest. In this paper, the constriction coefficient method is used in PSO based on ap-
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proach as shown in [10]. In doing so, the velocity equation is updated according to:

vi(t +1) = K · [vi(t)+c1 ·ud(·) · (pi(t)−xi(t))+c2 ·UD(·) · (pg(t)−xi(t))] (5.15)

when using a constriction coefficientK,

K =
2∣∣∣2−ϕ−
√

ϕ2−4ϕ
(5.16)

with ϕ = c1 +c2, ϕ > 4 andK is a function ofc1 andc2. Usually, f is set to 4.1 (c1 = c2 =
2.05), and the constriction coefficientK is 0.729. Other possible choices for the constriction
coefficients are available.

5.4 THERMAL-VACUUM SYSTEM FORSPACE QUALIFICATION

A block diagram representing the physical operational activity for the thermal-vacuum sys-
tem is depicted in Figure 5.7. The operation of the thermal-vacuum chamber is described
next. A vacuum environment is accomplished by the use of two separate pumping sys-
tems, after what the temperature is modified. The first pumping system is a single, dual
stage, rotary vane, mechanical pump that produces low pressure inside the chamber. Once
the desired pressure is reached, a high vacuum is obtained by using a cryogenic vacuum
pump with closed cycle helium compressor. The global system produces pressures around
1× 10−7 torr to simulate the vacuum present in space. When a satellite is in a vacuum
environment, the thermal cycle starts by modifying the temperature inside the shroud. The
operation of the thermal shroud is achieved by means of a re-circulating, dense, and gaseous
nitrogen (GN2) system. To maintain nearly constant heat transfer properties throughout the
wide range of system operation, a constant density system is utilized. Coolingthe circu-
lating gas stream is accomplished by spraying liquid nitrogen (LN2) into the circuit while
resistance type heaters mounted inside the piping network provide heat as required. The
GN2 thermal system is accomplished by using a dual output, time proportioning,heat-cool,
and Proportional-Integral-Derivative (PID) controller. The temperature controller sends out
setpoints to the GN2 pressure PID controller to keep constant heat transfer characteristics.
The system pressure is adjusted to the required level by modifying venting nitrogen gas
through the venting control valve (VCV) or by switching the LN2 supply valve (SV1) as
can be seen in Figure 5.7 and Figure 5.3.

Inside thermal-vacuum chamber there is no convective heat transfer, since pressure in-
side thermal-vacuum chamber is low. Convective heat transfer comes up only if vacuum
is lost, i.e., internal pressure becomes significant. Furthermore, temperature gradient in-
side payload may be considered negligible if there is fast heat conduction inside payload.
Heat transfer between payload and shroud in vacuum comes from radiation. Radiation heat
transfer can be written as:

MP∗CP∗
∂Tp

∂t
= σ∗ ε∗A∗ (T4

sh−T4
p )+Hc(Pc)∗ (Tsh−Tp) (5.17)

where∂Tp/∂t is the payload transition rate,Tpl is the payload average temperature (abso-
lute), Tsh is the shroud average temperature (absolute),Mpl is the payload mass,Cpl is the
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Figure 5.7. Block diagram for physical description of a thermal-vacuum chamber.

Figure 5.8. Thermal response: passive load.
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payload heat capacity,σ is the Stefan-Boltzmann’s natural constant,ε is the emissivity /
absorptivity of a grey body, andA is the radiating area.

Because radiation is basically the source of heat transfer between the payload and
shroud, thermal vacuum chambers are inherently nonlinear. This heat transfer depends non-
linearly on temperature,T4 as presented in eq. (5.17). When this equation is linearized, it is
possible to note that various thermal operational conditions correspond to the reference lev-
els (set points) used during the space product qualification. The modification in dynamics
occurs independently of linearization considering stationary behaviour or off-equilibrium
nominal trajectory. The time-delay is concerned with the thermal optical characteristics of
the specimen undergoing the test as well as its physical characteristics, best described by
specific mass, specific heat, and thermal conductivity [19].

In a glimpse, this nonlinear behaviour may be confirmed by real-world industrial dy-
namical response corresponding to the thermal-vacuum system with passive load (Figure
5.8). Continuous and dashed lines represent, respectively, temperatures in the gas of the
shroud and on the satellite. These experimental, measured data are employedto elicit the
fuzzy model through PSO approach. A detailed analysis shows that the system presents lo-
cal and global nonlinearities. This system has different conditions of operations according
to diverse reference values. It means that the subsystems individually associate to piece-
wise input values are nonlinear and that the set of piecewise input references, i.e., the set of
piecewise models for the global system are also nonlinear. Since there arenine references,
in this example there should be necessary determine nine fuzzy sub-models.This is the case
of representing (identifying) the global system through multiple models. This representa-
tion may also be understood as a gain-scheduling modelling approach. If linguistic terms
and fuzzy logic are employed then this is the case of a fuzzy gain-scheduling model. A
solution that fits the features of this system is, thus, to employ piecewise, gain-scheduling
fuzzy modelling.

5.5 IDENTIFICATION OF T-S FUZZY SYSTEM BASED ONPSO APPROACH

Identification of dynamic systems can be performed with a series-parallel orparallel model.
Series-parallel structure is the type of mathematical model adopted for thermal-vacuum
system identification when using the hybrid piecewise, gain-scheduling PSO-TS modelling
approach as shown in Figure 5.9.

Series parallel model was chosen due to its capability to make one step-aheadforecast-
ing with guaranteed stability of the training procedure. The outputs of current system are
used as inputs to the T-S fuzzy model. When a one-time ahead prediction is possible in this
case, the T-S model is said to have external dynamics [40].

For dynamic systems, the mathematical model must incorporate time lags, that is, there
must have some memory function in the T-S fuzzy model. In T-S fuzzy modelling and
in other fuzzy and neural networks approaches, this is performed with delayed inputs and
outputs that are employed as extra external inputs.

Assume that there is a T-S fuzzy model that produces an output,ŷ(k+1), based on an
input u(k) and the noise contribution present in the modelled process,n(k). The estimated
T-S fuzzy model output based on PSO,ŷ(k+1), used for computing the minimum square
error when compared with the actual output, y(k) was computed by usingone-step ahead
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Figure 5.9. Series-parallel identification of thermal-vacuum system using T-S model using
PSO and batch least mean squares methods for one-step ahead forecasting.

forecasting. Denoteny, nu, andnn as the time maximum lags of the model output, control
input, and noise, respectively. Depending on the time-lagged inputs that are used for the
T-S fuzzy model, different configurations of models can be used. In thiswork, a NARX
(Nonlinear Auto Regressive with eXogenous inputs) model was adopted,given by

ŷ(k) = fTS[u(k−1),u(k−2), . . . ,u(k−nu),y(k−1),y(k−2), . . . ,y(k−ny),θ] (5.18)

where the unknown nonlinear functionfTS is the T-S fuzzy model of the system andk is
the time. This function is parameterized by the vectorθ - representing the elementsai , bi ,
ci , in eq. (5.3) and eq. (5.10) andAi , andBi , in eq. (5.10) - and depends on premise and
consequent parts of T-S fuzzy model.

One of the most important tasks in building an efficient forecasting model based in T-S
fuzzy model is the selection of the relevant input variables. The input selection problem
can be stated as follows: among a large set of potential input candidates, choose those vari-
ables that highly affect the model output. Unfortunately, there is no systematic procedure,
currently available, which can be followed in all circumstances [30]. In thiswork, input
selection is heuristically performed. The inputs of T-S fuzzy system are process output
and control input signals of reduced order withny= 2, nu= 1, andnn= 0. In this work,
the three vectors of input for the T-S fuzzy system are[u(k−1);y(k−1);y(k−2)] and the
model output iŝy(k).

Although, PSO allows to extract the number of rules and to determine the premiseand
consequent elements, here this method is applied to obtain membership functionsand thus
to determine the premise space partition. The knowledge and expertise of operators are
applied in cooperative approach with experimental input-output data. In doing so, it uses

error, e(k)
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a predefined number of rules and membership functions arbitrarily chosenfor each input
Figure 5.10.

Setting up this parameter as 3 production rules, PSO needs to deal with a vector of
particles positions and velocity whose elements are 9 centres and 3 spreadsof a Gaussian
function, respectively, core and support of membership functions. Inthis case, the spread of
Gaussian membership function adopted for each input of vectors[u(k−1);y(k−1);y(k−
2)] of T-S fuzzy model is the same.

The system identification by T-S fuzzy model is appropriate if a suitable performance
index is available according to the necessities of users. Among a population of potential
solution to a problem, every particle of PSO has a fitness value for expressing appropriate
optimization result. The function representing this quality measure employs the position of
all particles,xi , which is calculated after each iteration.

The performance criterion (fitness function) chosen for evaluate the relationship be-
tween the real output and the estimate output during the optimization process was thePear-
son multiple correlation coefficientindex. This Coefficient represents the harmonic mean
of R of training and validation phases of T-S fuzzy model conducted byR2

harmonic as given
by:

R2
harmonic=

2
1

R2
training+ε + 1

R2
validation+ε

(5.19)

where:

R2
training = 1− ∑0.5Na

k=1 [y(k)−ŷ(k)]2

∑0.5Na
k=1 [y(k)−y]2

R2
validation = 1− ∑Na

k=0.5Na+1[y(k)−ŷ(k)]2

∑Na
k=0.5Na+1[y(k)−y]2

(5.20)

are, respectively, theR2-training (estimation) andR2-validation phases of the model; e is
the small tolerance value (10−16), Na is the total number of samples evaluated, andy is the
system real output. WhenR(·)2 is close to unit,R(·)2 = 1.0, a sufficient accurate model
for the measured data of the system is found. AR2 between 0.9 and 1.0 is suitable for
applications in identification and model-based control [33].

The main parameters deeply related to the success of PSO for tuning the premise part of
T-S fuzzy model are: (i) the number of particles (size of population), (ii ) the initial position
and velocity of particles, (iii ) the cognitive and social components (c1 andc2), (iv) the form
of inertia factor updating, and (iv) stopping criterion,tmax(adoptedtmax= 100 iterations).
One of advantage of this technique is that the initial population of particles is randomly
generated through a uniform probability distribution function. The sufficient number of
particles for this application was setup as 10. The main parameters of PSO approach are
shown in Table 5.1 and Table 5.2.

To illustrate the effectiveness of the multi model piecewise, gain-schedulingT-S fuzzy
model several simulations were carried out. Distinct results were obtained during the opti-
mization process according to the number of iterations (tmax) employed. Data description
and input data used for T-S fuzzy modelling using PSO (for premise part of rules) and batch
mean least squares method (for consequent part of rules) is presented in Table 5.3. This op-
timization process was carried out several times and the best fitness value when using 30 (or
50) iterations was of multiple model approach in terms of cost function precision, conform
Table 5.4 and Table 5.5.
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Figure 5.10.Flow chart of PSO algorithm.
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Table 5.1.Parameters for PSO application in T-S fuzzy model.

Parameters Selection

Number of particles 10
Number of iterations*, tmax 30 or 50 (see also Table 5.2 and Table 5.3)
Inertia weight setup constriction factor,K = 0.729
Cognitive component c1 = 2.05
Social component c1 = 2.05
* stopping criterion

Table 5.2. Data description employed in both single and Piecewise, GS T-S fuzzy mod-
elling.

Model Region Initial Samples Final Samples Steady-state output

1 200 655 46.30
2 656 1100 9.33
3 1100 1545 23.32
4 1546 2004 65.96

Piecewise 5 2005 2450 -6.62
Model* 6 2451 2895 25.84

7 2896 3354 86.23
8 3355 3764 -19.45
9 3765 4202 25.53

Single Model** 1-9 1 4202 Multiples
* n sub-models according to each reference signal

** one model for all references
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Table 5.3. Input data used in both single and Piecewise, GS T-S fuzzy modelling.

Model Region Initial Samples Training Samples Validation Samples
(50 % data) (50 % data) (50 % data)

1 200 228 227
2 656 222 222
3 1100 222 222
4 1546 229 229

Piecewise Model* 5 2005 223 222
6 2451 222 222
7 2896 229 229
8 3355 205 204
9 3765 219 218

Single Model** 1-9 200 2001 2001
* n sub-models according to each reference signal

** one model for all references

Table 5.4.Input data for both singular and Piecewise, Gain-scheduling T-S fuzzymodelling
by using PSO and mean least squares method (after tmax using PSO).

Model tmax

of Region R2
harmonic R2

training R2
validation

1 0.998660 0.999913 0.997409 30
2 0.997624 0.999425 0.995829 30
3 0.980940 0.994708 0.967547 30
4 0.993825 0.999354 0.988356 30

Piecewise 5 0.936217 0.994821 0.884133 30*
Model* 6 0.963058 0.997760 0.930689 30*

7 0.998747 0.999970 0.997526 30
8 0.947673 0.992144 0.907017 30
9 0.969982 0.983553 0.956780 30
mean 0.990913 0.996629 0.985326 -

Single Model** 1-9 0.990613 0.996818 0.984484 30
** when using 50 iterations were obtained for

region 5→ R2
harmonic= 0.980140,R2

traning = 0.993389,R2
validation = 0.967240,

region 6→ R2
harmonic= 0.998876,R2

traning = 0.999912,R2
validation = 0.997841,

*** when using 100 iterations were obtained for
region 8→ R2

harmonic= 0.999425,R2
traning = 0.999439,R2

validation = 0.999411,
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Table 5.5.Comparison of multiple models and single model.

Model R2
harmonic R2

harmonic R2
training R2

training R2
validation R2

validation
of region (multiple (single (multiple (single (multiple (single

model) model) model) model) model) model)

1 0.998660 4.44×10−16 0.999913 0.998432 0.997409 0.000000
2 0.997624 0.923552 0.999425 0.999449 0.995829 0.858369
3 0.980940 0.972558 0.994708 0.999267 0.967547 0.947240
4 0.993825 0.000000 0.999354 0.996003 0.988356 0.000000

Piecewise5 0.980140 0.956528 0.993389 0.998001 0.967240 0.918365
Model* 6 0.998876 0.637106 0.999912 0.999443 0.997841 0.467588

7 0.998747 0.000000 0.999970 0.998072 0.997526 0.000000
8 0.999425 0.961618 0.999439 0.998058 0.999411 0.927744
9 0.969982 0.000000 0.983553 0.994789 0.956780 0.000000
mean 0.990913 0.494595 0.996629 0.997946 0.985326 0.457700

Both single T-S fuzzy model and multiple, piecewise fuzzy model fitted the training
data withR2

training = 0.983553. Although single PSO-TS fuzzy model achieved a good
approximation for experimental data, it has not generalised well to new datafor all regions
when compared to the proposed multi-model approach.

These models were obtained through PSO by using different sampling ratesof data.
Continuous and dashed lines represent measured and simulated outputs in Figures 5.11 to
5.16. Experimental results had shown that the hybrid T-S fuzzy system and PSO approaches
presented successful results due precision in predicting nonlinear dynamics.

5.6 SUMMARY

Identification of nonlinear systems is a difficult task. Models derived formfirst principles
are usually difficult and/or costly to develop for processes that are notwell understood
or very complex. Fuzzy identification is an effective tool for the approximation of un-
certain nonlinear systems on the basis of measured data. The basic structure of a fuzzy
model consists of a rule base, a database and a reasoning mechanism. Forthis purpose,
T-S fuzzy model are widely investigated. T-S fuzzy models use if-then rules to describe
the process through a set of locally valid relationships. In this case, the problem of non-
linear system identification is reduced to identification of sub-systems definedover fuzzy
input sub-spaces driven by the reference. In order to obtain an optimal approximation the
T-S fuzzy model was employed in a cooperative approach with an efficient optimization
procedure for premise and consequent part of IF-THEN rules.

Different approaches for eliciting T-S fuzzy models from data have been proposed. In
this work is presented a hyperspace search mechanism based on swarmintelligence known
as Particle Swarm Optimization (PSO) to find out the premise part of rules of a T-S fuzzy
model for a thermal-vacuum system. For T-S fuzzy-like models, parameter optimization
techniques of premise part can be chosen independently form each other. The batch mean
least squares method is then employed to identify the parameters for consequent part of
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Figure 5.11. Region 1, 2, 3: resulting error (a) and thermal response (b) with piecewise,
gain-scheduling model.

Figure 5.12. Region 4, 5, 6: resulting error (a) and thermal response (b) with piecewise,
gain-scheduling model.
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Figure 5.13. Region 7, 8, 9: resulting error (a) and thermal response (b) with piecewise,
gain-scheduling model.

Figure 5.14.Region 1, 2, 3: resulting error (a) and thermal response (b) with general single
fuzzy model.
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Figure 5.15.Region 4, 5, 6: resulting error (a) and thermal response (b) with general single
fuzzy model.

Figure 5.16.Region 7, 8, 9: resulting error (a) and thermal response (b) with general single
model.
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rules (this problem is linear in the parameters). PSO is a population-based evolutionary
algorithm that presents advantages, such as, initial population of particlesis randomly gen-
erated through uniform distribution, there are no operators such as crossover and mutation
in genetic algorithm, simple rules describe complex behaviour, and there are simple code
and low computational cost.

Results of piecewise gain-scheduling T-S fuzzy model indicate that the PSOalgorithm
is a suitable method for tuning T-S fuzzy model for this class of problem. In thiswork, input
of reduced order was tested. The elicited fuzzy model with only three membership func-
tions determining the premise space partition demonstrated its effectiveness in emulating
the time response for the thermal-vacuum system. The resulting models exhibit anum-
ber of desirable characteristics such as accurate and robust capabilityfor one step-ahead
forecasting.

According to the suitable results obtained it must be of interest to explore the influence
of other parameters in obtaining the model. For example, the number of membership func-
tions may be increased, and since there is large amount of data other step ahead forecasting
modes may be exploited. As well, results has shown that the proposed piecewise, gain-
scheduling fuzzy T-S model seem adequate to be applied to control synthesis by employing
Parallel Distributed Controller (PDC) or Fuzzy Reference Gain-Scheduling (FRGS) con-
troller. The idea behind PDC to generate fuzzy controllers is to design compensator for
each rule of the fuzzy model. Since the method employed in this paper supplies multiple
models, each sub-model is assumed to be an appropriate model for each fuzzy controller
synthesis generating a piecewise, gain-scheduling T-S fuzzy controller. FRGS approach, in
turn, is a fuzzy controller synthesis in which the parameters of the controller(support and
core) change according to exogenous signals, such as, multiple goals, changes in the en-
vironment, or diverse context. Since the identification process supplied fuzzy sub-models
whose membership functions change their shape and distribution in the universe of dis-
course according to the reference, each sub-model would generate asub-controller in which
their membership functions fit their support and core to accommodate on-line and real-time
changes in the dynamics of fuzzy models.
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