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Abstract. The current paper addresses the problem of quality of ser-
vice (QoS) provisioning in a general purpose operating system (GPOS),
in this case GNU/Linux. Particularly, we propose to change the CPU
allocation in that OS by reserving a percentage of a CPU capacity in
order to ensure the QoS provisioning according to the QoS demand of
each process. In order to investigate the effectiveness of that approach,
Markovian models are proposed to represent the dynamics of the sys-
tems. Results show that the OS with reservation outperforms the system
without it, but also that there is a performance tradeoff in the OS with
reservation in such a way that an improvement in the QoS perceived by
processes using the reserved capacity is done at a cost of a degradation
in the QoS perceived by the other processes.

1 Introduction

As mentioned in the related literature ([1], [2], [3], [4] and [5]) several studies
were made on the applicability of Markov models to investigate network tech-
nologies and their associated traffic. However, very few discuss the behavior of
the front-end computers when the traffic turns into processes in a given opera-
tion system. For example, [6] presents a generic model for an Operating System
(OS) scheduler for Non-Uniform Memory Access (NUMA) machines using the
Stochastic Automata Networks (SAN) formalism. SAN is used to describe pro-
cesses and processors in the OS and their behavior when processes have to be
migrated.



Due to the necessity of investigating the feasibility of providing QoS to guar-
antee a minimum of resources to processes that need a differentiated treatment
in a general purpose operating system, in case GNU/Linux, a performance model
has been developed for the traditional GNU /Linux scheduler. It is important to
point out that this model had to be developed as there are no such models avail-
able that deal with this issue. This proposal models the host’s OS, that allows
to verify the direct impact in the performance of distributed applications.

Besides the traditional GNU/Linux model, a different model that reserves
a percentage of the processor time for providing attention to priority tasks has
also been developed. By solving these models, their performance evaluation was
compared to identify the changes in the system behavior due to reserving the
resource. The contributions of this paper are: Markov model for Linux scheduler;
model to reserve a resource (CPU) in this environment; and the analysis of the
performance of these two strategies.

This paper is organized as follows. In Section 2 it describes the current process
scheduler used in the GNU/Linux operating system. In Section 3 it shows the
analytical model of Linux scheduler architecture and another model with CPU
allocation. The performance analysis is based on a detailed mathematical model
followed by numerical results that are presented in Section 4, admitted with or
without resource reservation models. Finally, Section 5 shows the final remarks
of this work.

2 Linux scheduler

Since version 2.5, the Linux scheduler has been called O(1) scheduler because all
of its routines execute in constant time, no matter how many processors there
are [7]. The current version of the Linux scheduler (kernel version 2.6.11) brought
many advances. Amongst them, the possibility of allowing scheduling processes
in multitasking systems such as Symmetric Multiprocessor (SMP) or NUMA [8].

The basic structure of the Linux scheduler is the process queue (struct run-
queue). This struct is defined inside the archive kernel/sched.c. The current O(1)
scheduler keeps a runqueue per processor, which is responsible for containing all
the executable processes of a given processor. Thus, if a process is inserted in
a runqueue of a specific processor, it will only run on that processor [6]. Each
runqueue contains two priority arrays [7]: active and expired. Priority arrays are
data structures composed of a priority bitmap and an array that contains one
process queue for each priority.

The search for the higher priority is restricted to this bitmap, which uses a
simple and fast algorithm called sched_find_first_bit(), that is, to look for the first
element one (”1”) within the map. When the first bit one is found (”1”), it is
verified that in this row, at least one or more processes are ready for execution
with that priority; then, the first one of this queue is removed and it will gain
access to the processor for a given timeslice. After the execution is finished
or by finalizing the task or finishing its execution time, timeslice and priority
are recalculated, and it reschedules the current processes to a queue (based on



the new priority) in the expired array. Each runqueue has two pointers to the
priority arrays. When the active array is empty, the pointers are switched: the
active array passes to the expired array and vice-versa. The main advantages of
this operation are: the avoidance of moving all processes to the active priority
array; the execution in constant time; and keeping the scheduling algorithm with
O(1) complexity.

3 Analytical model

Linux scheduler and admission control is depicted in Fig. 1. Higher and lower
priority jobs arrive at the system according to two mutually independent Poisson
processes with parameters A\; and Ao, respectively. For the sake of simplicity, it
is assumed that both services require a negative exponential service time with
rate p.

A job is removed from the active array if: (a) its processing is finished, with
rate gsip (for high priority jobs) and gsap (for the other processes); or (b) it
needs to be rescheduled to the high priority queue or low priority queue in the
expired array, with rates priu or prsu, respectively. The scheduling of a job in
the low priority queue in the active array is tied to the occupancy of the high
priority queue in the active array in the sense that it will only be scheduled if
the high priority queue in the active array is empty. When the processing queues
are empty in an active array and there is a job to be processed in the expired
array, these arrays are switched. This switching (via pointer) has an associated
time of the 107 %s [7].
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Fig. 1. System model.

Given the assumptions presented above, it a Continuous-Time Markov Chain
(CTMC) [9] model of the system, whose state is defined as:

s = (b1,b2,p1,p2,ac]0 < by < B30 < by < By;0 < p; < P30 < pg <
Py;ac=0 or 1)

Where b; and p; are the number of processes in the high priority queues;
and bs and ps are the number of processes in the low priority queues; and B;



is the buffer size of the queue i. At time, there is only one high priority queue
in the active array and only one low priority queue in the active array, and the
remainders are on the expired array. In order to indicate which queues are in
these arrays it is used the variable ac, in such a way that if ac = 0, then the
queues by and bs will be in the active array and p; and ps in the expired array,
and when ac = 1, vice-versa.

In order to evaluate the performance of the Linux scheduler, some perfor-
mance measurements may be derived from the steady state probability of that
CTMC. Because of the symmetry of the system only the performance measure-
ments associated with the condition ac = 0 will be described, i.e., when b; and
by are in the active array, and p; and ps are in the expired array. Thus, let
p(b1, b2, p1,p2,ac) be the steady state probability of that Markov model, then
the job blocking probability (Pbi) of a job in the queue i, it is given by the prob-
ability of its priority queue is full. Eq. (1) shows, for instance, that probability
for the high priority queue in the active array. The job blocking probability for
other arrays may be computed at the same way.

By, P P

Pb, = ZZ Z (B1,b2,p1,p2,0) (1)

ba=0p1=0p2=0

The mean delay of the high priority queue and the low priority queue in the
active array may be computed as

B
Zm 1220 pl ozpz o b17(b1, b2, p1,p2,0)

b
Wor = A (1= Pby)

(2)
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where, Pby is the job blocking probability on the low priority queue. Likewise,
since, at time, only p; and po are in the expire array, the mean delay of the high
priority queue and the low priority queue may be, respectively, computed as

B
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b= p(pri + pr2)(1 — Pp)

(4)
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Wpo = (5)
Where, Pp; and Pps are the job blocking probability on the high and low priority
queue in the expired array. The throughput of the jobs of the high priority queue
and low priority queue in the active array are, respectively, given by:
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b2>0p1=0p2=0

Here it is considered only jobs that finish their processing and leaving the
system.

3.1 Reservation model

In this section, it is extended the model depicted previously by changing CPU
allocation by means of splitting the CPU capacity into two parts: a percentage
R is allocated for applications with high priority that demands QoS guarantees;
and the remainder capacity (1 — R) is assigned for other process. Fig. 2 shows
that scheme.

asp

o b RO
=% | | | |[—@
bl
Lo || |
prl 1 E 3
maccl i (1-R)0 as
> o —
pr3 qs2
Cerrpe| | | |

=

b2
||

Fig. 2. Resource allocation.

The state of the CTMC of that system is defined as: s = (b1, b2, p1, p2, bp, ac|0 <
b1 < B1;0 <by < By;0<p; <Pp;0<py <Py;0<b, <Bpiac=0orl).

Where the main difference between that model and previous one consists
in the random variable bp that represents the high priority processes, which
demand QoS guarantees. Besides, the rates of the remainder processes have to
be multiplied by the factor (1 — R). Table 1 shows that CTMC.



Table 1. Transitions from state s = (b1, b2, p1, p2,bp) to successor state t for jobs in

priority policy.

Successor State Condition Rate Event
(b1 + 1, b2,p1,p2,bp,ac) (b1 < B1) A (ac=0) A1 A job arrives in high
priority class
(b1,b2 + 1,p1,p2,bp,ac) (b2 < Bz2) A (ac=0) A2 A job arrives in low
priority class
(b1 — 1,b2,p1,p2,bp,ac) (b1 > 0) A (ac=0) gs1(1 — R)p A job from high class
terminates
(b1 — 1,b2,0,p2,bp,ac) (b1 > 0) A (ac=0) pri(l — R)u A job is rescheduled
to high priority class
O=p1+1,if p1 < P
{0:P17 ifplzpl
(b1 — 1,b2,p1,0,bp,ac) (by > 0) A (ac=0) prs(1 — R)u A job is rescheduled
to low priority class
O=p2+1,if po < P
0 = P27 lf P2 = P2
(b1,b2 — 1,p1,p2,bp,ac) (b1 = 0) A (b2 >0) A gs2(1 — R)u A job from low class
(ac=0) terminates
(b1,b2 —1,0,p2,bp,ac) (b1 =0)A (b2 >0) A  pra(1 — R)u A job is rescheduled
(ac =0) to high priority class
9:p1+1,ifp1 < P
6= Pl, if p1 = P1
(b1,b2 — 1,p1,0,bp,ac) (b1 =0)A (b2 >0) A  pra(l — R)u A job is rescheduled
(ac =0) to low priority class
0:p2+1,ifp2 < P
= PQ, if p2 = P2
(b1,b2,p1,p2,bp + 1,ac) by < Bp Ap A job arrives in QoS
priority class
(b1,b2,p1,p2,bp — 1,ac) by >0 qspRu A job from QoS class
terminates
(b1,b2,p1,p2,bp — 1,ac) by, >0 prpRu A job is rescheduled,
but before it is decre-
mented
(b1,b2,p1,p2,bp + 1,ac) by, < By prpRu A job is rescheduled,
but after it is incre-
mented
(b1,b2,p1,p2,bp,ac+1) (ac=0)A((br =0)A  miv Change of arrays, b1
(b2 = 0))A((p1 > 0)V and b2 become ex-
(p2 > 0)) pired
(b1,b2,p1,p2,bp,ac — 1) (ac=1)A((p1 =0)A miv Change of arrays, b1
(p2 = 0)A((b1 > 0)V and by become active
(b2 > 0))




Transitions from state s to all possible successor states are reported in Table
1 along with their rates and conditions under which the transitions exist; the last
column indicates the type of event to which a transition refers. When ac = 0, if
a job is generated in the high priority queue in the active array, the occupancy
of that queue, by, will increase by one unit. A rescheduled job from that queue
will go to the high priority queue in the expired array with rate pri(1 — R) or to
the low priority queue in the expired array with rate prs(1— R). In the first case
the job keeps the same priority and, in the latter, the priority is decreased. A job
can leave the high priority queue in the active array, after finishing its processing
with rate gs1(1 — R). An arrival in the low priority queue in the active array
takes place with rate and increases by by one unit.

Since the system under analysis is finite, when a buffer (active or expired
arrays) is full an incoming or rescheduled job is blocked. After switching, the
queues that were in the expired array (p; and p2) become active and vice-versa.
The variable bp represents QoS jobs. We assumed that mtv = 1075, The system
is symmetric, which makes quite natural the match of the other transitions of
the model.

Due to the lack of space and for simplicity only performance measurements
of the high priority jobs that demand QoS guarantees are presented.

B B P P B
Zbllzo Zb;=o Z;,;f:o Zp22=o Zb::l by (b1, b2, p1,p2, by, 0)
(Ap + prpRu)(1 — Pby)

Where Pb, is blocking probability of high priority jobs that demand QoS
guarantees derived as Eq.(1). The throughput is given by:

Wpy =

Bl BQ P1 P2 BP

Xpb:qspRuZ Z Z Z Z (b1, b2, p1, p2, by, 0) 9)

b1=0 by=0 p1=0 p2=0 bp >0

4 Performance study

In this section some numerical results are presented to evaluate how adequate is
the Markov model to scheduling GNU/Linux with and without resource alloca-
tion policy. First, we present the performance of the Linux Markovian model. For
validation purpose, Linux scheduler was simulated by using an academic version
of a powerful tool named ARENA(©[10]. Some measures were obtained through
system calls which collect data for later analysis, minimizing the overhead in
kernel (this can be obtained in www.lprad.ufpa.br/parqos). Table 2 summarizes
the parameters used.

To validate the probability distributions adopted, models use input data ob-
tained from the real system. In these data, Kolmogorov-Smirinov (K-S) goodness
of fit tests were applied, using the trial version of BestFit©tool [11].

These data were used as parameters of probability distributions in question
(Poisson for inter-arrivals times). The simulation results were collated with the



performance measures obtained from the real system. As the numerical results
of that comparison match (very similar), the values may be considered validated
for the analytical model.

Table 2. Input data.

High Priority Measures Low Priority: Measures
A1 7 A2 7,3

pri 0,1 pra 0

pr3 0,09 pra 0,67
Avarage Buffer 5 Avarage Buffer 5

To implement CPU allocation policy it is important to study the CPU be-
havior. Assuming the table above, it represents a situation where scheduler is
very busy and the inputs are Poisson traffic. A new application is added in
A1, simulating a situation of great workload. Table 3 ilustrates the Markovian
model output. As expected, higher the traffic load, bigger the throughput (Fig.
3.a) and, for that reason, longer the mean waiting time, longer is the blocking
probability. In the table, 0% represents the system behavior performance with
just A1 and Ag. A, is derived from A (5%, 10%, 20%, 30%, 40%) and represents
the impact of adding an application to the system.

Table 3. Performance measurements.

Queue Waiting Time
0% 5% 10% 20% 30% 40%
Active High Priority 0,21246 0,21491 0,21687 0,21943 0,22037 0,21995
Active Low Priority 0,59056 0,60058 0,60970 0,62533 0,63785 0,64774
Expired High Priority  6,05108 6,28370 6,48294 6,79442 7,01313 7,16437
Expired Low Priority  0,85739 0,87383 0,88871 0,91386 0,93334 0,94802
Blocking Probability
0% 5% 10% 20% 30% 40%
Active High Priority 0,09701 0,10763 0,11827 0,13925 0,15940 0,17838
Active Low Priority 0,44159 0,44832 0,45431 0,46434 0,47214 0,47817
Expired High Priority = 0,43127 0,44343 0,45346 0,46847 0,47854 0,48530
Expired Low Priority  0,45635 0,46216 0,46734 0,47591 0,48241 0,48723

The main objective of modeling kernel scheduling processes is its evaluation
and study for future modifications in order to achieve a better performance for
QoS applications. The extended model (resource Allocation) is being studied and
tested, but it already presents interesting results like the ones in Figs 3.b and
4. It is the same test situation previously used, but with a different scheduling



process. Using CPU reservation of 40% means that 40% of process capacity is
allocated for QoS applications and 60% for the rest of the applications.

Fig. 4 shows the normal system scheduler improvement by limiting the per-
centage of CPU (100%, 95%, 90%, 80%, 70%, 60%), and it can be observed
that, smaller the percentage of CPU used, smaller the system throughput for
both priority applications. For QoS application, however, bigger the percentage
of CPU used (0%, 5%, 10%, 20%, 30%, 40%), bigger the system throughput.

Throughput
Throughput
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Fig. 3. (a) Throughput behavior (b)Throughput behavior (QoS allocation policy).
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Fig. 4. Throughput behavior per flow.

5 Final remarks

Provision of QoS guarantees in a GPOS scheduler is an open problem. This pa-
per, presented and proposed a Markovian Linux scheduler model for performance



study and, in addition, an extended model, which uses static CPU allocation
policy. Through the analysis of the results, it has been concluded that the per-
formance of the applications with QoS are greatly improved in its throughput.
However, other applications have suffered some limitations. The contributions
of this paper are: (1) Proposal of performance models for GPOS (GNU/Linux)
scheduler; (2) Proposal of a resource (CPU) allocation scheme in an environment
that needs QoS as well as showing through numerical results, obtained from its
Markovian model, improvement of performance of QoS applications when com-
pared to other applications.

Currently, we are implementing another extended model which uses dynamic
CPU allocation policy. As future work, we performing experiments with Markov
decision process to find optimal admission control and scheduling strategies aim-
ing at improving the resource (CPU and memory) allocation.

This work is supported by CNPq and CAPES. Thanks to Dr. Solon Carvalho
for giving permission to use the Stochastic Modeling Software (MODESTO) [12].
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