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Abstract 
 
The importance of the relationship between the life cycle of the mesoscale convective 

system (MCS) and the rainfall rate it produces has been reported in several works. In 

spite of that, a specific quantification of this relationship has not been found. Our aim 

was to find an empirical relationship between the characteristics that describe the MCS 

life cycle and the amount of rainfall rate it produces in order to develop a rainfall rate 

estimation algorithm. This paper reports a rainfall satellite estimation technique using 

the Precipitation Radar product (PR) onboard the TRMM Satellite, GOES IR (10.5 µm) 

brightness temperature (Tb), an IR-VIS (0.65µm) cloud classification and radiative 

properties of clouds over the life cycle of deep convective systems. Numerous earlier 

studies focus on this subject using patch or pixel-based techniques. We use both 

techniques with satisfactory results when compared with the Hydroestimator technique. 

The algorithm first associates rain with the colder pixels belonging to a certain cloud 

type (convective clouds, cumulus and cold stratiform clouds). The rainfall estimation is 

carried out using the MCS properties (expansion and difference mean temperature 

among others), the internal brightness temperature (Tb) variability of the pixel for every 

cloud type and some statistical assumptions. The method performs reasonably well in 

the case of convective, but also for stratiform rainfall, although it tends to overestimate 

rainfall rates values. 
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1. Introduction 
 
Several works focus on the rainfall rate estimation using IR VIS imagery highlighting 

its importance due to the low sampling of the ground-based radars and the sparse 

distribution of the rain gauges. Satellite estimations provide high spatial and temporal 

sampling frequencies, but the information is inferred through indirect methods leading 

to significant errors in both rain / no rain discrimination and rainfall rate estimation. 

Previous works report the applications of satellite rainfall rate estimation in 

hydrological, meteorological and climatological sciences: flood forecasting, validation 

rainfall forecast from numerical weather prediction (NWP) models, moisture budget 

studies and evaluation of climate models (Adler and Negri, 1988; Ba and Gruber, 2001; 

Kuligowski, 2002; Xu et al., 1999; Vicente et al., 1998; Ebert et al., 1996). Laing et al. 

1999 emphasise the influence of rainfall on agriculture and how monitoring it can help 

to reduce human injuries during floods. For these reasons Kidd et al., 2003, draws 

attention to the importance of suitable satellite rainfall rate estimation monitoring in the 

economy.  

The IR satellite rainfall estimate has been a topic of study since the late 1970s. The 

hydroestimator technique (Vicente et al., 1998; Vicente et al., 2002) is based on the 

methodology developed by Scofield (1987) and uses a non-linear power law 

relationship between the top cloud temperature and the radar-derived rainfall rate 

estimates, a gradient and growth rate mask and a humidity mask to compute rainfall 

rates. The hydroestimator technique (HE) was developed to estimate intense convective 

systems rainfall rates. Arkin and Meisner (1987) developed the GOES precipitation 

index (GPI) method, which explores statistical relationships between cloud top 

temperatures and rainfall. The technique assigns a mean rainfall rate to all the pixels 

below a threshold temperature. The GPI is more indicated to estimate monthly 
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cumulated rainfall than shorter time range estimates. The GOES Multispectral Rainfall 

Algorithm (GMSRA) is described by Ba and Gruber (2001). The method uses five 

channels from the GOES satellite and incorporates cloud-top particle information by 

taking advantage of the spectral resolution. As well as the HE, GMSRA uses an 

additional moisture correction factor to account for evaporation of rainfall falling from 

the clouds and not reaching the surface (Kidd et al., 2003). Both HE and GMSRA 

estimates improve the GPI, with better correlations, BIAS and RMS. Laing et al. (1999) 

present a relationship between SSMI/I-derived precipitation characteristics and IR data 

to estimate the precipitation produced by African mesoscale convective complexes 

(MCC). The precipitation is diagnosed using the IR-observed cold cloud area as a 

function of time of the MCC’s life cycle. Xu et al. (1999) presents a method for 

identification and removal of no-rain cold clouds from IR imagery. Seven cloud patch 

features are used to describe cloud-top properties and produce classification rules. 

Lastly, Hsu and Gao (2004) describe the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks (PERSIAN) Cloud Classification 

System (CCS). Local and regional cloud features are extracted to calibrate the cloud-top 

temperature and rainfall relationships for the classified cloud groups. The results show 

good correlations coefficients at 0.25 degree grid size boxes.  

This work presents a new Rainfall Estimation method using Satellite imagery (RESAT) 

for the area of South America. This region, which includes the Amazonian forest, 

covers a tropical and sub-tropical area where the formation of MCS with the potential to 

produce heavy rainfall is common. This makes RESAT a valuable tool in order to 

monitor not only convective but also stratiform rainfall in the zone.   

All the works mentioned above can be classified as pixel-based or cloud patch-based 

methods and all of them have a bearing on this paper. The RESAT algorithm is based 
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on both pixel and cloud patch properties. Feidas and Cartalis (2001), Manthon et al. 

(2002) and Schumacher and Johnson (2005) point out the importance of the relationship 

between the life cycle of MCS and the rainfall rate it produces. In this work a cluster 

rainfall estimation is first computed using some radiative and evolution parameters over 

the MCS life cycle and then a pixel estimation is obtained by adding a correction using 

cloud-top pixel radiative properties. Uddstrom and Gray (1996) obtain 60 % upward 

accuracy in delineate raining and non-raining samples of a cloud classification showing 

the sensibility of the final rainfall estimation on the cloud type. That’s why an IR-VIS 

cloud classification is also used in order to assign different coefficients to each cloud 

type in the final rainfall rate estimation and also to decide the rain / no rain 

discrimination.  

 

 

2. Data and satellite products 
 

All the data used in this work is provided by the satellite division (DSA) of the Centro 

de Previsão do Tempo e Estudos Climáticos (CPTEC), which belongs to the Institituto 

Nacional de Pesquisas Espaciais (INPE) located in the State of São Paulo, Brazil 

(Carlos Federico Angelis et al., 2005). The satellite division receives data from many 

satellites such as GOES, METEOSAT, TERRA, ACQUA and NOAA. The satellite 

products used in this work are produced in the DSA in real time: an IR-VIS cloud 

classification, an improved version of the NESDIS Hydroestimator (Vicente et al., 

1998) and an operational product called ForTraCC (Forecast and Tracking of Active 

Convective Cells) that tracks mesoscale convective systems (MCS) and displays 

information on the expansion, speed and other parameters of the systems (Machado et 

al., 1998; Machado et al., 2003; Vila et al., 2005). 
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Two months of Tropical Rainfall Measuring Mission (TRMM) and precipitation radar 

(PR) data over South America during November and December of 2004 were also 

provided by the CPTEC’s satellite division. The PR scans a 215 km swath with an 80 

vertical range bins extending to 20 km above the earth ellipsoid. The vertical and 

horizontal resolutions are 250 m and 4.3 x 4.3 km
2
 respectively, at nadir, while the 

minimum detectable signal is approximately 17 dBZ.  

The cloud classification is carried out using a cluster analysis with IR and VIS GOES 

images, thus the classification is only operative during the daytime. The basis of the 

algorithm has been described in several works (Porcú and Levizzani, 1992; Rossow and 

Palmer, 1993; Delgado et al., 2005), therefore only a brief description is provided here. 

Four parameters are used to create a multispectral histogram: the IR brightness 

temperature (Tb), the visible reflectivity and two texture indexes computed as the 

Standard Deviation between the first neighbours of each pixel in both channels. Each 

point in the histogram corresponds to the number of pixels in the image with the same 

four parameters values. After an analysis of the cluster distribution in the multispectral 

histogram over several months, 30 seed points are chosen. Every seed point has four 

components corresponding to each of the four parameters described below and will flag 

a class in the histogram. In order to have a proper calibration of the classification 

algorithm, that is to say, a physical correspondence between the values of the 

parameters defining each seed point and a cloud or surface type, these parameters will 

acquire a different value depending on the time of the day. Three daily segments are 

used: morning, midday and afternoon. The algorithm associates each point in the 

multispectral histogram with the closest seed point, minimizing the Euclidean Distance. 

The main classes obtained are Surface (3 types), Cumulus (10 types), Cirrus (6 types), 

Stratus (5 types) and Multilayer (6 types). 
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The high temporal resolution of GOES allows the development of operational methods 

to obtain information on the monitoring of meteorological phenomena such as the 

expansion and shifting velocity of MCS. The expansion, mean temperature difference 

and other parameters of MCS used in this paper and defined below are obtained using 

the ForTracC. The technique is based on an algorithm that allows tracking of the MCS, 

computing the radiative and morphological properties and forecasting the evolution of 

these physical properties (based on cloud-top brightness temperature) up to 120 

minutes, using infrared satellite imagery. The algorithm consists of four steps (Vila et 

al., 2005): 

1. A cloud cluster detection method based on a size and temperature threshold  

2. A statistical module to perform morphological and radiative parameters of 

each MCS. 

3. A tracking technique based on MCS overlapping areas between two 

successive images. 

4. A forecast module based on MCS evolution in previous time steps.  

The 4
th

 step is not used in this work. The algorithm is based on the work of Machado et 

al. (1998). The author analyzes the life cycle of convective systems and suggests that 

the surface expansion of a convective system could be associated with the high-level of 

wind divergence and the length of its life cycle. 

The results of the rainfall rate estimation algorithm presented in this work is compared 

with the estimations of the improved version of the NESDIS Hydroestimator (Vicente et 

al., 1998), hereafter known as DSA Hydroestimator, which assimilates GOES (10.5 µm) 

and METEOSAT (11.5µm) data, wind and humidity data produced by the CPTEC’s 

numerical weather forecast model (ETA model) and topography information. The 

NESDIS Hydroestimator mathematical function, which assesses rainfall for each GOES 
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pixel, is shifted upwards or downwards according to a combination of factors derived 

from all information assimilated by the DSA Hydroestimator. These improvements on 

the NESDIS Hydroestimator were made in order to estimate rainfall over the South 

America more accurately, mainly in its tropical part. 

We also extract the cloud top temperature from the IR GOES channel. All the data used 

in this work (including the IR GOES images, the PR TRMM product, the IR-VIS cloud 

classification, the DSA Hydroestimator maps and the arrays containing the values of the 

parameters of each MCS considered) have been reprojected to a mercator projection 

with a spatial resolution of 0.038º of longitude and 0.036º of latitude.  

Several restrictions were applied in order to select the cases of study within 2 months of 

data. Due to the use of the Visible GOES channel to obtain the cloud classification only 

daily data were chosen. There is a ± 15 min time difference and a maximum navigation 

error of 10 km between the TRMM pass and the IR GOES scanning. The IR data closest 

to the time of the TRMM observation were chosen to obtain a final time difference of 

less than ± 5 min and a navigation error of less than 1 pixel. Finally the availability of 

GOES images covering the Southern Hemisphere is not assured by NOAA for many 

reasons, so when images are missed, no products are generated. This was a final 

restriction we found in order to select the cases. In total 27 cases were selected for the 

study; 18 during the analysed period and 9 for validation tasks. Table 1 summarises the 

date and hour of all the selected cases. 

The South America region is the domain chosen for this study (figure 1). All the cases 

are located inside of the following window centred over Brazil: 35 S, 5 N, 35 W, 75 W.  
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3. Description of the algorithm 

All the published works concerning rainfall rate estimation mentioned in the 

introduction develop the estimation technique through general assumptions. In our case 

we assume similar facts, taking into account the importance of the development stage of 

the convective system and the cloud classification. Scofield (1987) summarises some of 

these assumptions as having an especial importance the fact that 

1. clouds with cold tops in the IR imagery and high reflectivity in the VIS 

imagery produce more rainfall that those with warmer tops and  

2. low reflectivity and decaying clouds produce little or no rainfall, whereas 

clouds in forming stage tend to produce heavy rainfall.  

We don’t work directly with the Visible channel, although the information of this 

channel is contained in the cloud classification, thus those clouds with a high 

reflectivity top (convective in the cloud classification) will have different treatment in 

the algorithm. In fact every cloud type will have different parameterization in the 

algorithm. We also pay attention to the MCS’s internal brightness temperature 

variability , and not only in the value of Tb. Concerning the second general approach 

mentioned above, different parameters of the evolution of each convective system will 

be computed using the ForTracC. These parameters (like the expansion or the mean 

temperature difference between one system in two consecutive images) will describe the 

stage of each convective system along its life cycle and its dynamic conditions. As we 

explain in section 3.3 those convective systems in a growing phase (some of theme in 

an exploding phase during its initial stage) will have associated a high value of rainfall 

rate. 

Other works (Wylie, 1979; Hsu and Gao, 2004) focus on the importance of working 

with different Tb thresholds in order to detect correctly the convective cells embedded in 
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the MCS. Convective cells are the colder pixels in a convective system, although they 

are smaller they produce heavier rainfall. As we explain in next section, five different Tb 

thresholds are considered in this work in order to associate the proper dynamic 

parameters to the convective cells embedded in the detected convective systems. This 

hypothesis helps to decrease the errors in the final rainfall rate estimation. 

Many authors (Mapes and Houze, 1993; Machado and Rossow, 1993; Machado et al., 

1998) consider that Tb ≤ 245 K is a satisfactory threshold to identify MCS. The near-

linear dependence between the convective system area and its threshold indicates the 

insensitivity of the choice of a specific value in a range of 10-20 K (Carvalho and Jones, 

2001). In order to have a wider range of brightness temperature in the algorithm 

estimations, pixels colder than 250 K are considered to form part of a MCS. 

 

3.1. Threshold divisions 

The RESAT is based on the correlation between the radiative and evolution parameters 

of the convective systems and its mean rainfall rate. Therefore only pixels colder than 

250 K are considered for the estimation. A deep convective cloud system is identified 

by adjacent satellite image pixels with an infrared brightness temperature colder than a 

given threshold. In order to separate effectively the convective cells contained in the 

MCS the following structure and evolution parameters are computed for the IR cloud 

clusters with Tb colder than five different thresholds (250 K, 240 K, 230 K, 220 K and 

210 K): Mean and Minimum Temperature (Tm and Tmin), Mean Temperature difference 

between two consecutive images (∆Tm), Minimum temperature difference between two 

consecutive images (∆Tmin) and the expansion computed as the normalized difference 

between areas divided by time (30 min) in two consecutive images, defined as ∆E= 

1/A*(dA/dt) (see Machado et al., 1998, Machado and Laurent, 2004, Vila et al., 2005), 

where A is the area of a given MCS in a given time. Each Tb threshold will define a 
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concentric layer (see figure 2), being the most external the one defined as all the pixels 

colder than 250 K (layer 1) and being the most internal the one defined as all the pixels 

colder than 210 K (layer 5). Both rain / no rain discrimination and rainfall rate 

estimation will be computed for each of the cloud layer obtained by applying the 

multilayer tracking algorithm, and summarised in the flow chart of figure 2. 

The algorithm will first assign the value of the estimated rainfall computed for the first 

layer of each MCS. If the MCS has been divided in more layers, the algorithm will 

superpose the estimated values of rainfall rate to the pixels in the second layer. The 

process will continue for the rest of the layers until the last one. 

The difference between Tb of each pixel and Tm of the cloud cluster where the pixel is 

located is also used. Henceforth this Tv variable gives us an idea of the Tb internal 

variability of the MCS. Pixels with negatives values of Tv will be located in the coldest 

region of the layer with a higher probability of having rainfall associated. As previously 

mentioned, one of the assumptions in satellite rainfall estimation works is that colder 

pixels have been associated with more rainfall than warmer ones. The definition of Tv 

helps us to discriminate better between two pixels with the same Tb but different value 

of the rainfall rate associated. 

 

3.2. Rain / no Rain discrimination 
 

Nearly 97% of the rain pixels of the selected cases during the analysed period are 

classified in six cloud types: 4 types as convective clouds, one as cold stratiform cloud 

and one as cumulus (a single cumuliform vertically developed cloud in its first stage of 

development). One of the four convective types is flagged as a Deep Convective Cloud 

(DCC) and the other convective ones can be interpreted as the coldest part of the anvil 

of the DCC in different temperature ranges. We will refer to these three as convective 

(C1, C2 and C3) to differentiate them from DCC. Pixels classified as C1 are the colder 
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ones, being located close to the cold core (DCC) of the MCS, their reflectivity in the 

VIS channel is also higher. Pixels classified as C2 are also colder than C3, but with 

similar values of VIS reflectivity and considerable differences in the texture indexes, 

being C3 the roughest and C2 the smoothest. 

The percentage of pixels of each class in each layer of each MCS is computed. Each 

layer is associated with the class containing more pixels. Only MCS layers associated 

with the raining cloud types mentioned above are classified as rain clusters. Only pixels 

belonging to the six cloud types mentioned above in each layer classified as a rainy is 

flagged as a possible rain pixel. The final rain / no rain discrimination depend on the 

cloud type: 

a. Cumulus pixels embedded in layers associated with convective, DCC and 

cold stratiform cloud types are classified as rain pixels. Those embedded in 

layers associated with cirrus are not classified as rain pixels. 

b. Cold stratiform pixels embedded in layers associated with DCC and cold or 

warm stratiform cloud types are classified as rain pixels. 

c. Convective pixels embedded in layers associated with convective, DCC and 

cold stratiform cloud types and with Tv < 0 are classified as rain pixels. 

d. DCC pixels embedded in layers associated with DCC and convective cloud 

types and with Tv < 0 are classified as rain pixels. 

 

3.3. Rainfall rate estimation 

 
The rainfall rate estimation of the pixels classified as rain pixels consists of three steps. 

In the first step the mean rainfall rates from the radar data are computed for each MCS 

for each Tb Threshold. This value is compared with the parameters describing the 

evolution stage of the MCS for the same Tb threshold. A multiple linear regression is 

computed between these variables and the mean rainfall rate. A value of rain (the cluster 
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rainfall estimation, Rc) is associated with each layer of each MCS by superposing the 

value of Rc for each Tb threshold.  

In the second step of the rainfall rate estimation, Tv is used in order to assign a more 

accurate value of rainfall rate to each pixel, the pixel rainfall estimation (Rp). In this step 

a pixel correction (pixel rainfall correction, rc) is added to Rc using a non-linear relation 

between Tv and the radar data for each pixel of the MCS in a given layer.  

In the third step, the frequency distribution computed over all the cases of the analysed 

period of the radar data and Rp will be approximated to an exponential distribution. Rp 

cumulated distribution will be fitted to the radar data one in order to increment its range 

and obtain the final value of the estimated rainfall rate R. 

 
3.3.1. Cluster rainfall estimation 

 

A multiple linear regression is computed between ∆E, Tm, ∆Tm, Tmin, ∆Tmin and the 

mean radar rainfall rate for each Tb threshold in each MCS. Thus, each pixel from the 

same MCS and in the same layer is associated with the same rainfall cluster term (Rc) 

given by the following expression: 

 

Rc = ai* ∆E + bi* Tm + ci* ∆Tm + di* Tmin + ei* ∆Tmin + fi  (1) 

 

where i is the layer, ai, bi, ci, di and ei are the linear coefficients for each  variable and fi 

is the constant term. Figure 3 shows the mean radar rainfall rate versus the different 

cluster parameters for a 230 K threshold. Similar plots are obtained for the rest of the Tb 

threshold. Table 2 shows the coefficients and its correlation index of the multiple linear 

regression for each Tb threshold. Using (1), a value of Rc is assigned to all the pixels of 

one MCS in each layer. First, all the pixels of the MCS are assigned with the value of Rc 

computed for the first Tb threshold (pixels colder than 250 K), then the value of Rc 
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computed for the second Tb threshold (pixels colder than 240 K) is superimposed to the 

first one, the same occurs with the other values of Rc for the rest of the Tb threshold. 

When the process ends each layer in the MCS has associated a value of Rc. Figure 4 

shows the mean radar rainfall rate versus Rc computed for all the Tb threshold. 

 

3.3.2. Pixel rainfall estimation 

 

In the second step the following rainfall rate will be assigned to each pixel belonging to 

one of the 6 cloud types able to produce rainfall: 

Rp = Rc + rc   (2) 

where rc is the result of the comparison between the mean value of the difference 

between the radar value and Rc for each 1 K interval of Tv, therefore Rp is a function of 

Tv and the cloud type. A similar methodology is used in Vicente et al. (1998). Figure 5 

shows this relationship for the 6 cloud types considered. The points were fitted to a 

three degree polynomial curve. Table 3 summarises the coefficients of the polynomial 

curve for all the cloud types. 

Both Rc and rc contribute to the value of Rp. Rc is the cluster contribution and its value 

depends on the radiative and evolution parameters that characterise each MCS, whereas 

rc is the pixel contribution to the total rainfall rate and is a function of Tv, which gives 

an idea of the value of the spatial temperature gradient within the MCS. However, both 

contributions are derived as functions of the mean value of the radar data. As a 

consequence, the range of Rp in the cumulated frequency distribution is smaller than the 

range of the radar data (figure 6), but both radar and Rp distributions fit into an 

exponential distribution. In order to validate this assumption, the average value of the 

radar data in different grid sizes was also computed and its spatial distribution was 
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compared to the Rp distribution. The greater the grid size, the more similar the ranges of 

both distributions. 

 

3.3.3. Range increment 

In the third step of the rainfall rate estimation both radar and Rp frequency distributions 

will be approximated to an exponential probability density function (pdf) for each cloud 

type. The final value of the estimated rainfall rate R will be given by fitting the Rp 

exponential pdf to the radar exponential pdf. Figure 6 shows both distributions in the 

case of DCC. To fit one pdf into the other we assume the following approximation: the 

radar data pdf and the final estimated rainfall rate pdf will have the same decayment. 

The fitting method associates a certain value of Rp with the value of the radar data 

having the same decayments in both exponential pdfs. This value associated to Rp will 

be the final rainfall rate estimated value, R. An exponential probability density function 

is defined by: 

f(t) = λ*exp(-λ*t)  (3) 

where λ is the rate parameter of the distribution, 1/λ is the mean value of the distribution 

and 1/λ
2
 is the variance of the distribution. The Rp and radar distribution will have the 

following exponential pdf associated: 

fRp = λRp*exp(-λRp* Rp)        (4) 

fr = λr*exp(-λr*r)          (5) 

We associate the values of r and Rp with the same decayment through the following 

expression: 

fRp / λRp = fr / λr,       (6)   

which leads to 

                        exp(-λRp* Rp) = exp(-λr*r)        (7)  
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by isolating the r we obtain         

 r = (λRp/ λr)* Rp          (8) 

Finally we apply the above approximation to obtain the final rainfall estimation, R, as a 

function of Rp, λRp and λr 

    R(Rp, λRp, λr) = (λRp/ λr)* Rp.       (9) 

Table 4 summarises the values of λRp and λr for all the accumulated histograms of the 

different cloud type.   

 

4. Results 

Several statistical measures are used to compare the rainfall rate estimation with the 

radar data. In the case of the rain / no rain discrimination we use the False Alarm Ratio 

(FAR), the Probability of Detection (POD), the Error (ERR) and the Frequency Bias 

Index (FBI). The range of POD, FAR and ERR is 0 to 1. FAR and ERR perfect score is 

0 and POD perfect score is 1. Values of FIB greater than 1 indicate overestimation and 

less than 1 indicate underestimation. 

In the case of the rainfall estimation the correlation coefficient, the RMSE, the BIAS 

and the standard deviation are used. Values of BIAS greater than 0 indicate 

overestimation and negative values underestimation. 

RESAT is compared with the Hydroestimator method (Vicente et al., 1998). HE uses a 

non-linear power law relationship between the top cloud temperature and radar-derived 

rainfall estimates to compute rainfall rates. HE uses a gradient and a growth rate mask 

to make the rain / no rain discrimination. The main differences between both methods 

are that the HE doesn’t take into account the cloud types and uses a humidity mask 

instead of the properties of convective systems. The HE was originally developed to 

estimate intense convective systems rainfall rates. 
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4.1. Rain /no Rain 

Table 5 shows the values of the different statistical index for the analysed and validation 

period. RESAT is also compared with the HE for the whole period. Few differences are 

observed between the analysed and validation periods. POD and FBI perform better 

during the analysed period, but FAR improves during the validation period. It seems to 

be a logical behaviour since FBI shows an underestimation of the rainy pixels during 

validation period and an overestimation during the analysis period. The overestimation 

leads to better POD scores and the underestimation leads to better FAR scores. The 

difference in the values of FBI between the analysis and validation period may be due to 

a major percentage of DCC pixels (associated with high probability of rainfall) in the 

analysis period.  

The entire index performs better in the RESAT than in the HE (table 5). As has been 

said before, the HE was developed to estimate intense convective rain and in this study 

has been used different kinds of meteorological situations involving convective storms 

characterised by the presence of deep convective clouds, but also other cloud systems 

with presence of cumulus, stratus and warm convective clouds. The HE clearly 

underestimates the rain pixels as the value FBI = 0.74 shows; this can be due to the fact 

that the HE tends to classify mainly DCC as rainy pixels. Table 6 shows the sensitivity 

of the cloud type in the rain / no rain discrimination for both RESAT and the HE 

method for DCC, Cold stratiform clouds and cumulus. The table shows how even 

RESAT performs better than the HE, similar values of FAR (0,42 RESAT and 0,38 HE) 

and better scores in the POD (0,65 RESAT as opposed to 0,55 HE) are found in the case 

of DCC. Both techniques don’t score very well in the case of cold stratiform clouds, but 

clearly RESAT has better ones than POD. The underestimation of rainy pixels in the HE 
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with a value of FBI = 0,11 as opposed to the RESAT value of FBI = 0,78, leads to a 

better score of the FAR for the HE in this type of clouds. The differences between both 

techniques are clear in the case of cumulus clouds where RESAT scores a POD (0,83) 

clearly higher than the HE (0,16). In short, cloud classification as an input in the 

algorithm gives better results in the rain/no-rain discrimination, especially in the pixels 

classified as cold stratiform clouds and growing cumulus, but also in the convective 

ones.  

 

4.2 Rainfall estimation 

The statistical variables used to validate REASAT has been computed for different grid 

sizes: 5x5 pixels (20x20 km), 9x9 pixels (36x36 km), 15x15 pixels (60x60 km) and 

25x25 pixels (100x100 km). The spatial mean rainfall rate has been computed with the 

estimated rainfall rate; 1 hour cumulated rainfall would lead to better results (Vicente et 

al., 1998), but the the TRMM satellite does not pass frequently enough to obtain the 

required data. The rain / no-rain statistical parameters (POD, FAR, ERR and FBI) have 

been also been computed for the different grid sizes leading to the similar results 

already discussed. Table 7 shows the results for both the analysed and validation period.  

The parameters used to validate the estimation method score slightly better during the 

analysed period, but not with a significant difference. The statistical parameters tend to 

converge at a similar value in both the analysis and validation period when increasing 

the grid size, except for the BIAS. In both periods RESAT tends to overestimate (Bias > 

0) the value of rainfall, with greater values of the BIAS during the validation. This 

pattern is also observed in each of the studied cases. RESAT seems to perform 

reasonably well for a 60x60 km grid size, with a correlation factor of 0,54 in the 

analysis period and 0,53 in the validation period. The RMSE also decreases when the 
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grid size increases. The BIAS seems to be independent of the grid size. Figure 7 show 

the scatter plots of the RESAT estimates for four different grid sizes. 

 

4.2.1. Comparison with Hydroestimator method  

Table 8 summarises the values of the statistical parameters computed for both methods 

during the validation period and figure 8 shows the scatter plots of the RESAT and 

Hydroestimator estimates for four grid sizes. In general RESAT performs better than the 

HE with clearly greater correlation coefficients and RMSE in all grid sizes. Even though 

the BIAS is lower in the case of RESAT than in the case of the HE, it seems to 

converge in the case of the HE. As has been commented in the last section in the case of 

RESAT, the BIAS doesn’t decrease when the grid size decreases. This behaviour can be 

explained by the fact that pixels within the same threshold interval belonging to the 

same cloud type have associated a similar value of rainfall (the small differences would 

be given during the second step of the estimation), thus the calculation of a spatial mean 

of the rainfall rate doesn’t present high variability when decreasing the grid size.  

Figure 9 shows an event during the analysed period with the RESAT and the HE 

estimations, it is a convective system in a growing phase, located near the Brazilian 

coast. Both the RESAT estimation and the radar image show how the cold core of the 

system, with a greater value of expansion. 
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5. Summary and future work 

The satellite rainfall rate estimation technique RESAT has been presented. The 

algorithm mixes cloud patch and pixel-based techniques and it is compared with the 

hydroestimator technique (Vicente et al., 1998) that obtains satisfactory results in 

despite the fact that it doesn’t use moisture correction. The Precipitation Radar product 

of the TRMM satellite is used in the analysis and validation periods in order to design 

and validate the algorithm respectively. The algorithm discriminates first the raining 

pixels associating rainfall only with the pixels classified as cumulus, convective clouds 

or cold stratiform clouds. In order to estimate the rain in those pixels classified as rainy 

pixels the algorithm uses some radiative and evolution properties of mesoscale 

convective systems in different brightness temperature thresholds. The MCS is divided 

in some brightness temperature partitions (using the Tb thresholds) in order to detect the 

convective cells embedded in the MCS. The properties computed (such as the 

expansions of the MCS or their mean temperature difference) presents a linear 

correlation with the mean rainfall rate computed using the TRMM radar data for each 

MCS in each brightness temperature partition. This permits us to associate an estimated 

value of rainfall rate to each MCS in each Tb partition. The use of IR-VIS cloud 

classification gives an important accuracy in both rain/no rain discrimination and 

rainfall rate estimation. The TRMM radar rainfall rate/brightness temperature 

relationship and the cumulative TRMM data histograms have a strong dependency on 

the cloud type. A different parameterisation is set in the algorithm depending on the 

cloud type. As a result, the rainfall estimation present good results in high temperature 

ranges.    
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POD and FBI present better scores during the analysed period (0,61 and 1,06, 

respectively) than during the validation period (0,55 and 0,81), while FAR scores the 

worst (0,43 in the analysed period and 0,32 in the validation period) during the analysed 

period. This behaviour is logical since RESAT overestimates rainy pixels during the 

analysed period and underestimates during the validation period. The validation has 

been made for different grid size boxes. All the statistical variables seem to converge at 

a similar value for the two periods considered when increasing the grid size box, except 

for the bias, which always is positive, indicating overestimation. The statistical variable 

shows that RESAT gives satisfactory results from a grid size of 60x60 km, with a 

correlation coefficient of 0,53 and almost perfect scores of POD (0,94) and FAR (0,07). 

When compared with the hydroestimator, RESAT always performs better. The use of 

the cloud classification acquires special importance in the rain/no rain discrimination. 

Few differences are observed in both methods for cold pixels belonging to convective 

clouds. These differences increase significantly in RESAT’s favour when the methods 

are compared for cumulus and stratiform clouds with warmer temperatures. RESAT 

also presents  better correlation and lower vales of RMSE than the Hydroestimator for 

all grid size boxes (table 8). 

 

Although RESAT is ready to be operational, some improvements need to be made. The 

method is only valid for the daytime period; this limitation can be solved by adding a 

new algorithm using a nocturne cloud classification carried out using the infrared band 

channels of the GOES satellite. A humidity correction using the outputs of the ETA 

model will help to produce more accurate rainfall rate estimation. 
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Figure Captions 
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Table 1: Cases studded during the analysed and validation period. 

 
Table 2: Coefficients values and correlation coefficients of the multiple linear 

regression to obtain the cluster rainfall estimation for all the Tb thresholds. 

 

Table 3: Coefficients of the third degree polynomial function fitted to obtain the pixel 

rainfall estimation for all the cloud types. 

 

Table 4: Rate parameters of the frequency distributions of the pixel rainfall estimation 

values and the radar data for all cloud types. 

 

Table 5: Statistical index describing the accuracy of the rain no rain discrimination of 

the RESAT method (analysis and validation period) and the hidroestimator method 

(validation period). 

 

Table 6: Statistical index showing the accuracy of the rain no rain discrimination for 

different cloud types (deep convective, cumulus and cold estratiform) for both RESAT 

and hidroestimator methods. Results show how RESAT much performs better in the 

case of cold estratiform and cumulus cloud types. 

 

Table 7: Statistical index showing the accuracy of the RESAT rainfall estimation fro 

different grid sizes during the analysis and validation period. 

 

Table 8: Statistical index comparing the rainfall rate estimation of RESAT an 

hidroestimator for different grid sizes. 

 
Figure 1: Domain chosen for the study. In black the TRMM swath and in blue the 

precipitation product detected by the Radar for a case of study (November 17 of 2004 at 

1415 UTC). 

 

Figure 2: Flow chart of the multilayer tracking algorithm. 
 

Figure 3: Scatterplots between the parameters describing the evolution of the MCS’s 

and its mean rain for a Tb threshold of 230 K. A linear correlation is observed. All the 

parameters present a negative slope except for the expansion showing a relation 

between the growth of the MCS’s and its potential to produce heavy rainfalls.  

 

Figure 4: Scatterplots between the cluster rainfall rain estimation and the mean rainfall 

value for every MCS’s for all Tb threshold. 

 

Figure 5: Mean value of rc computed for each 1 K interval of Tv for the six cloud types 

considered. The curve is fitted with a 3
rd

 degree polynomial function. A different curve 

is obtained for every cloud type, allowing discrimination between cloud types in the 

final rainfall estimation. 

 

 

Figure 6: Frequency distribution of rainfall from radar and the pixel rainfall estimation 

(Rp) for Deep Convective Cloud pixels. Both distributions will be approximated to an 
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exponential distribution. The algorithm will fit the Rp distribution into the radar 

distribution to obtain the final rainfall estimation. 

 

 
Figure 7: Scatterplot of the RESAT estimates for the analyzed period (left) and 

validation period (right) for four different grid sizes. 

 
Figure 8: Scatterplot of RESAT (left) and Hidroestimator (right) for 60 X 60 km and 

100 X100 km grid size. 

 

Figure 9: Rainfall rate on November 17 of 2004 (1045 UTC). Upper left panel: 

RESAT; upper right panel: Hidroestimator; lower left panel: Radar.  
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     Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

Validation period 
Date Hour (UTC) 

27-11-2004 1115 

03-12-2004 2045 

08-12-2004 1745 

11-12-2004 1645 

12-12-2004 1715 

17-12-2004 1415 

20-12-2004 1945 

21-12-2004 1345 

22-12-2004 1115 

Analysis period 
Date Hour (UTC) 

04-11-2004 1945 

05-11-2004 1045 

07-11-2004 1015 

07-11-2004 1645 

07-11-2004 2015 

08-11-2004 2045 

09-11-2004 1645 

09-11-2004 1945 

10-11-2004 1045 

10-11-2004 2045 

12-11-2004 1045 

12-11-2004 1345 

14-11-2004 1015 

17-11-2004 1045 

17-11-2004 1415 

18-11-2004 1445 

20-11-2004 1115 

23-11-2004 1015 
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250 K a b c d e f 
Coef. Value 0.00081 -0.04826 -0.08393 -0.02199 -0.02015 19.24 

Correlation 0.32 -0.45 -0.41 -0.46 -0.37  

240 K       
Coef. Value 0.00236 -0.01961 -0.06305 -0.05048 0.00724 18.46 

Correlation 0.35 -0.44 -0.28 -0.44 -0.24  

230 K       
Coef. Value 0.00194 -0.07076 -0.17429 -0.01176 -0.01325 21.79 

Correlation 0.41 -0.44 -0.46 -0.43 -0.40  

220 K       
Coef. Value 0.00254 -0.11085 -0.12312 -0.10822 -0.02018 2.49 

Correlation 0.39 -0.32 -0.35 -0.37 -0.39  

210 K       
Coef. Value 0.00137 0.00720 -0.11989 -0.12744 -0.07376 28.41 

Correlation 0.45 -0.41 -0.41 -0.47 -0.48  
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     Table 3 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

Cloud type 3
rd

 degree 2
nd

 degree 1
st
 degree Constant term 

Cumulus 3,09*10
-4 

-64,21*10
-4

 -0,049499 -0,584657 

Convective 3 -2,47*10
-4

 78,36*10
-4

 -0,118129 -1,784454 

Convective 2 -2,30*10
-4

 0,014565 -0,215432 -1,047433 

Convective 1 4,68*10
-4

 -0,019028 0,103186 -3,014308 

Stratiform -1,77*10
-4

 -11,12*10
-4

 -0,015940 -1,693500 

Deep convective -23,40*10
-4

 0,037950 -0,074900 -2,930100 
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Cloud type λRp λr 

Cumulus 0,98 0,19 

Convective 3 1,12 0,18 

Convective 2 0,77 0,14 

Convective 1 2,13 0,22 

Stratiform 2,63 0,24 

Deep convective 0,90 0,17 
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     Table 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 Analysed period Validation period Validation HE 

POD 0.61 0,55 0,43 

FAR 0.43 0,32 0,42 

ERR 0,26 0,27 0,33 

FBI 1,06 0,81 0,74 
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     Table 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 DCC Cold Estrat Cumulus 

 Method HE Method HE Method HE 

POD 0,65 0,55 0,45 0,12 0,83 0,16 

FAR 0,42 0,38 0,42 0,47 0,39 0,35 

ERR 0,43 0,41 0,36 0,45 0,35 0,39 

FBI 1,12 0,91 0,78 0,11 1,36 0,25 
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Period Analysing Validation 

Grid size 
(km) 

20X20 36x36 60x60 100x100 20x20 36x36 60x60 100x100 

Sample size 4460 1781 704 244 1488 524 205 75 

Correlation 0,32 0,45 0,54 0,64 0,26 0,39 0,53 0,64 

Sat. std dev 2,61 2,26 1,87 1,37 3,42 3,01 2,44 1,90 

Radar std dev 2,35 1,86 1,38 0,92 2,76 2,22 1,68 1,24 

Rmse 4,45 4,15 3,95 3,99 5,92 5,63 5,23 5 

Bias 1,1 1,01 1 1,11 1,63 1,55 1,38 1,42 

POD 0,81 0,88 0,94 0,98 0,73 0,81 0,87 0,93 

FAR 0,16 0,11 0,07 0,03 0,17 0,13 0,08 0,04 

ERR 0,23 0,17 0,11 0,03 0,25 0,2 0,13 0,07 

FBI 0,97 1 1,02 1,01 0,89 0,94 0,95 0,97 
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 Method Hidroestimator 
Grid size 

(km) 
20X20 36x36 60x60 100x100 20x20 36x36 60x60 100x100 

Sample size 1488 524 205 75 1488 524 205 75 

Correlation 0,32 0,45 0,54 0,64 0,22 0,39 0,41 0,49 

Sat. std dev 2,61 2,26 1,87 1,37 5,14 3,76 2,67 1,72 

Radar std dev 2,35 1,86 1,38 0,92 2,35 1,86 1,38 0,92 

Rmse 4,45 4,15 3,95 3,99 6,01 5,66 5,54 5,56 

Bias 1,1 1,01 1 1,11 1,66 1,46 1,37 1,36 

POD 0,81 0,88 0,94 0,98 0,64 0,73 0,84 0,93 

FAR 0,16 0,11 0,07 0,03 0,18 0,13 0,08 0,03 

ERR 0,23 0,17 0,11 0,03 0,39 0,33 0,21 0,09 

FBI 0,97 1 1,02 1,01 0,81 0,87 0,92 0,97 
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                  Figure 1 
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Figure 2 
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          Figure 3 
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                 Figure 4 
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            Figure 5 
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      Figure 6 
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Figure 7       
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Figure 9 
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