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ABSTRACT: A gravitational capture occurs when a spacecraft (or any particle with 
negligible mass) change from a hyperbolic orbit with a small positive energy around a 
celestial body into an elliptic orbit with a small negative energy without the use of any 
propulsive system. The force responsible for this modification in the orbit of the 
spacecraft is the gravitational force of the third and the fourth bodies involved in the 
dynamics. In this way, those forces are used as a zero cost control, equivalent to a 
continuous  thrust applied in the spacecraft. One of the most important applications of this 
property is the construction of trajectories to the Moon. The concept of gravitational 
capture is used, together with the basic ideas of the gravity-assisted maneuver and the bi-
elliptic transfer orbit, to generate a trajectory that requires a fuel consumption smaller 
than the one required by the Hohmann transfer. The goal of the present paper is to study 
the energy required for the ballistic gravitational capture in a dynamical model that has 
the presence of four bodies. In particular, the Earth-Moon-Sun-Spacecraft system is 
considered. 
 
1. INTRODUCTION 
The bi-circular problem is a particular case of the problem of four bodies, where one of 

the masses, let us say 4m , is supposed to be infinitely smaller than the other three masses. 

With that hypothesis, 4m  moves under the gravitational forces of 1m , 2m  and 3m , but it 

doesn't disturb the motion of the three bodies with significant mass. In the bi-circular 

problem, the motion of 1m , 2m  and 3m  around the center of mass is considered as 

formed by circular orbits and the motion of 4m  has to be a certain function of the initial 

conditions. We can consider the bi-circular problem as a disturbance of the restricted 



problem of three bodies. This problem can be used as a model for the motion of a space 
vehicle in the Sun-Earth-Moon system. 
In the first part of the paper we supplied the equations of motion of the model and we 
defined gravitational capture. The second part is used for the calculation of some 
numerical results for the bi-circular problem, such as direct orbits, retrograde orbits, 
capture orbits, etc.  
 
2. MATHEMATICAL MODELS 

 
Figure 1 Bi-circular problem. 

 
The problem of four bodies with the two hypotheses shown below is called bi-circular 
problem and is shown in Fig.1. 
First hypothesis: It is considered two bodies with significant mass moving in circular 
orbits around the mutual center of mass. Those two bodies are called primaries. 
Second hypothesis: The third body with significant mass is in a circular orbit around the 
center of mass of the system formed by the two first primaries and its orbit is coplanar 
with the orbits of those primaries. 
We will study the motion of this fourth body under the gravitational attractions of the 
three bodies with significant mass. 
2.1 Planar equations of motion 
We will calculate the planar equations of motion of the space vehicle in the sidereal and 
synodical systems. We will use the canonical system of units by dividing all the distances 
by the distance between the two primaries and dividing the masses by the total mass of 
the two primaries. It will also be defined that the angular speed of the system is unitary. 
The masses and distances of the Earth, Moon and Sun are: Mass of the Earth, 

kgxM T
241098.5= ; Mass of the Moon, kgxM L

221035.7= ; Mass of the Sun, 

kgxM S
301099.1= . Earth-Moon distance kmxd 5

1 10844.3= ; Earth-Sun distance 

kmxd 8
2 10496.1= .  

Then, the masses of the Earth, Moon and Sun in the canonical system are: 
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The circumferences described by the Moon and the Earth has radius Eµ  and Mµ , 

respectively. ),(),,(),,( MMEE yxyxyx  and ),( SS yx  are the coordinates of the space 

vehicle, the Earth, the Moon and the Sun, respectively. Below are the equations of motion 

of the Earth, Moon and Sun: )cos(tx ME µ−= , )(tsiny ME µ−= , 

)cos(tx EM µ= , )(tsiny EM µ= , )cos(ψSS Rx = , )(ψsinRy SS =  and tSωψψ += 0 .  

Where 1723985.389=Rs  is the distance between the Sun and the center of the system 

and 07480133.0=sω  is the angular speed of the Sun. We observed that the positions of 

the Moon, Earth and Sun are: )0,( Eµ , )0,( Mµ  and ))(),cos(( 00 ψψ sinRR SS . 

The distance of the space vehicle to the Earth is 22
1 )()( EE yyxxr −+−= ; to the Moon 

is 22
2 )()( MM yyxxr −+−= ; to the Sun is 22

3 )()( SS yyxxr −+−= . 

Therefore, we have the equations of motion of the space vehicle in the inertial system: 
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We will introduce a system of rotating coordinates on the center of mass of the Earth-
Moon system with the same angular speed of the primaries. Be ),( ηξ  the coordinates of 

the particle in this synodical system. The equations that convert the coordinates of the 
fixed system to the rotating system are: 
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If we now differentiate each component in equation )3(  twice we obtain 
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To position of the four bodies are: Moon )0,(),( EMM µηξ = , Earth )0,(),( MEE µηξ −= , 

Space Vehicle ),( ηξ , Sun )]))1(([)],)1[cos(((),( 00 ψωψωηξ −−−−−= tsinRtR SSSSSS . 

It is clear that Sω−1  is the angular speed of the Sun in the synodical system. The 

coordinates ),( ηξ  are called synodical and the coordinates ),( yx  are called sidereal. The 

three distances in the synodical system are shown below. From the space vehicle to the 

Earth is 22
1 )( ηµξ ++= Mr ; from the space vehicle to the Moon is 

22
2 )( ηµξ +−= Er  and from the space vehicle to the Sun is 

22
3 )()( SSr ηηξξ −+−= . 

The equations of motion of the space vehicle in the new system are: 
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3.0 GRAVITATIONAL CAPTURE 
 

 
Figure 2 Initial conditions. 

 
Figure 2 shows a trajectory that ends in gravitational capture. To define gravitational 
capture is necessary to use some basic concepts of the problem of two bodies. We will 

call 3C  the double of the sum of the kinetic and potential energy of the problem of two 

bodies, the space vehicle and Moon, that is given by: 
r

VC Mµ22
3 −= , where r  and V  

are, respectively, the distance and the velocity of the space vehicle with respect to the 

Moon, and Mµ  is the gravitational parameter of the Moon. 

If we consider only two bodies (the Moon and the space vehicle), 3C  is constant, if only 

gravitational forces are considered. We will describe the orbits of the space vehicle for 



values of 3C  according to the classification: )i  If 03 >C , we have hyperbolic orbits, )ii  

If 03 =C , we have parabolic orbits, )iii  If 03 <C , we have elliptic orbits.  

We defined 3C  as being of the double of the energy of the system Moon-vehicle. Unlike 

what happens in the problem of two bodies, 3C  is not constant in the  bi-circular problem. 

Then, for some initial conditions, the space vehicle can alter the sign of the energy from 
positive to negative or from negative to positive. When the variation is from positive to 
negative it is called a gravitational capture orbit. The opposite situation, when the energy 
changes from negative to positive, is called gravitational escape. 
We describe the numeric methodology below. 
)1  A Runge-Kutta of fourth order integrator was used, programmed in the FORTRAN 

language. 
)2  We integrated the equations of motion of the space vehicle in the sidereal system. 

)3  The initial conditions are obtained in the following way. We consider the Moon in the 

origin of the XY  system and the Earth with coordinates )0,1(− . The starting point of 

each trajectory is at a distance of 100 km from the surface of the Moon ( 1838=pr  km, 

starting from the center of the Moon). To specify the initial position completely it is 
necessary to know the value of one more variable. The variable used is the angle α , that 
is the position of the Moon. This angle is measured starting from the Earth-moon line, in 
the counterclockwise sense, starting from the opposite side of the Earth. The magnitude 

of the initial velocity V  is calculated from the initial value of 
r

VC Mµ22
3 −= . The 

direction of the velocity vector of the vehicle is chosen as being perpendicular to the line 
that links the space vehicle to the center of the Moon, appearing in the counterclockwise 
direction for the direct orbits and in the clockwise direction for the retrograde orbits. 
The orbit is considered of capture when the particle reaches the distance of 100000 km 
(0.26 canonical units) from the center of the moon in a time smaller than 50 days 
(approximately 12 canonical units). The sphere with radius 100000 km centered in the 
Moon is defined as the sphere of influence of the Moon. Figure 2 shows the point P, 
where the space vehicle escapes from the sphere of influence. The angle that defines this 
point is called the angle of the entrance position and it is described by the Greek letter β . 

During the numeric integration the step of time is negative, therefore the initial conditions 
are really the final conditions of the orbit after the capture. 
 
4.0 EFFECTS OF THE ANGLE α . 



We now show some results obtained. Figure 3 shows direct orbits and figure 4 shows 

retrograde orbits. In both situations the angle ψ  is constant and equal to o0 , and 

15.03 −=C . The angle α  assumes the values: o30  (6), o60  (5), o90  (4), o120  (3), o150  

(2), o180  (1). The coordinates of the position vector for the case of direct or retrograde 
orbits are: Eprx µα += )cos(  and )(αsinry p= . The coordinates of the velocity vector 

for the case of direct orbits are: )(αVsinxv −=  and Ev Vy µα += )cos( . For the case of 

retrograde orbits the coordinates of the velocity vector are: )(αVsinxv =  and 

Ev Vy µα +−= )cos( . We can clearly see the effect of the Sun pushing the trajectories to 

the right. The direct orbits has a direct path, while the retrograde orbits start their motion 
to the left and then feel the effects of the Sun and turn to the right. 
 

   
Figure 3 Direct orbits.                           Figure 4 Retrograde orbits. 

 
5. VARIATION OF THE ENERGY 

We now turn our attention to study the effects of the initial value of the energy 3C . We 

consider o30== ψα  and make 3C  to assume the values -0.1 (1), -0.2 (2), -0.3 (3) and -

0.4 (4). In figure 5 we have direct orbits and in figure 6 we have retrograde orbits. We see 
that the reduction of the energy increase the length of the trajectories and, in some cases, 
it includes loops. Trajectories with energy close to zero escape faster from the primary. 
 
6. VARIATION OF THE ANGLE ψ  

We now study the effects of the position of the Sun. We considered o90=α  and 

3.03 −=C  in figures 7 and 8. The angle ψ  will assume the values o0  (5), o30  (4), o45  

(3), o60  (2) and o90  (1). In figure 7 we have direct orbits and in figure 8 we have 
retrograde orbits. It is clear that Sun attracts the trajectories. The results show this fact. 
The retrograde trajectories have this characteristic more visible. 
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Figure 5 Direct trajectories varying 3C .                             Figure 6 Retrograde trajectories varying 3C . 

 

   
Figure 7 Direct orbits.                                                  Figure 8 Retrograde orbits. 

 

7. MINIMUM VALUE OF 3C  

The goal now is to calculate the smallest value of the energy that allows a gravitational 

capture. It will be made a variation of the angle α  from o0  up to o360 , in steps of o1 . 

Figures 9 and 10 show the results. The initial value of 3C  is of -0.65, and the final value 

is -0.01, with variations of -0.01. In figure 9 we have the angles o0=ψ , o45  and o60  and 

in figure 10 we have the angles o150=ψ , o180 , o225  and o270 . The results show 

sinusoidal oscillations with strong variations. It shows several points of maximum and 
minimum savings and it is very important to take into account the initial conditions to 
obtain good results for the maneuver. 
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Figure 9 Minimum 3C                                               Figure 10 Minimum 3C  

 
8. CONCLUSONS 
This paper studied the problem of gravitational capture under the bi-circular four-body 
problem. The approach is to perform numerical simulations, in order to know the main 
characteristics of the problem. In particular, the effects of the initial position and the 
energy of the spacecraft is considered, as well as the position of the Sun. The results 
shown here can be to help mission designers to get the most of the gravitational forces 
involved in the problem. 
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