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Abstract. In this paper we investigate the use of divergence-free wavelet bases for the Coherent
Vortex Extraction (CVE) of turbulent flows. We begin with a short presentation of the construction
of 3D divergence-free biorthogonal wavelets. We apply the CVE decomposition to a homogeneous
isotropic turbulent flow, computed by a Direct Numerical Simulation (DNS) at resolution 2403 and
upsampled to N = 2563. First, the CVE is applied to the vorticity field. Using the divergence-free
wavelets for the vorticity field makes sense since the vorticity also verifies an incompressibility condition
when the velocity does. The coherent part of the vorticity field is reconstructed from the largest wavelet
coefficients, corresponding to 3%N , while the complement constitutes the incoherent part. We show
that the coherent part corresponds to the vortex tubes of the flow and retains most of the energy
and enstrophy. These results are then compared to those obtained using non–divergent free wavelets,
both orthogonal and biorthogonal ones. Then we also apply the CVE method, using divergence-free
wavelets, to decompose the velocity field and subsequently compute the corresponding vorticity fields.
The results show that the decomposition of velocity exhibit large smooth vortex structures in contrast
to what is obtained with the decomposition of the vorticity.

Résumé. Dans cet article nous étudions l’utilisation des bases d’ondelettes à divergence nulle pour
l’extraction de tourbillons cohérents (Coherent Vortex Extraction: CVE). Nous rappelons d’abord
brièvement la construction des ondelettes à divergence nulle en dimension 3. Puis nous appliquons la
méthode CVE pour la décomposition d’un champ turbulent homogène isotrope, issu d’une simulation
directe de résolution N = 2403, et sur-échantillonné à N = 2563. Pour commencer, la décomposition
CVE est appliquée au champ de vorticité. Utiliser les ondelettes à divergence nulle dans ce contexte a
un sens, dans la mesure où si la vitesse vérifie une condition de divergence nulle, la vorticité la vérifie
également. La partie cohérente du champ de vorticité est construite à partir des 3%N plus importants
coefficients d’ondelettes, tandis que le complément constitue la partie incohérente de l’écoulement.
Nous montrons que l’écoulement cohérent correspond aux tubes de vorticité et contient une grande
part de l’énergie et de l’enstrophie du champ total. Ces résultats sont comparés à ceux obtenus avec des
ondelettes orthogonales et biorthogonales, qui ne sont pas à divergence nulle. Ensuite nous appliquons
les ondelettes à divergence nulle pour la décomposition CVE du champ de vitesse. Les visualisations des
champs de vorticité correspondant montrent que, contrairement à ce qui était obtenu pour l’écoulement
cohérent de la vorticité la partie cohérente de la vitesse met en évidence des tubes de vorticité réguliers.
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1. Introduction

The Coherent Vortex Extraction (CVE) method has been introduced in different papers [9–11, 16]. The
principle of the method consists in separating the flow into a coherent part and noise, which is supposed to be
Gaussian and decorrelated. The CVE is based on a wavelet decomposition of the field (originally the vorticity
field). A nonlinear approximation of the field, provided by the wavelet decomposition, and corresponding to
the best-N term approximation, i.e., we retain the Nc largest wavelet coefficients in the wavelet expansion, Nc

being chosen suitably. They correspond to the coherent part, whereas the remaining 97% of the coefficients
represent the incoherent background flow.

In [15] the coherent vortex extraction has been studied to analyze a 3D homogeneous isotropic turbulent
flow computed by Dinamical Numerical Simulations (DNS). In this paper we compare the CVE applied to the
vorticity using, either divergent free biorthogonal wavelets, or orthogonal and biorthogonal non divergent free
wavelets which have been presented in [15].

Both decompositions allow an efficient extraction of the coherent vortices retaining only few wavelet modes,
i.e. 3%N of the coefficients. Divergence-free wavelets have been originally designed by Lemarié [13] and have
been firstly used by Urban in the context of fluid mechanics, to analyze two-dimensional turbulent flows [1,19],
as well as to compute the 2D/3D Stokes solution for the driven cavity problem [17].

A recent work of Deriaz and Perrier [6] describe an efficient algorithm to compute a divergence-free wavelet
decomposition of any incompressible 2D/3D vector field, and a way to compute the Leray-projection, i.e. the
divergence-free part of any compressible field, directly in wavelet space.

Since for 3D incompressible flows, the velocity and vorticity fields are divergence-free, the coherent vortex
extraction in the divergence free wavelet decomposition is applied to both fields. For both analyses, we will
compare the coherent and incoherent parts of the flow with the total flow, and the corresponding statistics.

The paper is organized as follows: in section 2, we recall the basics of 2D/3D divergence-free wavelets. In
section 3 we present results of the CVE applied to DNS data (vorticity and velocity) of 3D homogeneous isotropic
turbulence. Finally, conclusions are given in section 4, where we present some perspectives for turbulence
modeling.

2. Divergence-free vector wavelets

2.1. 3D wavelets in the scalar case

Multivariate wavelet bases (orthogonal or biorthogonal) are obtained by tensor products of one-dimensional
wavelets or scaling functions. The construction of one-dimensional wavelets is linked to Multiresolution Analyses
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(MRA), see e.g. [8, 14]. In the following we will note by Vj the multiresolution spaces, and φ, ψ the associated
scaling functions and wavelets.

Isotropic wavelets versus anisotropic wavelets.
Isotropic wavelet bases are wavelet bases arising from the 3D MRA analyses Vj = V

(1)
j ⊗ V

(2)
j ⊗ V

(3)
j

constructed by space tensor products. Here V (i)
j denotes a one-dimensional MRA, which can be different in

each direction. In the standart setting the MRA are often identical in all directions, but it would not be the
case in the divergence-free context. In such MRA, 3D scaling functions are given by:

Φj,ix,iy,iz (�x) = φ
(1)
j,ix

(x) φ(2)
j,iy

(y) φ(3)
j,iz

(z)

where φ(i)
j,k(x) = 2

j
2φ(i)(2jx− k) are the 1D scaling functions of the MRA V

(i)
j (when k varies in Z).

The corresponding 3D wavelets are

Ψμ
j,ix,iy,iz

(�x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
(1)
j,ix

(x) φ(2)
j,iy

(y) φ(3)
j,iz

(z) if μ = 1

φ
(1)
j,ix

(x) ψ(2)
j,iy

(y) φ(3)
j,iz

(z) if μ = 2
φ

(1)
j,ix

(x) φ(2)
j,iy

(y) ψ(3)
j,iz

(z) if μ = 3
ψ

(1)
j,ix

(x) φ(2)
j,iy

(y) ψ(3)
j,iz

(z) if μ = 4
ψ

(1)
j,ix

(x) ψ(2)
j,iy

(y) φ(3)
j,iz

(z) if μ = 5

φ
(1)
j,ix

(x) ψ(2)
j,iy

(y) ψ(3)
j,iz

(z) if μ = 6
ψ

(1)
j,ix

(x) ψ(2)
j,iy

(y) ψ(3)
j,iz

(z) if μ = 7

Notice that the corresponding support of each basis function is a cube of size ∼ 2−j, but these functions
correspond to 7 different directions.

Anisotropic 3D wavelets are constructed by taking the tensor product of three 1D wavelet bases (which can
be different) ψ(i)

j,k(x) = 2j/2ψ(i)(2jx− k) (they are often called tensor-product wavelets). In this case, the basis
functions are generated from “anisotropic” dilations of the following tensor product function:

Ψ(x, y, z) = ψ(1)(x) ψ(2)(y) ψ(3)(z)

and they are given by:
Ψjx,jy,jz,ix,iy,iz(�x) = ψ

(1)
jx,ix

(x) ψ(2)
jy,iy

(y) ψ(3)
jz,iz

(z)

The above functions have different scales in different directions and thereforean anisotropic support.

2.2. Construction of div-free vector wavelets

Let
Hdiv,0(R3) = {u ∈ (L2(R3))3 ; div u ∈ L2(Rn), div u = 0}

be the space of divergence-free vector functions in R
3.

Compactly supported divergence-free wavelets bases of Hdiv,0(R3) were originally designed by P.G. Lemarié-
Rieusset, in the context of biorthogonal MRA [13], in the general case of R

n. We describe here the principles
of their construction, for more details on the related fast algorithms, we refer to [6].

3D divergence-free MRA
The construction of divergence-free wavelet is based on the existence of two different one-dimensional mul-

tiresolution analyses of L2(R) related by differentiation and integration. Let (V 1
j )j∈Z be a one-dimensional

MRA, with a derivable scaling function φ1, (i.e. V 1
0 = span{φ1(x−k), k ∈ Z}), and a wavelet ψ1: one can build

a second MRA (V 0
j )j∈Z with a scaling function φ0 (V 0

0 = span{φ0(x − k), k ∈ Z}) and a wavelet ψ0 verifying:
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φ′1(x) = φ0(x) − φ0(x − 1) ψ′
1(x) = 4 ψ0(x) . (1)

An example of MRA satisfying equation (1) is given by splines of degree 1 (V 0
j MRA spaces) and splines of

degree 2 (V 1
j MRA spaces). In both cases we draw the scaling functions φ0, φ1 and their associated wavelets

ψ0, ψ1 with shortest support (Fig. 1).
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Figure 1. Scaling functions and associated even and odd wavelets with shortest support, for splines
of degree 1 (left) and 2 (right).

To construct divergence-free scaling functions, we consider the following vector multiresolution analysis of(
L2(R3)

)3
: [Vj = (V 1

j ⊗ V 0
j ⊗ V 0

j ) × (V 0
j ⊗ V 1

j ⊗ V 0
j ) × (V 0

j ⊗ V 0
j ⊗ V 1

j )
]
j∈Z

The associated 3D vector scaling functions are given by:

Φ1(x, y, z) =

∣∣∣∣∣∣
φ1(x)φ0(y)φ0(z)
0
0

Φ2(x, y, z) =

∣∣∣∣∣∣
0
φ0(x)φ1(y)φ0(z)
0

Φ3(x, y, z) =

∣∣∣∣∣∣
0
0
φ0(x)φ0(y)φ1(z)

From these scaling functions we can derive divergence free scaling functions:

Φdiv,1(x, y, z) =

∣∣∣∣∣∣
φ1(x)[φ1(y)]′φ0(z)
−[φ1(x)]′φ1(y)φ0(z)
0

Φdiv,2(x, y, z) =

∣∣∣∣∣∣
0
φ0(x)φ1(y)[φ1(z)]′

−φ0(x)[φ1(y)]′φ1(z)

Φdiv,3(x, y, z) =

∣∣∣∣∣∣
−φ1(x)φ0(y)[φ1(z)]′

0
[φ1(x)]

′
φ0(y)φ1(z)

which are linear combinations of the “standard” scaling functions, by using the relation φ′1(s) = φ0(s)−φ0(s−1):

Φdiv,1(x, y, z) = Φ1(x, y, z) − Φ1(x, y − 1, z)− Φ2(x, y, z) + Φ2(x− 1, y, z)
Φdiv,2(x, y, z) = Φ2(x, y, z) − Φ2(x, y, z − 1) − Φ3(x, y, z) + Φ3(x, y − 1, z)
Φdiv,3(x, y, z) = Φ3(x, y, z) − Φ3(x− 1, y, z)− Φ1(x, y, z) + Φ1(x, y, z − 1))
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These functions generate a divergence-free MRA. As these three functions are linearly dependent (Φdiv,1 +
Φdiv,2 + Φdiv,3 = 0), we have to choose 2 scaling functions among the three above, for instance we can choose:

Vdiv,0 = span
{
Φdiv,1(�x − �k) ; Φdiv,2(�x− �k) ; �k ∈ Z

3
}

and define

Vdiv,j = span
{
u(2j .) ; u ∈ Vdiv,0

}

In this new divergence-free MRA, we can construct isotropic as well as anisotropic divergence free wavelet
bases. In both cases the divergence-free wavelets are given by linear combinations of the “canonical” but vector
valued wavelets of the MRA Vj .

In the isotropic case, from the 21 canonical generating 3D vector wavelets
{
�Ψi,μ | i = 1, 2, 3 , μ = 1, 7

}
:

�Ψ1,μ =

∣∣∣∣∣∣
Ψμ

0
0

�Ψ2,μ =

∣∣∣∣∣∣
0
Ψμ

0
�Ψ3,μ =

∣∣∣∣∣∣
0
0
Ψμ

one constructs 14 generating divergence-free wavelets Ψi,μ
div, (i = 1, 2, μ = 1, 7), and 7 complement functions Ψμ

n

(μ = 1, 7). Their exact forms can be found in [6]. We plot on Figure 2, an isosurface of the modulus of the
vorticity field, associated to each divergence-free basis function.

Figure 2. Isosurface of the modulus of the curl of the 14 div-free vector wavelets in R
3.

Unlike the isotropic case, anisotropic divergence-free wavelets are generated from two vector functions:

Ψan,1
div (x, y, z) =

∣∣∣∣∣∣
ψ1(x)ψ0(y)ψ0(z)
−ψ0(x)ψ1(y)ψ0(z)
0

Ψan,2
div (x, y, z) =

∣∣∣∣∣∣
0
ψ0(x)ψ1(y)ψ0(z)
−ψ0(x)ψ0(y)ψ1(z)
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by anisotropic dilations, and translations. Anisotropic three-dimensional divergence-free wavelets take the form:

Ψan
div,1,j,k(x1, x2, x3) =

∣∣∣∣∣∣
2j2ψ1(2j1x1 − k1)ψ0(2j2x2 − k2)ψ0(2j3x3 − k3)
−2j1ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)ψ0(2j3x3 − k3)
0

Ψan
div,2,j,k(x1, x2, x3) =

∣∣∣∣∣∣
0
2j3ψ0(2j1x1 − k1)ψ1(2j2x2 − k2)ψ0(2j3x3 − k3)
−2j2ψ0(2j1x1 − k1)ψ0(2j2x2 − k2)ψ1(2j3x3 − k3)

with j = (j1, j2, j3), k = (k1, k2, k3) ∈ Z
3.

Decomposition of
(
L2(R3)

)3
: Since divergence-free wavelets generate Hdiv,0(R3) (and not

(
L2(R3)

)3
),

we have to introduce complement functions Ψn,j,k (see [6] for examples of such functions) to form a basis of
the vector space

(
L2(R3)

)3
.

For instance in the isotropic case, it writes:

(
L2(R3)

)3
= span

{
Ψi,μ

div,j,k

}
⊕ span

{
Ψμ

n,j,k

}
(2)

The choice of these complement functions is not unique, and for a given compressible field, it induces the
values of its divergence-free wavelet coefficients.

As divergence-free wavelets with compact support are not compatible with orthogonal MRAs, we can’t find
an orthogonal complement. Thus the decomposition is not orthogonal. However we have rot Ψμ

n,j,k �= 0.
Now we can write the wavelet decomposition of any vector field u:

u =
∑

μ,i,j,k

di,μ
div,j,k Ψi,μ

div,j,k +
∑
μ,j,k

dμ
n,j,k Ψμ

n,j,k (3)

The computation of the coefficients di,μ
div,j,k corresponding to the div-free part is in pratice obtained through

a standard wavelet decomposition of each component of u, followed by a linear combination of these coefficients
(see [6]). Then the complexity of a divergence-free wavelet decomposition is of the same order than a 3D Fast
Wavelet Transform (O(N) operations to compute N coefficients).

Remark that if u is incompressible, the second term in the decomposition (3) vanishes, since we have:

div u =
∑
μ,j,k

dμ
n,j,kdivψμ

n,j,k = 0

where it can be seen that the family (divψμ
n,j,k) forms a Riesz basis of L2(R3) [6], applying dμ

n,j,k = 0.

3. Numerical results

3.1. Principle of the CVE decomposition

We consider a 3D vector field, either velocity u, or vorticity ω. The principle of the coherent vortex extraction,
in the divergence-free wavelet context, is as follows: First, the vector field u is developed into divergence-free
vector wavelets and complement functions:

u =
∑

μ,i,j,k

di,μ
div,j,k Ψi,μ

div,j,k +
∑
μ,j,k

dμ
n,j,k Ψμ

n,j,k
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Then a threshold is applied to the (L2-renormalized) wavelet coefficients, i.e., only wavelet coefficients whose
modulus is large than a given threshold are retained in absolute value. In order to compare our results with
those of [15], we choose a threshold T such that the total number of coefficients retained in the coherent part
corresponds to 3 % N with N = 2563 here. The coherent part of the field is then:

uc =
∑

|di,µ
div,j,k

|>T

di,μ
div,j,k Ψi,μ

div,j,k +
∑

|dµ
n,j,k|>T

dμ
n,j,k Ψμ

n,j,k

Remark that if u is divergence free, the second term of the right hand side vanishes. But in practice, vector
fields u arising from a spectral code will verify a div-free condition in the Fourier domain; after interpolation in
the spline-wavelet domain, this divergence free condition is no more observed and one has to take into account
the complement part.

The incoherent velocity is computed by the difference with the total field:

ui = u− uc.

Since the divergence-free wavelets and their complement functions form a biorthogonal (and not orthogonal)
basis of (L2(R3)3), the total energy verifies:

E =
1
2
‖uc + ui‖2 = Ec + Ei+ < uc|ui > (4)

In the same way, the CVE is applied to the vorticity field ω, leading to a coherent vorticity ωc and an
incoherent vorticity ωi = ω − ωc. Similarly, the total enstrophy verifies

Z =
1
2
‖ωc + ωi‖2 = Zc + Zi+ < ωc|ωi > (5)

3.2. DNS data

We apply the CVE, with divergence-free wavelets, to the vorticity and velocity fields of a 3D homogeneous
isotropic turbulent flow. The data are coming from a DNS (direct numerical simulation), using a pseudo-spectral
code at resolution 2403 [20], upsampled to 2563. The flow is forced at the largest scale, and the turbulence level
corresponds to a microscale Reynolds number Rλ = 150, with

Rλ =
λVrms

ν

and where λ = (E/Z)1/2 denotes the Taylor microscale, Vrms the root-mean-square velocity, and ν the kinematic
viscosity. Figure 6 shows a 643 sub-cube of the modulus of vorticity what can we see vortex tubes.

The divergence free wavelets used in the numerical experiments are constructed from biorthogonal splines of
degree 1 (spaces V 0

j ) and 2 (spaces V 1
j ) (see section 2). We begin with a comparison of the compression rates

between isotropic and anisotropic wavelets, obtained through the nonlinear compression of the vorticity field.
Comparison of compression rates between isotropic and anisotropic div-free wavelets: Figure 3

represents the error provided by the nonlinear approximation, in terms of the number of retained coefficients
(in semi–logarithmic scale).

As one can see on Figure 3, the compression curve (we represented the relative enstrophy of the incoherent part
ωi, versus the number of retained coefficients) associated to isotropic wavelets is already decreasing, whereas
the one associated to anisotropic wavelets grows for a low number of retained coefficients (due to the non
orthogonality), before decreasing. This comparison between isotropic and anisotropic divergence free wavelets
clearly shows that for CVE purpose, the isotropic decomposition is more adapted, since we will highly compress
the fields, by retaining a very few number of wavelet modes.
Compression rates of the divergence-free projection of the discrete vorticity field, and of its com-
plement: Figure 4 represents the compression curves of the div-free part of the vorticity and of its complement
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Figure 3. Comparison between isotropic (plain line) and anisotropic (dashed line) div-free
wavelet compression of the vorticity field in semi–log scale.

part, when using isotropic wavelets (divergence-free wavelets and complement wavelets, as in decomposition
(2)). As one can see, the complement part is not negligible, since the field we analyze does not verify a diver-
gence free condition, after interpolation in the considered spline space. Nevertheless, the complement functions
will represent less than 0.4 % of the total coefficients retained in the 3 %-best terms approximation.
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Figure 4. Compression error in terms of the number of retained coefficients (log-log scale):
div-free part (plain line) and complement part (dashed line) of the vorticity field.

Compression rates of the divergence-free projection of the discrete velocity field,
and of its complement:
Figure 5 represents the compression curves of the div-free part of the velocity, and of its complement part,

when using isotropic divergence-free wavelets and complement wavelets (see (2)).
The curves clearly show that the non div-free part (arising artificially from the spline interpolation), in the

velocity decomposition, is in practice negligible.
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Figure 5. Compression error in terms of the number of retained coefficients (log-log scale):
div-free part (plain line) and complement part (dashed line) of the velocity field.

3.3. CVE in the 3D vorticity field

We first apply the CVE decomposition with divergence free wavelets to the vorticity field, and we compare
our results to those obtained in [15] with orthogonal and biorthogonal bases (respectively Coifman 12 and
Harten 3). We use the following notations:
ω: vorticity field (100% of the coefficients N = 2563)
ωc: vorticity for the coherent part (3 % of the coefficients)
ωi: vorticity for the incoherent part (97 % of the coefficients)

ω = ωc + ωi

Z = 1
2 < ω|ω >: Enstrophy of the whole field

Zc = 1
2 < ωc|ωc >: Enstrophy of the coherent part

Zi = 1
2 < ωi|ωi >: Enstrophy of the incoherent part

< ωc|ωi >: cross-term.
Following (5), the cross-term is being computed by

< ωc|ωi > = Z − Zc − Zi

The initial vorticity field is plotted in Figure 6. The coherent and incoherent vorticity parts, using either the
divergence-free, orthogonal and biorthogonal decomposition are shown on Figure 7.

The coherent part, obtained by retaining only the 3 % largest wavelet modes, is close to the original field,
and retains the coherent vortex tubes present in the total vorticity, similarly to the orthogonal and biorthogonal
decompositions.

The incoherent part in the div-free decomposition does not exhibit vortex tubes, although some structures
can still be observed. In comparison to the incoherent parts obtained with non divergence-free wavelets, this
effect is less pronounced for orthogonal wavelets (Fig. 7, middle) and more pronounced for biorthogonal wavelets
(Fig. 7, bottom).

Note that the values of the isosurfaces for the incoherent parts have been reduced by a factor 2.
The statistics of the resulting fields, provided by the divergence-free, orthogonal and biorthogonal wavelet

decompositions are reported in Table 1.
The first important criterion is the norm of the incoherent part which measures the distance between the

wavelet approximation and the original field. The second important criterion is the cross-term which measures
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Figure 6. Modulus of the vorticity for the total field. Zoom of the top-left-front-cube of size 643. The
surfaces, from light to dark, correspond to ‖�ω‖ = 3σ, 4σ and 5σ, with σ =

√
2Z

the correlation between coherent and incoherent part. For practical reasons, the ideal situation is when this
cross-term vanishes.

For the three decompositions, only 3% of the wavelet coefficients retain, for divergence-free biorthogonal
wavelets 74.7% of the enstrophy, for the orthogonal non divergence-free wavelets 75.5% and for the biorthogonal
non divergence-free wavelets 69.0% of the total enstrophy, while the incoherent parts correspond to 18.1%,
24.4% and 27.3%, respectively.

In contrast to the orthogonal decomposition, where the cross term vanishes, we observe for both biorthogonal
decompositions non vanishing cross terms, i.e. 7.1% for the divergence-free wavelets and 3.6% for the non
divergence-free wavelets.

As a conclusion for this analysis, the orthogonal wavelets Coifman 12 provide the best results.

Decomp.field
V orticity T otal Coherent Incoherent Cross− term
%coef 100% 3% 97%

Divergence− free
Enstrophy 151.6 113.3 27.5 10.8

%ofEnstrophy 100% 74.7% 18.1% 7.1%
Orthogonal

Enstrophy 151.6 114.5 37.1 0
Enstrophy(%) 100% 75.5% 24.5% 0%

Biorthogonal
Enstrophy 151.6 104.6 41.4 5.4

Enstrophy(%) 100% 69.0% 27.3% 3.6%

Table 1. Statistical properties of the vorticity field for the divergence-free, orthogonal -Coifman 12-
and biorthogonal -Harten 3- decompositions.



156 ESAIM: PROCEEDINGS

Figure 8 shows the probability distribution function (PDF) of vorticity in semi-log scale, for the divergence-
free decomposition. It is to be compared to the ones obtained in [15], and plotted on Figure 9 with orthogonal
Coifman-12 (left) and biorthogonal Harten-3 (right) wavelet bases.

The figures show for the three cases that the PDF of the coherent vorticity is very closed to the one of the
total vorticity, while the extreme values of the PDFs of the incoherent vorticity are reduced by about a factor
three (Fig. 8 and 9, left) and only by a factor two (Fig. 9, right) in the case of biorthogonal non divergence-free
wavelets.

Figure 10 shows the isotropic enstrophy spectrum for the total, coherent and incoherent fields for the
divergence-free wavelet decomposition. One observes that the coherent spectrum follows the total spectrum
in the inertial range, whereas it is steeper in the dissipative range, i.e. for high wavenumbers (k > 30). On the
other side, the incoherent spectrum corresponds only to wavenumbers k ≥ 30, namely in the dissipative range.

3.4. CVE in the 3D velocity field

In this section, we apply the CVE using divergence-free wavelets to the velocity field instead of the vorticity
field. The CVE method provides a coherent part uc, and an incoherent part ui of the total velocity u. We then
compute and plot (Fig. 11) the curl of the coherent and incoherent velocities, that we compare to the coherent
and incoherent vorticities (Fig. 7, top) previously computed.

The statistics of the resulting velocity fields are given in Table 2. We compare them to those obtained
with orthogonal and non divergence free biorthogonal wavelets, where the coherent and incoherent velocity
fields have been computed from the coherent and incoherent vorticity fields previously extracted via the CVE
method. In all cases, we observe that only 3% divergence-free wavelet modes retain about 98.8% of the total
energy, while the remaining 97% modes contain 0.4% of the energy. For the non divergence-free decompositions
we find in the orthogonal and biorthogonal case that 99.0% and 98.6% of the energy are retained by the coherent
velocities, while 0.6% and 0.7% of the energy are retained by the incoherent velocities, respectively. The cross-
terms contain 0.8%, 0.4% and 0.7% of the energy, respectively. Note that the orthogonal decomposition is only
orthogonal for vorticity and not for velocity, as wavelets are not eigenfunctions of the Biot–Savart operator used
to compute the corresponding velocities from the decomposed vorticities.

Decomp.field
V elocity T otal Coherent Incoherent Cross − term
%coef 100% 3% 97%

Divergence− free
Energy 1.358 1.342 0.006 0.010

%of Energy 100% 98.8% 0.4% 0.8%
Decomp.field T otal Coherent Incoherent Cross − term
V orticity Orthogonal
Energy 1.358 1.344 0.008 0.006

Energy(%) 100% 99.0% 0.6% 0.4%
Biorthogonal

Energy 1.358 1.338 0.010 0.010
Energy(%) 100% 98.6% 0.7% 0.7%

Table 2. Statistical properties of the velocity field for the divergence-free decomposition compared
to statistical properties of the energy issued from the CVE of the vorticity field with orthogonal and
biorthogonal wavelet thresholding.
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Figure 12 shows the PDF of the velocity in semi-log scale, for the divergence-free decomposition, whereas
Figure 13 shows the PDF of the velocity, reconstructed from the CVE of the velocity fields (total, coherent and
incoherent), in the orthogonal (left) and biorthogonal (right) decomposition.

The curves obtained in the divergence-free case for a CVE on the velocity are very closed to the ones obtained
in the orthogonal case with a CVE on the vorticity. In the div-free case, the coherent velocity has the same
Gaussian distribution as the total velocity, and the PDF of the incoherent velocity is also almost a Gaussian.
This behaviour can be explained by the fact that the coherent velocity and the incoherent velocity are almost
orthogonal in the divergence-free decomposition (the cross-term represents only 0.8% of the total energy),
which is not really the case for the coherent and incoherent vorticities in previous section (where the cross-term
represents about 7% of the total enstrophy).

Figure 14 shows the energy spectra associated to the CVE of the velocity field in the divergence-free wavelet
decomposition: as one can see, the energy spectrum of the coherent velocity is identical to that of the total
velocity along the inertial range, whereas it differs for high wavenumbers corresponding to the dissipative
range. For the incoherent flows, the slope of the spectrum is very closed to k2, meaning that the velocity is
decorrelated in physical space. By comparison, Figure 15 represents the energy spectra associated to the CVE
of the vorticity field, with the orthogonal (left) and biorthogonal (right) decompositions. The main difference
lies near the Nyquist frequency where the coherent velocity in Figure 14 saturates, instead of decreasing.

As a conclusion, results with the three types of decomposition are comparable. But we can notice here that,
although the complexity of the three methods are equivalent, divergence-free wavelets allow to apply the CVE
method directly in the velocity field.

4. Conclusion

In the present paper we investigated the interest of divergence-free biorthogonal wavelets for extracting
coherent vortices out of turbulent flows. We applied the coherent vortex extraction algorithm based on a
nonlinear thresholding of the wavelet coefficients to DNS data of homogeneous isotropic turbulence at Rλ = 150.
In the first part we applied the algorithm to the vorticity field. We found that the divergence-free biorthogonal
wavelets yield similar results than orthogonal wavelets, which are better than those with biorthogonal non
divergence-free wavelets. In the second part we applied the coherent vortex extraction algorithm to the velocity
field using divergence-free biorthogonal wavelets. We observed that the results are comparable to those with
orthogonal and non divergence free biorthogonal wavelets, although in these two last cases the coherent and
incoherent velocity parts are computed from the coherent and incoherent vorticity fields previously extracted.
The obtained results motivate the use of divergence-free wavelets for Coherent Vortex Simulation [9,16], where
the time evolution of the coherent flow is deterministically computed in an adaptive wavelet basis.
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European Union project IHP on ’Breaking Complexity’, contract HPRN-CT-2002-00286.
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Figure 7. Comparison between divergence-free biorthogonal wavelets (top) and non divergence free
orthogonal (middle) or biorthogonal (bottom) wavelets. Modulus of the vorticity for the coherent part
(left) and incoherent part (right) of the CVE method. Zoom of a cube of size 643 (from the second row,
second line and second column). The isosurfaces, from light to dark, correspond to ‖�ω‖ = 3σ, 4σ and
5σ on the left side, ‖�ω‖ = 3

2
σ, 2σ and 5

2
σ on the right side.
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Figure 8. PDF (probability distribution function) of vorticity associated to the divergence-free
biorthogonal wavelet decomposition.
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Figure 9. PDF (probability distribution function) of vorticity associated to the orthogonal (left) and
biorthogonal (right) non divergence-free wavelet decomposition.
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Figure 10. Enstrophy spectra obtained by divergence-free wavelet decomposition. x-axis: wavenum-
ber, y-axis: enstrophy spectrum.

Figure 11. Divergence-free wavelet decomposition. Modulus of the vorticity field associated to the
coherent velocity (left) and the vorticity field associated the incoherent velocity (right) of the CVE
method. Zoom of the top-left-front-cube of size 643. The surfaces, from light to dark, correspond to
‖�ω‖ = 3σ, 4σ and 5σ on the left side, ‖�ω‖ = 3

2
σ, 2σ and 5

2
σ on the right side.
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Figure 12. PDF (probability distribution function) of velocity associated to the divergence-free
wavelet compression with 3% of the coefficients.
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Figure 13. PDF (probability distribution function) of velocity associated to the orthogonal (left) and
biorthogonal (right) wavelet decomposition.
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Figure 14. Energy spectra associated to the CVE of the vorticity field: divergence-free wavelets.
x-axis: wavenumber, y-axis: energy spectrum.
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Figure 15. Energy spectra associated to the CVE of the vorticity field: orthogonal (left) and biorthog-
onal (right) wavelet decomposition. x-axis: wavenumber, y-axis: energy spectrum.


