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ABSTRACT

This study proposes an objective integrated seasonal forecasting system for producing well-calibrated
probabilistic rainfall forecasts for South America. The proposed system has two components: (i) an em-
pirical model that uses Pacific and Atlantic sea surface temperature anomalies as predictors for rainfall and
(ii) a multimodel system composed of three European coupled ocean–atmosphere models. Three-month
lead austral summer rainfall predictions produced by the components of the system are integrated (i.e.,
combined and calibrated) using a Bayesian forecast assimilation procedure. The skill of empirical, coupled
multimodel, and integrated forecasts obtained with forecast assimilation is assessed and compared. The
simple coupled multimodel ensemble has a comparable level of skill to that obtained using a simplified
empirical approach. As for most regions of the globe, seasonal forecast skill for South America is low.
However, when empirical and coupled multimodel predictions are combined and calibrated using forecast
assimilation, more skillful integrated forecasts are obtained than with either empirical or coupled multi-
model predictions alone. Both the reliability and resolution of the forecasts have been improved by forecast
assimilation in several regions of South America. The Tropics and the area of southern Brazil, Uruguay,
Paraguay, and northern Argentina have been found to be the two most predictable regions of South
America during the austral summer. Skillful rainfall forecasts are generally only possible during El Niño or
La Niña years rather than in neutral years.

1. Introduction

South American seasonal forecasts are currently pro-
duced with either empirical (statistical) or physically
derived dynamical models (see brief literature review in
section 2). The need for an objective method for com-
bining different pieces of available forecast information
in South America has recently been recognized by
Berri and Antico (2005). This paper addresses and pro-
poses a solution for this problem by objectively produc-
ing a single integrated (i.e., combined and calibrated)
forecast of seasonal rainfall for South America that

gathers prediction information from four different
sources (three coupled ocean–atmosphere models and
an empirical model).

Good quality seasonal forecasts with reliable uncer-
tainty estimates are fundamental for governments to
plan actions in order to minimize human and economi-
cal losses that may be caused by anomalous climate
events, such as those observed during El Niño–
Southern Oscillation (ENSO) episodes. In South
America, seasonal forecasts are used for planning civil
defense, agricultural, fishery, and water resources (res-
ervoir management). Brazil, the largest and most popu-
lated country of South America, produces more than
90% of its electricity from hydropower stations, empha-
sizing the need for reliable seasonal rainfall forecasts
(see online at http://www.ons.org.br). The provision of
improved seasonal rainfall forecasts could help the Bra-
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zilian government to better plan its management ac-
tions in order to have more efficient control of its na-
tional electricity production program.

Figure 1a shows the total annual mean rainfall for
South America obtained from the 50-yr 1948–2001
global monthly precipitation reconstruction over land
(PREC/L) version 1.0 dataset (Available online at ftp://
ftp.cpc.ncep.noaa.gov/precip/50yr/gauge/2.5deg/; Chen
et al. 2002), which is based on gauge observations. The
accuracy of this rainfall dataset over South America is
reasonably good and comparable to the accuracy of the

Global Precipitation Climatology Project (GPCP)
dataset (Huffman et al. 1997). Figure 1b shows the
mean rainfall in austral summer [November–January
(NDJ)]. A large fraction of the total annual rainfall falls
during the austral summer, which defines the wet sea-
son for most of South America. Tropical and southern
South America have the largest interannual rainfall
variability (Figs. 1c,d). Although good quality dry sea-
son forecasts may be as important as wet season fore-
casts for some sectors, wet season forecasts are of the
most relevance for electricity generation. This study fo-

FIG. 1. Total (a) annual mean rainfall, (b) NDJ mean rainfall, (c) annual rainfall standard deviation, and (d) NDJ
rainfall standard deviation. Units are in mm. The climatological reference is 1948–2001 and the source is Chen et
al. (2002).
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cuses on predictions of NDJ rainfall anomalies for
South America produced with the initial conditions of
the first day of the preceding August (i.e., a 3-month
lead). These are the longest lead austral summer pre-
dictions that were available for investigation from the
European Union–funded project entitled Development
of a European Multimodel Ensemble System for Sea-
sonal to Interannual Prediction [(DEMETER) see on-
line at http://www.ecmwf.int/research/demeter; Palmer
et al. 2004]. Three-month-lead, traditional austral sum-
mer December–February (DJF) forecasts could not be
examined because DEMETER simulations have only
been produced four times each year, starting on the first
day of February, May, August, and November.

South America is a region that has strong atmo-
spheric teleconnections with ENSO (Wallace and Gut-
zler 1981; Trenberth et al. 1998). Because of these tele-
connections, there is promising skill in seasonal fore-
casts for some regions of South America. Figure 2
shows La Niña and El Niño composites of austral sum-
mer rainfall. These figures illustrate regions strongly
affected during ENSO events (shaded areas). During
La Niña years, positive anomalies are observed in
northern South America and negative anomalies are
observed in southern–southeastern South America.
This pattern is reversed during El Niño years. During

El Niño years, an east–west dipole of positive anoma-
lies near the coast of Peru and Ecuador and negative
anomalies over northern South America are observed.
A reverse dipole pattern is observed during La Niña
years. Seasonal forecasts in these regions have some
predictive skill, as will be discussed in more detail
later.

Seasonal forecasts currently issued at coarse 2.5°
horizontal resolution are not able to (and are not ex-
pected to) simulate the observed climate perfectly. This
problem is further aggravated by the lack of compre-
hensive observational datasets to initialize the models
appropriately and the lack of a complete physical un-
derstanding of the climate system. All these limitations
contribute to uncertainties in climate predictions and
therefore, calibration against past observations is re-
quired. To our knowledge, no studies have been pub-
lished with the aim of improving the quality of South
American physically derived climate model seasonal
predictions by statistical calibration based on past ob-
servations. Most previous studies (e.g., Cavalcanti et al.
2002; Marengo et al. 2003; Moura and Hastenrath 2004)
investigated the ability of atmospheric general circula-
tion models in simulating climatological features such
as the annual and seasonal cycles of rainfall for some
regions of South America. These studies have identi-

FIG. 2. NDJ (a) La Niña and (b) El Niño composites for those years listed in Table 1 of section 5. Composites
are given by the quantity c � [y*/y) � 1] 100%, where y* is the mean NDJ rainfall of La Niña and El Niño years
of Table 1 and y is the 1948–2001 mean NDJ rainfall. Regions with positive anomalies (i.e. y* � y) have the
quantity c � 0. Regions with negative anomalies (i.e. y* � y) have the quantity c � 0.
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fied systematic forecast errors, yet have not suggested
approaches for correcting these errors so as to improve
the forecasts. The errors arise from a combination of
factors such as the chaotic evolution of the atmosphere,
errors in the initial conditions of the model, and errors
in model formulation/parameterization.

We present a new integrated rainfall seasonal fore-
casting system for South America that consists of an
empirical model and a coupled multimodel ensemble
prediction system. Integrated forecasts are produced
using a probabilistic Bayesian forecast assimilation pro-
cedure (Coelho 2005; Stephenson et al. 2005). This pro-
cedure allows the production of well-calibrated reliable
probability estimates of rainfall. It also allows the com-
bination of empirical and coupled multimodel predic-
tions. The resulting combined and calibrated forecasts
are summarized by the mean and the variance of a
normal (Gaussian) distribution at each grid point. A
particular aim of this study is to answer the question of
whether or not forecasts produced by the proposed in-
tegrated system are better than those produced by a
simple empirical model or by the simple multimodel
ensemble system alone.

Section 2 reviews the current state of South Ameri-
can rainfall seasonal forecasting. Section 3 briefly in-
troduces and describes the two components of the pro-
posed integrated system. Section 4 summarizes how
predictions are objectively combined and calibrated in
the proposed integrated system. The skill of combined
and calibrated forecasts of the integrated system as well
as of empirical and multimodel ensemble predictions
alone are assessed and compared in section 5. Finally,
section 6 concludes the paper with a summary of the
major findings and a discussion of possible future areas
of research.

2. Brief review of South American rainfall
seasonal forecasting

Several studies (e.g., Folland et al. 2001; Cavalcanti
et al. 2002; Marengo et al. 2003; Moura and Hastenrath
2004) have demonstrated that atmospheric models
forced with observed sea surface temperatures have
some predictive skill when forecasting rainfall in the
tropical region of South America and over the southern
part of Brazil, Uruguay, Paraguay, and northeastern
Argentina—a region known as southeastern South
America. All other areas of South America showed
poor predictive skill. They all found that forecast skill is
highly conditioned on the presence of ENSO events,
with neutral years having less predictive skill. Both
tropical and southeastern South America have strong
ENSO signals (Fig. 2).

Studies by Pezzi et al. (2000), Folland et al. (2001),
Greischar and Hastenrath (2000), and Martis et al.
(2002) have developed empirical models that relate ob-
served rainfall to both sea surface temperature over the
Atlantic and Pacific Oceans and the meridional surface
wind component over the tropical Atlantic. These mod-
els have been used to predict seasonal rainfall over the
south and northeast regions of Brazil and the Nether-
lands Antilles because of the higher predictability of
these regions compared to the other areas of South
America (Cavalcanti et al. 2002; Marengo et al. 2003).
Empirical predictions for the northeast region of Brazil
are skillful during the period March–May (MAM),
which is the rainy season for most parts of this region
(Greischar and Hastenrath 2000; Folland et al. 2001;
Moura and Hastenrath 2004). Empirical predictions of
Pezzi et al. (2000) for the south of Brazil are generally
less skillful than the predictions for the northeast region
of Brazil, and El Niño years were found to be more
predictable than neutral and La Niña years. The ma-
jority of these studies produced deterministic forecasts.
Very little effort has been put into producing probabi-
listic rainfall seasonal forecasts for South America, em-
phasizing that this is an area of research that deserves
further attention.

The comparative skill of physically derived dynami-
cal and empirically based seasonal predictions of South
American rainfall has not been fully explored, and fur-
ther systematic comparisons are desirable (Moura and
Hastenrath 2004). Van Oldenborgh et al. (2005) con-
cluded that physically derived dynamical predictions
slightly outperform empirical predictions over tropical
South America, northeast Brazil, and Uruguay in DJF.
Folland et al. (2001) and Moura and Hastenrath (2004)
focused on rainfall forecasts for the northeast of Brazil
and concluded that physically derived dynamical pre-
dictions do not outperform empirically based predic-
tions. Their conclusions are in accordance with other
comparative skill assessment studies for other target
regions outside South America (e.g., Barnston et al.
1999; Anderson et al. 1999). Section 5 of this paper will
contribute to this skill comparison exercise. We com-
pare the skill of an empirical model that uses observed
Pacific and Atlantic sea surface temperature anomalies
to predict South American austral summer rainfall
anomalies with the skill of 3-month lead austral sum-
mer rainfall anomaly predictions produced by a
coupled multimodel ensemble for the period 1959–
2001. The empirical model developed in this study dif-
fers from those of previous studies in that it predicts
rainfall anomalies for the entire South American con-
tinent, while previous studies focused only on specific
subregions.
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Combining the predictions from these two ap-
proaches can help yield better forecasts of future cli-
mate. The International Research Institute for Climate
Prediction (IRI) subjectively combines physically de-
rived dynamical and empirically based seasonal predic-
tions for several continental regions (Barnston et al.
2003). Objective combination has still not been imple-
mented operationally by any seasonal climate predic-
tion center. This study demonstrates an objective fore-
cast assimilation scheme for combining physically de-
rived coupled model and empirically based predictions
of South American rainfall anomalies. The skill of in-
tegrated forecasts obtained with forecast assimilation is
shown to exceed the skill of each individual prediction
approach.

3. Empirical and coupled model predictions

a. Empirical prediction model

Surface conditions of the Pacific and Atlantic Oceans
are potential sources of predictability for the South
American climate (Moura and Shukla 1981; Mechoso
et al. 1990; Nobre and Shukla 1996; Diaz et al. 1998;
Uvo et al. 1998; Barros and Silvestri 2002; Coelho et al.
2002; Paegle and Mo 2002, among others). These stud-
ies have identified South American regions where rain-
fall is sensitive to sea surface temperature anomalies in
these two oceans. This section exploits these rainfall–
sea surface temperature relationships by using a lagged
regression empirical model based on maximum covari-
ance analysis (MCA; von Storch and Zwiers 1999),
sometimes referred to as singular value decomposition
(SVD). The empirical model uses May–July (MJJ) Pa-
cific and Atlantic sea surface temperature anomalies
(15°N–60°S; 140°–10°E) as predictors for South Ameri-
can rainfall anomalies of the following NDJ time period
during 1959–2001. The previous season, MJJ, is used for
consistency with the initial conditions of the first day of
August that are used by the three DEMETER coupled
models here investigated to predict NDJ rainfall (see
section 3b). In this way, both empirical and coupled
models use initial conditions observed up until the last
day of July. Sea surface temperature anomalies were
obtained from the 40-yr European Centre for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis
(ERA-40; Uppala et al. 2005; more information avail-
able online at http://www.ecmwf.int/research/era/). Pre-
cipitation anomalies were obtained from PREC/L ver-
sion 1.0 dataset (Chen et al. 2002). These datasets have
been chosen because they are among the most com-
plete with the longest records available for climate re-
search.

A simple way to predict a South American rainfall

anomaly y uses multivariate linear regression on the
preceding sea surface temperature anomaly z:

y � M�z � z0� � �T, �1�

where y is a q-dimensional vector, z is a p-dimensional
vector, z0 is a p-dimensional bias vector, M is a p � p
matrix of parameters, and �T is a (multivariate) nor-
mally distributed error with zero mean and q � q error
covariance matrix T. The equation can be written as the
following probability model:

y|z 	 N
M�z � z0�, T�, �2�

where the standard statistical symbol | means given
(conditional upon) and 	N[.] means normally distrib-
uted (multivariate).

The normality assumption is generally valid for sea-
sonal rainfall anomalies. Figure 3a shows the Yule–
Kendall skewness statistics for seasonal mean rainfall
anomalies. These statistics provide a resistant measure
of asymmetry of the distribution that is defined as

� �
y0.25 � 2y0.5 � y0.75

y0.75 � y0.25
, �3�

where y0.25, y0.5, and y0.75 are the lower, median, and
upper quartiles of the observed or predicted rainfall
anomalies at each grip point, respectively. Several re-
gions of South America have � close to zero, indicating
that seasonal mean rainfall anomalies for these regions
are closely approximated by a normal distribution. The
normality assumption substantially simplifies both
modeling and parameter estimation.

The matrices M and T and the bias vector z0 can be
obtained using ordinary least squares estimation:

M̂ � SyzSzz
� 1, �4�

T̂ � Syy � SyzSzz
� 1Syz

T , �5�

ẑ0 � ��y � zMT�M�MTM��1, �6�

where Szz is the (p � p) covariance matrix of sea sur-
face temperature anomalies, Syy is the (q � q) covari-
ance matrix of rainfall anomalies, and Syz is the (q � p)
cross-covariance matrix. Overbars denote the time
means of y and z, XT denotes the transpose of matrix X,
and X�1 denotes the inverse of matrix X. The common
period of rainfall and sea surface temperature anoma-
lies used for estimation in this study is 1959–2001 (n �
43 summers).

Reliable parameter estimation is difficult because of
the large dimensionality of gridded datasets (e.g., p �
2761 grid points of sea surface temperature anomalies
over the Pacific and Atlantic and q � 312 grid points of
rainfall anomalies over South America) and the strong
dependency between values at neighboring grid points.
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Poor conditioning of matrices such as Szz makes pa-
rameter estimation unreliable. This problem can be cir-
cumvented using multivariate dimension reduction
techniques to reduce the dimensionality of the datasets.

Instead of considering grid point variables, one can
project the data onto a small set of leading spatial pat-
terns to obtain a small number of indices. In the ex-
ample presented here, MCA has been used to extract

FIG. 3. NDJ 1959–2001 Yule–Kendall skewness statistics � of rainfall anomalies. (a) Observations, (b) CNRM,
(c) ECMWF, and (d) UKMO coupled model predictions.
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leading covarying modes of sea surface temperature
and rainfall anomalies. A large number of MCA modes
have been retained and tested. It was found that MCA
with six modes gave the best cross-validated forecast
results, which are hereafter shown in this paper. The
first six modes account for 84.8% of the squared co-
variance between sea surface temperature and rainfall
anomalies. Figure 4 shows the squared covariance frac-
tion (SCF) as a function of the number of modes for the
MCA between sea surface temperature and rainfall
anomalies. The SCF drops monotonically until six
modes. After six modes, a very small amount of the
squared covariance is accounted for by each additional
MCA mode.

Figure 5 shows correlation maps (spatial patterns)
and the expansion coefficients (time series) of the first
mode of the MCA analysis between sea surface tem-
perature anomalies and South American rainfall
anomalies over the period 1959–2001. Correlation maps
are obtained by correlating the expansion coefficient
time series of one field (e.g., rainfall) with the observed
grid point values of the other field (e.g., sea surface
temperature). Correlations with magnitude �0.3 are
statistically significant at the 5% level using a two-sided
Student’s t test. This first mode accounts for 51.5% of
the squared covariance between sea surface tempera-
ture and rainfall. The sea surface temperature pattern
(Fig. 3a) shows basinwide correlations in the equatorial
Pacific related to ENSO. Warm (El Niño) years are
evident as positive peaks in the time series in Fig. 5c
and cold (La Niña) years are evident by minima in

these time series. The rainfall pattern (Fig. 5b) has
negative correlations over northern South America and
positive correlations over southern Brazil, Uruguay,
Paraguay, northern Argentina, and Ecuador. This fig-
ure reveals a dipole pattern that during El Niño years is
marked by a deficit of rainfall in northern South
America and an excess of rainfall in southeastern South
America. During La Niña years, this pattern is re-
versed. Note the east–west dipole pattern between the
coast of Peru and Ecuador and northern South
America, which was also previously identified in Fig. 2.
A similar ENSO pattern to Fig. 5 has been identified by
Ropelewski and Halpert (1987), Kiladis and Diaz
(1989), and Paegle and Mo (2002) and is in accordance
with the ENSO composites shown in Fig. 2. The second
and the third MCA modes (not shown) account for
14.7% and 7.2% of the squared covariance, respec-
tively, and relate sea surface temperature variability in
the Atlantic Ocean to rainfall over South America. The
second mode has positive correlation between sea sur-
face temperatures in the equatorial Atlantic and rain-
fall over the northeast region of Brazil. The third mode
positively relates sea surface temperatures over a large
area of the Atlantic with rainfall over central and north-
western South America.

The empirical predictions (EMP) are performed as
follows:

1) To avoid artificial skill, the model parameters are
estimated for each summer only using data for all of
the other summers (cross-validation).

2) Time means are subtracted from the (n � 1) sea
surface temperature and rainfall observations to
make anomalies stored in a (n � 1 � q) data matrix
Y and a (n � 1 � p) data matrix Z, respectively.

3) An SVD analysis is performed on the matrix YTZ to
determine the leading MCA modes U and V in YTZ
� U
VT.

4) A multivariate regression of the k-leading MCA
rainfall and sea surface temperature modes is per-
formed in order to estimate M, z0, and T.

5) The estimated quantities M, z0, and T are then used
to predict the rainfall anomalies for the removed
year using the sea surface temperature anomalies
available for that year.

b. Coupled multimodel ensemble predictions

An ensemble forecast of an individual coupled model
samples uncertainties in the initial conditions used to
produce the forecast. Uncertainties in the model for-
mulation are not sampled by this single-model en-
semble approach. However, different models use dif-
ferent numerical and parameterization schemes to

FIG. 4. SCF as a function of the number of modes for the MCA
between observed MJJ SST and observed NDJ South American
rainfall anomalies for the period 1959–2001. The first six modes
account for 84.8% of the covariance between observed SST and
rainfall anomalies.
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mathematically represent the same physical processes.
The multimodel ensemble, consisting of ensemble pre-
dictions produced by different climate research institu-
tions, helps sample uncertainties due to model formu-
lation.

The multimodel forecasting system used here con-
sists of the three state-of-the-art European coupled
ocean–atmosphere models. The three models are the
Météo-France Center National de Recherches
Météorologiques (CNRM) model, ECMWF model,
and United Kingdom Met Office (UKMO) model.
These models were run as part of the DEMETER proj-
ect at ECMWF (Palmer et al. 2004) to produce multi-
model ensemble hindcasts (i.e., retrospective forecasts
produced after the events are observed) for the period
1959–2001 (43 yr). In fact, a total of seven coupled mod-
els were run in DEMETER. The reason for only using

predictions of three models is because the CNRM,
ECMWF, and UKMO models produced the longest
time series of hindcasts. The coupled models were run
4 times yr�1, starting on the first day of February, May,
August, and November at 0000 UTC. A nine-member
ensemble forecast was made for each coupled model
for the following 6 months. Wind stress and sea surface
temperature perturbations were used to generate the
ensemble members for each model. Atmospheric and
land surface initial conditions were taken from ERA-
40. Initial ocean conditions were taken from extended
ocean-only integrations, where the different ocean
models were forced by ERA-40 surface fluxes. All
model predictions were bilinearly interpolated onto the
same 2.5° � 2.5° grid. More details of the experiments
and model initialization procedures are described in
Palmer et al. (2004) and Hagedorn et al. (2005).

FIG. 5. First MCA mode between MJJ SST anomalies and NDJ South American rainfall anomalies for the period
1959–2001. The SCF, which indicates the percentage of the total squared covariance between the two anomalies
explained by this mode, is 51.5%. The correlation pattern of (a) SST and (b) rainfall. (c) Expansion coefficients
(time series) of SST (dashed line) and rainfall (solid line). The correlation r between these two time series is
indicated in (c).
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The 27-member ensemble of the three coupled mod-
els investigated here is used to produce predictions of
austral summer rainfall for South America. These pre-
dictions are obtained by computing the ensemble mean
and variance of all members of the ensemble and are
referred to as coupled multimodel ensemble predic-
tions (ENS) or, simply, multimodel predictions.

4. Calibration and combination of forecasts

The objective forecast assimilation procedure of
Coelho (2005) and Stephenson et al. (2005) is used here
for the calibration and combination of South American
rainfall anomaly predictions produced by the CNRM,
ECMWF, and UKMO coupled models and the empiri-
cal model of section 3a.

A useful feature of forecast assimilation is that it
allows predicted patterns to be shifted spatially in order
to correct for model biases in coupled model predic-
tions. In other words, the procedure accounts for inter-
grid point dependencies, whereas the combination
methods used by Rajagopalan et al. (2002), Mason and
Mimmack (2002), and Robertson et al. (2004) are per-
formed at grid points individually. The appendix sum-
marizes the forecast assimilation procedure and de-
scribes three different forecast assimilation experi-
ments examined. However, because of the superior
forecast quality of one experiment [called integrated
forecasts (INT)] compared to the other two experi-
ments, only the results of the INT experiment will be
presented and discussed.

Integrated forecasts are based on the MCA between
observed and model predicted anomalies (see the ap-
pendix). The first three leading modes of the MCA
between observed and model predictions of South
American rainfall anomalies were used in the forecast
assimilation procedure to produce integrated forecasts.
A large number of modes was retained and tested.
Forecast assimilation with three modes gave the best
cross-validated forecast results. These three modes ac-
count for 87.8% of the squared covariance between
observed and predicted rainfall. Figure 6 shows the
SCF as a function of the number of modes. The SCF
drops monotonically until three modes. After three
modes, a very small amount of the squared covariance
is accounted for by each additional MCA mode.

Figure 7 shows correlation maps (spatial patterns)
and the expansion coefficients (time series) of the lead-
ing mode of the MCA between observed and model
predicted South American rainfall anomalies. Correla-
tion maps are obtained by correlating the prediction
time series of expansion coefficients with the observed
and predicted grid point values of each model. Corre-
lations with magnitude greater than 0.3 are statistically

significant at the 5% level using a two-sided Student’s t
test. The leading mode accounts for 77.7% of the
squared covariance between observed and predicted
rainfall. The pattern of observed rainfall (Fig. 7a) is
similar to the rainfall pattern of the first MCA mode in
Fig. 5b, which is related to ENSO. The correlation be-
tween the expansion coefficients (time series) of ob-
served rainfall of the first MCA mode (solid line in Fig.
7f) and the expansion coefficients (time series) of ob-
served rainfall of the first MCA mode between MJJ
SST anomalies and NDJ South American rainfall
anomalies (solid line in Fig. 5c) is 0.98. This correlation
is statistically significant at the 1% level using a two-
sided Student’s t test.

Figures 7b–e show correlation maps (spatial pat-
terns) of the predictions produced by the four models
investigated here (CNRM, ECMWF, UKMO, and
EMP). The spatial structure of these patterns when
compared to the observed pattern (Fig. 7a) provides an
indication of the ability of these models to reproduce
the observed rainfall. The magnitude of the correla-
tions in Figs. 7b–e gives an indication of the weights
attributed to each model in the forecast assimilation
procedure. The four models are able to reproduce the
observed negative correlations over central-northern
South America, although the area of negative correla-
tions in the three coupled models is much larger than
observed. The pattern of positive correlation in north-
western South America, near Ecuador, is captured by
the ECMWF, UKMO, and EMP models, whereas
CNRM fails to reproduce this feature. All four models
are able to capture the sign of positive correlations in
southern Brazil, Uruguay, Paraguay, and northern Ar-
gentina, although the location of the maximum corre-

FIG. 6. SCF as a function of the number of modes for the MCA
between observed and predicted austral summer South American
rainfall anomalies for the period 1959–2001.
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lation does not perfectly match the observations. The
second and third MCA modes account for 6.2% and
3.9% of the squared covariance between observed and
predicted rainfall, respectively, and do not resemble
any previously published mode of climate variability
(not shown).

5. Forecast skill

Figure 8 shows observed austral summer rainfall
anomalies during 1982/83, 1988/89, and 1998/99 (Figs.
8a–c), and the forecast anomalies for these three years
produced by the empirical model (Figs. 8d–f), the
coupled multimodel ensemble (Figs. 8g–i), and the in-
tegrated system (Figs. 8j–l). These three examples show
an El Niño episode (1982/83) and two La Niña episodes
(1988/89 and 1998/99). El Niño and La Niña episodes

have been chosen to illustrate how predictable the
mean large-scale rainfall pattern is over South America
during three distinct ENSO extreme conditions. The
spatial correlation between the observed and the fore-
cast anomalies is shown in the bottom right-hand cor-
ner in Figs. 8d–l. Note that spatial correlation is used
here to easily compare and quantify forecast skill rather
than check the statistical significance of different fore-
casting approaches. To obtain a more comprehensive
view of forecast performance, in addition to the spatial
correlation, forecast regional spatial patterns should
also be compared to the observed regional spatial pat-
terns. Empirical predictions are able to reproduce the
observed pattern of negative anomalies in northern
South America and positive anomalies in southern Bra-
zil during 1982/83 (Fig. 8d) and a reverse pattern during
1988/89 (Fig. 8e). In 1998/99, the empirical model failed

FIG. 7. Correlation patterns of the first MCA mode between observed and predicted austral summer South
American rainfall anomalies for the period 1959–2001. The SCF is 77.7%. (a) Observation, (b) CNRM, (c)
ECMWF, (d) UKMO, (e) EMP, and (f) expansion coefficients (time series) of observed (solid line) and predicted
(dashed line) rainfall of the four models. The correlation r between these two time series is indicated in (f).
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FIG. 8. Austral summer rainfall anomalies (mm) for 1982/83, 1988/89, and 1998/99.
(a)–(c) Observations, (d)–(f) empirical forecasts, (g)–(i) coupled multimodel en-
semble forecasts, and (j)–(l) integrated forecasts.

3714 J O U R N A L O F C L I M A T E VOLUME 19



to successfully reproduce the observed pattern (Fig. 8f).
The coupled multimodel prediction was able to repro-
duce the observed dipole pattern of negative anomalies
in northern South America and positive anomalies in
costal Peru and Ecuador during 1982/83, but failed to
reproduce the pattern of positive anomalies observed in
southern Brazil (Fig. 8g). In 1988/89, the coupled mul-
timodel partially reproduced the observed pattern of
positive anomalies in northern South America and
negative anomalies in southern Brazil (Fig. 8h). In
1998/99, as for the empirical prediction (Fig. 8f), the
coupled multimodel failed to reproduce the observed
pattern (Fig. 8i). When empirical and coupled multimo-
del predictions were combined and calibrated with
forecast assimilation, much better integrated forecasts
were obtained. Integrated forecasts (Figs. 8j–l) are in
better agreement with the observations (Figs. 8a–c). In-
tegrated forecasts for 1982/83 have a spatial correlation
of 0.66 (Fig. 8j), which is larger than the values of 0.37
and 0.58 obtained for empirical and coupled multimo-
del predictions, respectively (Figs. 8d,g). The integrated
forecasts for 1988/89 have a spatial correlation of 0.42
(Fig. 8k), which is larger than the value of 0.33 for the
empirical prediction (Fig. 8e) and slightly smaller that
the value of 0.44 for the coupled multimodel prediction
(Fig. 8h). Note, however, that the integrated forecast
reproduces the observed negative anomalies in south-
ern Brazil much better than the coupled multimodel
prediction. Integrated forecasts for 1998/99 have a spa-
tial correlation of 0.24 (Fig. 8l), which is much larger
than the values of 0.05 obtained for empirical and
coupled multimodel predictions (Figs. 8f,i). The predic-
tive skill of 1998/99 was much lower than 1982/83 and
1988/89.

Figure 9 shows maps of Brier score (Brier 1950), its
reliability, and its uncertainty minus resolution compo-
nents for empirical (Figs. 9a–c), multimodel (Figs. 9d –f),
and integrated forecasts (Figs. 9g–i) for the period
1959–2001. See Wilks (1995, section 7.4.3) for further
information about the Brier score and its decomposi-
tion. The sum of the reliability map (Figs. 9b,e,h) and
the uncertainty minus resolution map (Figs. 9c,f,i) gives
the Brier score map (Figs. 9a,d,g) for each of the three
forecasts in Fig. 9. The Brier score is computed here for
the binary event defined by negative seasonal mean
rainfall anomalies. The Brier score is a negatively ori-
ented measure of skill, meaning that smaller values in-
dicate better forecast quality. Forecasts with a Brier
score �0.25 are better than the climatological forecast
of the event. Regions showing simultaneously small val-
ues of reliability and uncertainty minus resolution have
better forecast skill. The tropical region (in northern
South America) and the subtropics (southern Brazil,

Uruguay, Paraguay, and northern Argentina) are the
most skillful regions, with Brier scores less than 0.25
(Figs. 9a,d,g). Interestingly, these two regions have the
Yule–Kendall skewness statistics of rainfall anomalies
closer to zero than the other regions of South America
(Fig. 3). This suggests that forecast skill for the other
regions of South America might be improved if another
distribution, different from the multivariate normal dis-
tribution, is used in the forecast assimilation procedure.
Figures 9a, 9d, and 9g suggest that most of the skill of
South American rainfall predictions is ENSO derived,
in accordance with Figs. 5 and 7, which show that most
of the predictability of South American austral summer
rainfall is ENSO related.

The comparison of Brier score maps in Figs. 9a and
9d reveals that empirical and multimodel predictions
have similar levels of skill. Integrated forecasts ob-
tained with forecast assimilation have improved skill
over both empirical and multimodel predictions alone
(Fig. 9g). Integrated forecasts (Fig. 9g) have larger ar-
eas, with Brier scores below 0.25, than empirical (Fig.
9a) and multimodel (Fig. 9d) predictions. Integrated
forecasts still show predictive skill over the south of the
northeast regions of Brazil, whereas empirical and mul-
timodel forecasts have poor predictive skill over these
regions. The improved predictive skill obtained with
the integrated system is mainly due to improvements in
the reliability of the forecasts (Figs. 9b,e,h). Reliability
refers to the correspondence between the forecast
probability of an event and the relative frequency of the
event conditioned upon the forecast probability (Jol-
liffe and Stephenson 2003). Reliability is a measure of
forecast uncertainty correctness and assesses the cali-
bration of the forecasts. Empirical (Fig. 9b) and multi-
model (Fig. 9e) predictions have good (small) reliability
in the Tropics and southeastern South America. In
other words, empirical and multimodel predictions for
these two regions are well calibrated. Integrated fore-
casts (Fig. 9h) have better (smaller) reliability than
both empirical and multimodel predictions, not only in
these two regions but also in northeastern South
America, indicating that integrated forecasts are better
calibrated than empirical and multimodel predictions.
Improvements in the resolution of the forecasts are no-
ticed in tropical South America and southern Brazil
(Figs. 9c,f,i). Resolution summarizes the ability of the
forecasting system to discriminate between different
observed situations (Jolliffe and Stephenson 2003). The
uncertainty minus resolution component of the Brier
score shown in Figs. 9c, 9f, and 9i provides a quantita-
tive measure of forecast resolution because the uncer-
tainty component only depends on the observations
and therefore is not influenced by the forecasts. Em-
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FIG. 9. (left) Brier scores for the binary event defined by negative seasonal mean rainfall anomalies
and its (middle) reliability and (right) resolution components for (a)–(c) empirical, (d)–(f) ensemble,
and (g)–(i) integrated forecasts. Brier scores are for austral summer forecasts for the period 1959–2001.
The reliability and resolution components were estimated using 10 equally spaced probability bins from
0 to 1.
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pirical (Fig. 9c) and multimodel (Fig. 9f) predictions
have good (small) uncertainty minus resolution in
tropical and southeastern South America. Integrated
forecasts (Fig. 9i) have better (smaller) uncertainty mi-
nus resolution than empirical and multimodel predic-
tions over both tropical and southeastern South
America. Note that resolution improvements achieved
here do not come from the calibration procedure but
instead result from the combination of three different
coupled model ensemble predictions.

Figure 10 shows the mean anomaly correlation coef-
ficient (ACC) for La Niña, neutral, and El Niño years
occurring during 1959–2001 (listed in Table 1) and all
(1959–2001) years. The ACC of each year is given by
the correlation between the observed and predicted
spatial anomaly pattern (Jolliffe and Stephenson 2003,
their section 6.3.1). The most striking feature in Fig. 10
is the small magnitude of the mean ACC (inferior to
0.3), illustrating that austral summer South American
rainfall forecast skill is low. La Niña and El Niño years
have higher mean ACC than neutral years, indicating
that predictions for ENSO years are more skillful than

predictions for neutral years. Note, however, that pre-
dictions for El Niño years are more skillful than pre-
dictions for La Niña years. El Niño and La Niña inte-
grated forecasts obtained with forecast assimilation
show an increase in the mean ACC compared to em-
pirical and multimodel predictions. This is because
forecast assimilation has shifted model predicted pat-
terns toward observed patterns. Neutral years have
very little mean ACC, indicating that rainfall anomalies
for these years are hardly predicted. The higher pre-
dictability of ENSO years compared to neutral years
supports the argument that most of the skill of austral
summer South American rainfall forecasts is ENSO de-
rived. The vertical solid lines on the top of the white
bars in Fig. 10 indicate the 95% confidence interval for
the mean ACC of empirical predictions. These intervals
were obtained using a bootstrap resampling procedure
as described in Wilks (1995, section 5.3.2). Mean ACCs
that are within the range of values of the 95% confi-
dence interval for the mean ACC of empirical predic-
tions cannot be considered different from the mean
ACC of empirical predictions from the statistical point
of view at the 5% significance level. This means that
empirical and multimodel predictions have similar lev-
els of skill when forecasting the rainfall of La Niña
years and throughout all (1959–2001) years.

6. Conclusions

This study has addressed the predictability of austral
summer mean South American rainfall by proposing an
integrated seasonal forecasting system for South
America. The proposed integrated system has two com-
ponents: (i) an empirical model that uses Pacific and
Atlantic sea surface temperature anomalies as predic-
tors for South American rainfall and (ii) a multimodel
coupled system composed of the ECMWF, CNRM, and
UKMO models. These models constitute the opera-
tional European multimodel seasonal forecasting sys-
tem, which is hosted at ECMWF. Empirical and
coupled model predictions were combined and cali-
brated using a Bayesian forecast assimilation procedure

FIG. 10. Mean austral summer ACC for EMP, coupled multi-
model ENS, and INT forecasts of La Niña, neutral, El Niño years
(listed in Table 1), and all 1959–2001 years. The vertical solid lines
on the top of the white bars indicate the 95% confidence interval
for the mean ACC of empirical forecasts, which were obtained
using a bootstrap resampling procedure (Wilks 1995, his section
5.3.2).

TABLE 1. La Niña, neutral, and El Niño years occurring during 1959–2001 as defined by the Climate Prediction Center (CPC; see
online at http://www.cpc.noaa.gov/). CPC designates La Niña episodes when the 3-month running mean of SST anomalies (based on
the 1971–2000 period) in the Niño-3.4 region (5°N–5°S, 120°–170°W) is below 0.5°C for a minimum of five consecutive overlapping
seasons and El Niño episodes when the SST is above 0.5°C. Neutral episodes are the remaining years.

Year

La Niña 1964/65, 1970/71, 1971/72, 1973/74, 1974/75, 1975/76, 1983/84, 1984/85, 1988/89, 1995/96, 1998/99, 1999/00, 2000/01
Neutral 1959/60, 1960/61, 1961/62, 1962/63, 1966/67, 1967/68, 1978/79, 1980/81, 1981/82, 1985/86, 1989/90, 1993/94, 1996/97, 2001/02
El Niño 1963/64, 1965/66, 1968/69, 1969/70, 1972/73, 1976/77, 1977/78, 1979/80, 1982/83, 1986/87, 1987/88, 1990/91, 1991/92, 1992/93,

1994/95, 1997/98
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(Coelho 2005; Stephenson et al. 2005) in order to pro-
duce a single integrated probabilistic forecast. The ob-
jective calibration and combination of empirical and
multimodel coupled predictions proposed here makes
this a first step toward an integrated forecasting system
for issuing South American seasonal forecasts.

The proposed integrated system could feasibly be
implemented at any operational weather service in
South America [e.g., the Center for Weather Prediction
and Climate Studies (CPTEC) in Brazil]. The proposed
system can be expanded by the inclusion of CPTEC
coupled model predictions in addition to the ECMWF,
CNRM, and UKMO coupled model predictions in the
multimodel system. However, the feasibility of the
implementation of such a new system depends on the
establishment of international cooperation between
CPTEC, ECMWF, CNRM, and UKMO, as well as other
South American weather services. The initial steps for
this implementation have been given with the approval
of the European–Brazilian Initiative for Improving
South American Seasonal Forecasts (EUROBRISA)
project (available online at http://www.met.reading.
ac.uk/	swr01cac/EUROBRISA) proposal by
ECMWF council members in June 2005. As part of this
project, ECMWF, CNRM, UKMO, and CPTEC will
produce real-time seasonal forecasts, which will be in-
tegrated using the Bayesian forecast assimilation pro-
cedure to produce a well-calibrated probabilistic fore-
cast for South America. A number of governmental
activities that depend on seasonal forecast information
(e.g., electricity generation and agriculture) are
planned within EUROBRISA. Such a system could be
used as an additional tool for producing objective
probabilistic climate forecasts during regional climate
outlook forums, which are regularly sponsored by the
World Meteorological Organization. A similar ap-
proach could be of use in other regions of the world
(e.g., North America).

To answer the question of whether or not forecasts
produced by the proposed integrated system are better
than those produced by a simple empirical model or by
the simple multimodel ensemble alone, the skill of em-
pirical, coupled multimodel, and integrated forecasts
obtained with forecast assimilation has been assessed
and compared. This comparison revealed that when
seasonally forecasting South American austral summer
rainfall at a 3-month lead time, the current generation
of coupled models has a comparable level of skill to
that obtained using a simplified empirical approach.
The same conclusion holds for shorter (e.g., 1 month)
lead times (Coelho et al. 2005). This result is in agree-
ment with the findings of previous comparison studies

(e.g., Folland et al. 2001; Moura and Hastenrath 2004),
implying that both empirical and coupled model pre-
dictions are comparable to each other. However, when
empirical and coupled multimodel forecasts have been
combined and calibrated with forecast assimilation,
more skillful integrated forecasts than either empirical
or coupled multimodel predictions alone have been ob-
tained. This result demonstrates that forecast assimila-
tion can be used for improving the quality of South
American seasonal predictions. The resulting inte-
grated forecasts have been shown to possess improved
Brier scores compared to both empirical and the simple
multimodel predictions over several regions of South
America. Forecast assimilation improved both the reli-
ability and resolution of the predictions in tropical
South America. Southeastern South America—an im-
portant region for South American hydroelectricity and
crop yield production—and the northeast region of
Brazil also had the reliability of the predictions im-
proved. Recent results demonstrate that forecast as-
similation is also useful for the downscaling of regional
rainfall and river flow anomalies for northern and
southeastern South America (Coelho et al. 2006).

The Tropics and southern Brazil, Uruguay, Para-
guay, and northern Argentina have been found to be
the two most predictable regions of South America.
South American rainfall is generally only predictable in
ENSO years rather than in neutral years, which exhibit
very little skill. The skill of austral summer South
American rainfall predictions produced with the cur-
rent generation of coupled and empirical models is still
low (cf. values of mean ACC are less than 0.3). This
suggests that a large amount of research is still required
in order to improve the quality of these predictions. It
is well known that teleconnection patterns are sensitive
to model resolution, treatment of boundary layer pro-
cesses, and convection parameterization, but more re-
search is needed to precisely identify which particular
aspect or combination of aspects are responsible for the
poor forecast skill and therefore need to be improved.

It would be interesting in the future to extend fore-
cast assimilation to nonnormally distributed data and to
deal with weather and climate extremes. The use of
nonnormal distributions might improve forecast skill
over those regions of South America where the nor-
mality assumption is not strictly valid. The nonstation-
arity of climate can also affect forecast calibration. The
development of more generalized methods capable of
dealing with nonstationary time series might also help
to improve forecast skill. Model selection prior to the
combination of predictions might also help to improve
forecast skill.
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APPENDIX

Bayesian Forecast Assimilation

Forecast assimilation (Coelho 2005; Stephenson et al.
2005) is based upon Bayesian updating of prior infor-
mation when new information becomes available
(Bayes 1763). If one has a first guess of the prior dis-
tribution p(y) of a particular variable of forecast inter-
est y (e.g., rainfall) and additional (new) prediction in-
formation x then becomes available (e.g., an ensemble
of predictions), then it is possible to update p(y) to
obtain the posterior conditioned probability density
function p(y|x) by making use of Bayes’ theorem

p�y|x� �
p�y�p�x|y�

p�x�
. �A1�

The distribution of climate model ensemble predic-
tions gives an estimate of p(x). However, one is really
interested in the posterior distribution p(y|x), not p(x).
Because of uncertainties in model formulation and in
initial conditions, climate predictions in model space
deviate away from the true evolution in observation
space. Model predictions x should then be considered
as proxy information that can be used to infer the prob-
ability of future observables y (Glahn 2004; Stephenson
et al. 2005; Jolliffe and Stephenson 2005). To make
inferences about future observables, one needs a prob-
ability model that can give the probability p(y|x) of
future observable quantities y when provided with
model prediction data x, such as the model of Eq. (A1).

The likelihood p(x|y) is an essential ingredient in the
Bayesian forecast assimilation updating procedure. It
can easily be estimated by the regression of past model
predictions x on past observations y. However, as for
the empirical model of section 3a, because of the large
dimensionality of gridded datasets compared to the
number of independent forecasts and the dependency
between values at neighboring grid points, the multi-
variate linear regression of a few MCA leading modes
is applied.

As described in Coelho et al. (2003, 2004), Coelho
(2005), and Stephenson et al. (2005), the Bayesian pro-
cedure used to perform forecast assimilation has three
main ingredients: (i) estimation of the prior distribution

p(y), (ii) modeling of the likelihood function p(x|y),
and (iii) use of Bayes’ theorem to find the posterior
distribution p(y|x) from p(x) and p(x|y). For simplicity,
it has been assumed that both prior and likelihood dis-
tributions are multivariate normal (Gaussian), leading
to a multivariate normal posterior distribution. Analy-
sis of skewness � reveals that this assumption is gener-
ally acceptable for observed and predicted South
American seasonal rainfall anomalies. Several regions
of South America have observed and predicted sea-
sonal rainfall skewness close to zero and therefore
are not very far from following a normal distribution
(Fig. 3).

The full equations of the multivariate normal model
used here to perform Bayesian forecast assimilation are
given in Coelho (2005) and Stephenson et al. (2005).
All results presented here were obtained with the cross-
validation “leave one out” method (Wilks 1995, his sec-
tion 6.3.6).

Three different forecast assimilation experiments
have been produced:

• Integrated forecasts produced with prior distribution
p(y) (estimated using rainfall observations over the
calibration period 1959–2001) and using empirical
predictions in addition to coupled model predictions
in the forecast assimilation procedure. In other
words, the matrix of forecasts used in forecast as
similation consisted of predictions of the CNRM,
ECMWF, and UKMO coupled models in addition to
empirical model predictions.

• Integrated forecasts with empirical prior distribution
produced with empirical predictions as estimates
of the prior distribution p( y); only the CNRM,
ECMWF, and UKMO predictions are used in the
forecast assimilation procedure.

• Coupled model integrated forecasts produced with
prior distribution estimated using rainfall observa-
tions over the calibration period 1959–2001; only the
CNRM, ECMWF, and UKMO predictions are used
in the forecast assimilation procedure. These fore-
casts do not incorporate empirical predictions.

The second and third experiments above have been
performed as sensitivity tests for the first experiment.
The second experiment was designed to check whether
or not the use of empirical predictions as estimates for
the prior distribution could provide better quality fore-
casts than the integrated forecasts of the first experi-
ment. The third experiment aimed to check if the ex-
clusion of empirical predictions in the first experiment
would impact the gain or loss of forecast skill. Results
indicate that integrated forecasts obtained in the first
experiment have slightly more skill than the forecasts of
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the other two experiments. For this reason, only inte-
grated forecasts of the first experiment are shown and
discussed. These forecasts are referred to as INT.

Finally, it is noteworthy that forecast assimilation has
some advantages (e.g., it produces well-calibrated prob-
ability forecasts, is able to deal with ensemble predic-
tions and multimodel predictions, preserves spatial
structure present in the datasets, and allows spatial pat-
terns to be shifted/corrected) and some potential dis-
advantages [e.g., it needs data reduction for the estima-
tion of regression parameters, the relationships can
change with time (stability), and the calibration equa-
tions (regression) need to be recomputed each time the
forecasting system changes].
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