

VII ENCONTRO REGIONAL DE CATÁLIJE

VII ERCat2006/3°Regional SBCat

26 a 27 de maio de 2006 - Lorena/Cachoeira Paulista-SP

INFLUÊNCIA DO NIÓBIO NA ACIDEZ DO SISTEMA Nb₂O₅/Al₂O₃

Gilberto Garcia Cortez^{1,*}, José Benedito de Paiva Jr¹, Waldinei Rosa Monteiro², Marisa Aparecida Zacharias² e José Augusto Jorge Rodrigues²

¹DEQUI, FAENQUIL, Rod. Itajubá- Lorena, Km 74,5 - Lorena/SP, Caixa Postal 116 - CEP 12600-000 Fone: (xx12) 3159-5105 - Fax: (xx12) 3153-3224, E-mail: cortez@dequi.faenquil.br

Fone: (xx12) 3186-9200 - Fax: (012) 3101-2324, E-mail: jajr@lcp.inpe.br

Introdução

O uso da nióbia como promotor em catalisadores e como suporte tem sido investigado em numerosas aplicações catalíticas, tais como, na oxidação seletiva, conversão de hidrocarbonetos, polimerização, eliminação de poluentes (NO_x), desidrogenação, etc. Dentre estas aplicações, a oxidação catalítica é, provavelmente, o processo industrial em que a nióbia pode atuar como catalisador ou como promotor catalítico. Sabe-se que a adição de nióbio em γ-Al₂O₃ melhora a acidez, a seletividade e a estabilidade térmica e, conseqüentemente, a atividade catalítica (Tanabe, 2003) desses materiais. A atividade catalítica dos sistemas contendo nióbia suportada é decorrente das diferentes espécies redox do óxido de nióbio presentes na superfície do sólido (Wachs, *et al.*, 1996). O presente trabalho tem como objetivo avaliar a influência do teor de nióbio nas propriedades de extrudados de Nb₂O₅/Al₂O₃, entre elas, a acidez total e a área específica. A fim de alcançar o objetivo deste trabalho, as seguintes técnicas foram utilizadas: volumetria de N₂ (método BET), termodessorção de amônia e difratometria de raios-X (DRX).

Experimental

O sistema catalítico Nb_2O_5/Al_2O_3 foi preparado por mistura física do composto de nióbio (HY-340, CBMM), previamente disperso conforme metodologia descrita na patente (INPI-Prot. 300240209744) com uma boehmita comercial (catapal A), ambos sob a forma de pó. A mistura resultante, após moagem e dispersão, foi formatada por extrusão em "pellets" cilíndricos com diâmetro de 3,8mm, e tratada termicamente a 500° C, durante 6h, em um forno microprocessado. As composições dos sistemas Nb_2O_5/Al_2O_3 foram de 5, 10 e 20% p/p de HY-340 em γ -Al $_2O_3$. O catalisador foi identificado como xNb/Al, onde x é a percentagem em peso de HY-340.

Os catalisadores foram caracterizados empregando as seguintes técnicas: volumetria de N_2 (equipamento da marca Quantachrome, modelo NOVA 1000) na determinação da área específica (método BET), difratometria de raios-X (equipamento da marca SEISERT, modelo Isodebyeflex 1001 com radiação K α do Cu, $\lambda=1,54178$ Å) na identificação das fases cristalinas e termodessorção de amônia (equipamento da marca Quantachrome, modelo Chembet-3000) e, após termodessorção, titulometria com amônia na determinação da acidez total.

Resultados e Discussão

As áreas específicas (Sg) dos materiais calcinados a 500° C/6h são apresentados na tabela 1, indicando um máximo para esta propriedade em 10% de Nb.

Tabela 1 – Área específica dos materiais obtidos

Materiais	Nb ₂ O ₅	Al ₂ O ₃	5NbAl	10NbAl	20NbAl
$\operatorname{Sg}(\operatorname{m}^2.\operatorname{g}^{-1})$	104	281	245	271	244

²LCP, INPE – Cachoeira Paulista – SP, Rod. Presidente Dutra, km 40 – SP/RJ, Caixa Postal 01 - CEP 12630-970

A Figura 1 apresenta os difratogramas de raios-X dos materiais calcinados a 500°C/6h . Observa-se que o Nb_2O_5 apresenta baixa cristalinidade, estando o pico mais intenso em $2\theta = 22,74^{\circ}$ característico da fase TT ou T (Ko e Weissman, 1990). O perfil de DRX da $\tilde{\text{a}}$ -Al $_2\text{O}_3$ apresenta picos característicos em 2θ iguais a $66,62^{\circ}$ e $45,80^{\circ}$ (Zou *et al*, 2003), característicos de uma boehmita. A presença de 5% p/p de Nb_2O_5 em Al_2O_3 não modifica o perfil de DRX do produto, em relação à alumina. A baixas concentrações, o óxido de nióbio encontra-se totalmente disperso, não sendo possível a identificação do mesmo por DRX. Com o aumento da concentração de 10 a 20% de Nb_2O_5 em alumina, observa-se o surgimento de um pico em $2\theta = 22,84^{\circ}$, correspondente à fase cristalina T ou TT do Nb_2O_5 . Com o tratamento térmico empregado, não se observou a formação de um óxido bimetálico.

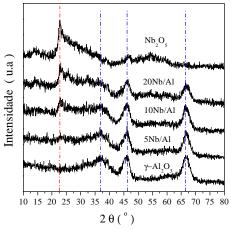


Figura 1 – DRX dos materiais calcinados

A tabela 2 apresenta a quantidade de NH_3 dessorvida em miliequivalentes por metro quadrado de material. Os resultados deixam evidente que a acidez total do sistema aumenta com o teor de Nb_2O_5 , observando-se um efeito sinérgico.

Tabela 2 – Resultados de dessorção de NH₃.

			5	3	
Materiais	Nb_2O_5	Al_2O_3	5NbAl	10NbAl	20NbAl
$meqNH_3.m^{-2}(x10^{-3})$	8,18	3,24	4,27	4,43	4,92

Conclusões

A adição de nióbio em alumina gera catalisadores com maior acidez total no sistema xNb/Al, sendo este efeito mais pronunciado nos materiais com maior teor de nióbio. Conforme o esperado, a metodologia empregada na preparação do sistema xNb/Al não acarreta alteração estrutural na matriz alumina e não compromete suas propriedades texturais.

Agradecimentos

Ao LCP/INPE (Cachoeira Paulista/SP) e a FAENQUIL/DEQUI/DEMAR.

Referências

Tanabe, K. Catal. Today, 78, p. 65-77, 2003.

Wachs, I. E., Jehng, J. -M., Deo, G., Hu, H. and Arora, N. *Catal. Today*, 28, p. 199-205, 1996. Patente CBMM, INPI-Prot. N° 300240209744, (2004).

Ko, E. I. and Weissman, J. G. Catal. Today, 8, p. 27-32, 1990.

Zou, H., Ge, X., Shen, J. *Thermochimica Acta*, 397, p. 81-86, 2003.

Wachs, I. E., Briand, L. E., Jehng, J. M., Burcham, L., Gao, X. Catal. Today, 57, p. 323-328, 2000.