A Brazilian Software Industry Experience in Using ECSS for Space Application Software Development

Fátima Mattiello-Francisco^{a,1}, Valdivino Santiago^a, Ana Maria Ambrósio^a, Leise Jogaib^b and Ricardo Costa^b

^aNational Institute for Space Research – INPE, São José dos Campos, SP, BR. ^bDBA Engenharia de Sistemas LTDA, Rio de Janeiro, RJ, BR.

Abstract. This paper presents the tailoring of ECSS software product assurance requirements aiming at the development of scientific satellite payload embedded software by a Brazilian software supplier. The software item, named SWPDC, developed by DBA Engenharia de Sistemas LTDA within Software Factory context, is part of an ongoing research project, named Quality of Space Application Embedded Software - QSEE, developed by National Institute for Space Research - INPE, with FINEP financial support. Among other aspects, QSEE project allowed to evaluate the adherence of a Software Factory processes to INPE's embedded software development process requirements. Although not familiar with space domain, the high maturity level of such supplier, CMMI-3 formally evaluated, facilitates the Software Factory to comply with the requirements imposed by the custumer. Following the software verification and validation processes recommended by ECSS standards, an Independent Verification and Validation - IVV approach was used by INPE in order to delegate the software acceptance activities to a third party team. ECSS standard tailored form contributions along the execution of the project and the benefits provided to the supplier in terms of process improvements are also presented herein.

Keywords. Software quality, software development processes, space mission lifecycle,

1 Software for Space Systems

In space systems, a software product is part of a network comprising several systems. Space systems include manned and unmanned spacecraft, launchers, payloads, experiments and their associated ground equipment and facilities. Such software includes firmware components. Space projects are generally expensive and demand considerable amount of time to be completed.

¹ Senior Software Engineer in Space Applications, Space Tecnologies Enginerring, National Institute for Space Research - INPE, Av. dos Astronautas, 1758, Sao Jose dos Campos, SP, Brazil; Tel: +55 (12) 3945 7124; Fax: +55 (12) 3945 7100; Email: fatima@dss.inpe.br; http://www.inpe.br/atifs/fatima/

The insertion of industry into the space programs environment as subsystem supplier has demanded improvements in the space agency's project management processes in order to successfully accomplish the projects. In different areas of application, one can see both industrial and governmental initiatives towards standardization and the use of best practices for project management. European Cooperation for Space Standardization – ECSS is a great result of cooperative efforts among the European Space Agency - ESA, National Space Agencies and European space industry association.

Typical space mission lifecycle is the basis of the model used by ECSS to manage the development of the different space mission subsystems, which includes space application software. Nowadays, space agencies have dedicated special attention to the software project management. Such concern is expressed in ECSS volumes for management, quality assurance and software engineering.

This article addresses the Software Product Assurance volumes [ECSS-Q-80A and B] only. The fundamental principle of this standard is to facilitate the customer-supplier relationship assumed for all software developments, at all levels. They have contributed to these objectives by providing a set of requirements to be met throughout the system lifetime which involves the development and maintenance of space application software. Such requirements deal with quality management and framework, lifecycle activities and process definition, and quality characteristics of the software product [3].

Once the objective of software product assurance is to provide the customer with adequate confidence, the standard is usually tailored for a particular contract by defining specific subset requirements.

In order to evaluate Software Factory model as a satellite payload embedded software item supplier, the standard was tailored for the *Quality of Space Application Embedded Software - QSEE* project, developed under the National Institute for Space Research – INPE coordination. INPE, within such context, plays the role of the customer [1].

This paper is organized as follows: section 2 introduces ECSS-Q-80 structure and tailoring guidelines; section 3 presents DBA's Software Factory model and the software development processes followed by the supplier; section 4 discusses the standard tailored form for this particular software development item, the satellite payload embedded software – SWPDC, a case study of QSEE project. Finally, section 5 concludes with contributions resulting from standard tailored form to the project execution and the benefits provided to the supplier in terms of process improvements.

2 ECSS-Q-80 Structure and Tailoring

According to the structure of this ECSS Software Product Assurance standard, the requirements are grouped in the following three categories: (i) management requirements and software product assurance framework; (ii) software lifecycle activities and processes requirements; (iii) software products quality requirements, including both executable code and related products such as documentation and test data. Each requirement has a corresponding *Required Output* identified that,

among others, is intended to assist the customer in selecting applicable requirements during the tailoring process.

Tailoring for software development constraints takes into account the special characteristics of the software being developed, such as the software type (database, real-time) and the system target (embedded processor, web, host system), and the development environment as well. Those issues are subject of Space System Software Engineering Process as defined in ECSS-E-40. Together, the two standards specify all processes for space software development [2].

In order to carry out the tailoring of the software product assurance process under the scope of QSEE project without addressing ECSS-E-40, two relevant aspects must be pointed out. First, the software product is a satellite payload embedded software, therefore, a critical item. Second, although the supplier is not familiar with the technology and software development environment imposed by the customer, the Software Factory maturity CMMI-3 provides the customer with confidence in terms of its solid software development structure based on well established processes. Thus, such tailoring took into account the software development processes and the software lifecycle adopted by the supplier.

3 DBA's Software Factory Model

The Software Factory concept uses industrial manufacturing fundamentals, such as standardized components, specialized skill sets, parallel processes and a predictable and scalable quality consistency. It can reach a higher level of application assembly even when assembling new or horizontal solutions. Software Factories have gained recent popularity as a cost-efficient way to reduce the time spent on the software development. Conceptually, Software Factories represent a methodology that seeks to incorporate pre-built standard functionalities into software which is typically disaggregated by domain.

The macro-flow diagram on the left of Figure 1 depicts the software development lifecycle typically performed by DBA. The related sub-processes represented by each of the four columns on the right side of Figure 1 show the adherence to SW-CMMI key process areas: Process Control, Change Management, Configuration Management and Quality Assurance.

In order to be produced by DBA's Software Factory (FSW), a Software PROJECT shall be characterized and a particular project team be allocated to sort out the requirements and software development project management activities. Figure 2 presents the relationship among the PROJECT and FSW teams.

Prior to implementing such project management structure, the following steps and documentation should be forthcoming:

- 1. Customer provides an initial view of schedule and scope of the proposed job.
- 2. DBA gives an initial assessment of the effort required to meet those requirements (including an estimate number of Function Points required), and whether it can provide such services.
- 3. Customer will then further specify the elements of an application development service order, along with the following items: (a) All available documentation of the project, architecture, patterns, interfaces, etc.; (b) Hardware and

software configurations for the development and production environment; (c) Restrictions that should be observed during the software development.

SW Development Processes

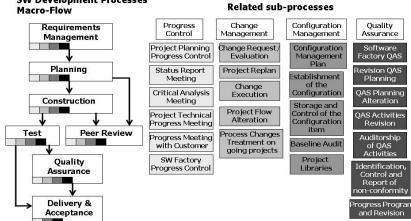


Figure 1. DBA Software Development Processes and related Sub-processes

4. Service Level parameters: DBA and Customer jointly establish the artefacts that are deployed at Analysis and Design and that describe the technical specifications necessary for FSW programmers to implement and test the code. Possible artefacts are: Use Case Specification; Information flow for System X - Template to describe the whole system information flow (to detail information flow for each Use Case).

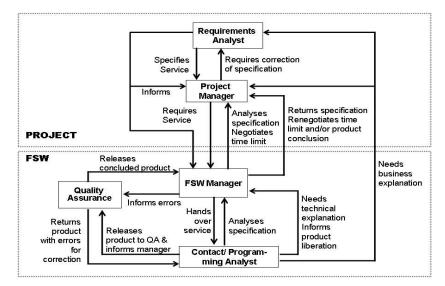


Figure 2. PROJECT and FSW relationship

- 5. The Project Designer will then issue a production order (OP) along with a set of artefacts to be provided (Use Case, Classes and Sequence diagrams).
- 6. The Project Test Plan including testing guidelines that should be followed for FSW developed product acceptance
- 7. Test Design describes test cases for each technical specification.

Since SWPDC software supply by the FSW is subject of space domain application technology transfer to the Brazilian software industry, the PROJECT team was formed by one senior DBA Project Manager and two Software Analysts. The latter have been on-job trained in similar embedded application at INPE laboratory during six months before the SWPDC was effectively started.

4 Tailored Requirements

Software product assurance plays a mandatory role within the overall software engineering process. The complexity of software development and maintenance requires discipline to build quality into the product from the very beginning.

According to ECSS-Q-80B, the software product assurance requirements are grouped in three sets of activities: (i) the assurance programme implementation, (ii) the assurance of the development and maintenance process and (iii) the assurance of the software product.

Requirement	Description	Tailored Form	Tool	Document
Contractual	Supplier and	Established when project		Agreements
Aspects	Customer define a	QSEE was approved by		on Project
	contract	governmental financial	-	Proposal
		support (FINEP)		
Software	Supplier provides a	SPA items included in	Complia	SDPlan
Product	plan complying	DBA Software	nce	
Assurance	requirements and	Development Plan	matrix	
Planning and	being approved by	document, reviewed and		
Control	customer	approved in SSR		
Software	Supplier provides	Reviews data package	Reports	SDPlan
Product	mechanisms for	and tool allowing the	from a	
Assurance	assessment of the	customer to follow each	proprieta	
Reporting	current quality of	Production Order (OP)	ry tool	
	the product	into the FSW	(SAF)	
Non-	Software Reviewer	Formal Reviews point		RB
conformance	Board and baseline	out the discrepancies		
	established by	(RIDs) and project		
	supplier/ customer	control meetings	-	
Software	Supplier defines	Software Problems	DBA	SDPlan
Problem	and implements	identified in the FSW	FSW	
	procedures for	have well established	work-	
	logging, analysis	internal procedure. RNCs	flow	
	and corrections of	are problems identified	involves	
	software problems	on acceptance testing.	QA team	

Table 1. Requirements related to software product assurence programme implementation

The tailoring process was carried out following these three groups in a supplementary way by means of careful analysis of their requirements. Table 1, Table 2 and Table 3 summarize, as examples, some of the applicable requirements analyzed and their tailored form for SWPDC product assurance. The first two columns of each table contain the ECSS-Q-80 requirement and its description, respectively. The column entitled *Tailored Form* describes the way the recommended requirement has been tailored in this project. Whenever a facility is provided to support the requirement, the *Tool* column introduces it. The *Document* column lists the customized documents in which such requirement is complied with. Table 1 lists some requirements corresponding to the group (i).

Requirements Baseline (RB) is the main document provided by customer. It imposes six formal reviews: Software Specification Review (SSR), Preliminary Design Review (PDR), Detailed Design Review (DDR), Critical Design Review (CDR), Qualification Review (QR), and Acceptance Review (AR). RB also defines the documents to be provided by the supplier: Software Development Plan (SDPlan), Software Test Plan (STPlan), Software Technical Specification (STSpec), Software Design Document (SDD), Software Test Specification (TestSpec) and Test Report (TRep). The following documents are required from the independent team: Independent Verification and Validation Plan (IVVPlan), Independent Verification and Validation Test Specification (IVVTSpec), Independent Verification and Validation Report (IVVRep). The Formal Reviews are documented in Technical Review Report (TRRep) which includes identified discrepancies (RIDs). During the acceptance phase, Non-conformance report (RNC) is delivered by IVV team to the supplier with a copy to the customer.

In respect to ECSS requirements presented in Table 1, a brief analysis about their correspondence with DBA Software Development processes and related sub-processes (Figure 1) shows that such requirements have met the Progress Control and Quality Assurance sub-processes.

Table 2 lists some requirements corresponding to group (ii). Since ECSS-Q-80B subdivides the software assurance process requirements in three categories, that organization was also adopted in that table.

ECSS requirements related to software lifecycle are met by two DBA Software Development processes: Requirements Management and Planning. And by related sub-processes: Progress Control and Change Management. The process assurance requirements applicable to all software engineering processes are met by Peer Review, Quality Assurance and Delivery & Acceptance processes. And by related sub-processes: Configuration Management and Quality Assurance. Whereas the process assurance requirements related to individual software engineering activities are met by Construction and Test processes. And by related sub-processes: Change Management.

Table 3 lists some requirements concerning group (iii). The correspondence between the requirements on Table 3 and DBA processes presented in the Figure 1 macro-workflow is consequence of the software development lifecycle phases. Thus, the first requirement row meets the Requirements Management and Planning processes. Second requirement meets the Construction process. And the last two rows meet the Test, Peer Review and Delivery & Acceptance processes.

A Brazilian Software Industry Experience in using ECSS

Requirement	Description	Tailored Form	Tool	Document			
Requirement		re Development Lifecycle	1001	Document			
Life cycle	Software life cycle	Software development		SDPlan			
definition and review	defined by supplier	lifecycle followed by DBA	Work-				
review	and reviewed by	FSW has been approved by	flow				
NC1 /	customer	the customer on SSR		DD 1			
Milestones	A series of	Reviews have been		RB and			
	technical meetings	established on the RB by		SDPlan			
	or reviews shall be	customer according to	-				
	defined	space mission life cycle.					
		Software Engineering processes					
Documentatio	Software project	Development Plan and Test		SDPlan,			
n of Processes	plans cover all	Plan provided by supplier		STPlan,			
	software activities	and by the IVV team	-	IVVPlan			
Handling of	Apply measures to	IVV team designs model-	CoFI	IVV Plan			
Critical	assure software	based testing for automatic	Conda	IVVTSpec			
Software	confidence	test cases generation.	do	IVVRep			
Software	Supplier shall use	The system used by the		SDPlan			
Configuration	a configuration	FSW process has been	VSS				
Management	management tool.	approved by customer					
Verification	Verification plan	FSW comply the reviews		RB,			
	describes facilities,	imposed in RB adding pair		SDPlan,			
	training and skills	review (internal verification	-	IVVPlan			
	to carry out the	technique). IVV Plan is					
	verification	provided by the					
	activities	independent team.					
	Related to Individ	ual Software Engineering activiti	es				
Software	Requirements	Technical Specification		RB and			
Requirement	specification shall	document was elaborated	-	Protocol			
Analysis	be provided by	by supplier taking RB as		Spec			
, ~-~	customer as input.	input customer provided		TSpec			
Architectural	Use of a design	Customer required UML	Interpr				
Design	methodology and	artefacts on Software	ise	SDD			
8	design standards	Design, usually adopted in	Archit				
	appropriated to the	the FSW, and provided	ecture				
	software type.	SDD document template.	20000				
Software	Customer judges	The acceptance process	CoFI	IVV Plan			
Delivery and	whether the	defined in RB focus on	metho	IVVTSpec			
Acceptance	product is	testing at instrument level,	dology	IVVRep			
. ieeepunee	acceptable,	subsystem and system.	MME	1. Hop			
	following previous	Model-based testing is used	Conda				
	agreement criteria.	in the acceptance process.	do				
	agreement eriterid.	in the acceptance process.	uo	L			

Table 2. Requirements related to the software process assurence

Almost every ECSS-Q-80 requirement has been analyzed during tailoring process. The exceptions are: Supplier Selection & Control and Procurement processes because they are related to activities out of FSW scope. It is worth mentioning that the Assessment and Improvement Processes, Process Metrics and Product Metrics are internally executed by FSW to support the processes presented in Figure 1.

			1	
Requirement	Description	Tailored Form	Tool	Doc.
Technical	Software	Complete, detailed and	Trac	RB and
Specification	requirements shall be	unambiguous requirements	eabil	STSpec
	documented in a	are provided by supplier	ity	
	Software Technical	taking into account RB as	matr	
	Specification	input.	ix	
Design and	Software design with	SDD produced by FSW		
Related	minimum hierarchy	contains the solution to the		SDD
Documentation	dependency and	requirements of the STSpec.	-	
	interfaces among	Use Case artefacts from		
	software components	UML are recommended.		
Test and	Detailed test planning	A set of document was		STPlan,
Validation	(test cases,	defined by customer in		TestSpec
Documentation	procedures, results)	order to cover the two	-	IVVPlan,
	shall be consistent	testing level strategy		IVVTSpe
	with test strategy.	(internal to FSW and IVV)		с
Reports and	Reports of all	Two report documents were		TRep
Analysis	assurance, verification	required to cover the two		IVVRep.
	and validation	testing level strategy	-	TRRep
	activities	(internal to FSW and IVV).		
		Also a RIDs and RNCs		

Table 3. Requiments related to the software product quality assurance

5 Conclusions

The tailored form contributed to simplify the embedded software technology transfer process from INPE to DBA. Specific requirements concerning independent verification and validation carried out by a third party team were defined because the full validation of the software product on the target computer was not feasible within the FSW context. This team participation on the reviews allowed for early understanding of the software operational behavior which contributed to the applicability of model-based testing techniques as part of the acceptance process.

Although not familiar with space domain, the supplier maturity level, CMMI-3 formally evaluated, facilitates FSW to comply with the requirements imposed by the customer. The project-oriented approach adopted by DBA to deal with the well stabilized processes of its FSW minimized the difficulties inherent to adding new project knowledge domain to FSW environment.

6 References

- Quality of Space Application Embedded Software (QSEE). Available at: <<u>http://www.cea.inpe.br/~qsee</u>>. Accessed on: Feb. 23th 2007.
- [2] Space Engineering Software, ECSS-E-40 standard, May 2005.
- [3] Space Product Assurance Software, ECSS-Q-80A and B standard, October 2003.