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1. Introduction and objectives
This work study the CO,, budget in the atmosphere on Amazon basin focusing the role of the shallow

and deep convective systems. The vertical redistribution of the CO, by these systems is numerically

simulated using a Eulerian transport model coupled to a regional atmospheric model (RAMS). The
transport model includes advection at grid scale, diffusion in the planetary boundary layer (PBL) and
convective transport by sub-grid shallow and deep moist convection. We explore also two different
approaches for the CO, biogenic surface fluxes. The simulation is carried out with 6 tracers whose
mass conservation equation is resolved including or not the moist convective deep and shallow
transport. In that way, the role of these systems is clearly showed. The rectifier effect is also depicted
through the transport to the free troposphere of PBL air masses with low CO, concentration due to
activity of assimilation by the vegetation in the period between the noon and end of the afternoon,
when this process and the convective activity are in the apex. The model is applied to July 2001 with a
30 km grid resolution covering the north portion of the South America. For this case, we compare the
model results with CO,, observations collected on Amazon basin during CLAIRE experiment.
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We have parameterized CO, biogenic fluxes in the model for the
simulation of the diurnal cycle of CO, in the PBL. The source term
parameterization (Q) of CO, follows two approaches:

v'Cosinusoidal oscillation (for the tracer CO,[6]):
N0 - nightime R (f mol/m?s) A _ ()l mol/m’s) Reference

] Forest 5 25 Lixin et al., (2003)
0= R-[ A, H” t H . Pasture 5 20 Lixin et al., (2003)
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Table 2.1: Values of respiration and
assimilation for forest, pasture and cerrado
included in the model.

2,8 15 Miranda, A. C. et al.,
(1996)

Cerrado

v'By observed correlation between the NEE and the surface net
radiation (for the tracersCO,[1-5]): WEFE = a+ bR

net
Tracer Advec PBL turb

[1] / / / / *
[2] / / *
[3] / *
[4] /

[5]

[6]

Table 2.3: Six differents tracers with their
respective transport terms are showed.
For CO,[1-5], the correlation between the
observed NEE and net radiation were
used for the NEE parameterization in the
model. For CO,[1] all the transport terms
were used, being the realistic situation in
the atmosphere. The shallow convective
term was not used for CO,[2]. For CO,[3],

the deep convection was not used and for
CO,[4] both shallow and deep convection

were not used. CO,[6] is simulated using
all the transport terms but with the NEE

Deep Conv. Shallow Conv. Q (source)

NEE =a+bR__
a b
-0,0375 6,7137
-0,0375 4,5355

CO,
CO;
CO,
CO,
CO,
CO,

Forest

Pasture

Table 2.2: Rate of respiration and assimilation
of CO, included in the model.

Pasture (b, d)

Jul/o1

Forest (a, ¢)

Jul/01

3. Dataset analisys

The figures below show where CLAIRE 2001
experiment took place. Also Harvard's flux
tower located in Tapajos Forest (Santarem) is
showed.
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Fig. 3.1: Diurnal variation of NEE (for forest (a) and pasture (b)) and correlation
between Net Radiation versus NEE. These correlations had been parameterized in the
CO, transport model.
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Fig. 3.2: Vertical profiles of the flights for mesuarements of CO, (a). For the same
flight is showed the vertical profile of potential temperature (b).
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Fig. 3.4: Comparison between CO, fluxe

where were used data when u* was
above 0,2 m/s. July 2001.

\

4341 . . . . 54 . . . .
60.9W  60.6W  &60.3W oW o007y 60.9W  60.6W  60.5W oW 2y W

Fig. 3.3: Trajectory of the airplane for 12 and 15 July 2001 above part of Amazon
basin.

4. Model results
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Fig. 4.1: Comparison between observed vertical profiles of CO, versus RAMS simulation in two differents time for differents days.
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Fig. 4.3: Diurnal change of CO, in

the low troposphere as simulated by
the model. Can be seen high values
of CO, in the beginning of the
morning. Along the day, the biogenic
assimilation process and the
turbulent transport impose low CO,

concentration in the end of the
afternoon.
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Fig. 4.2) Time evolution of the vertical profile of CO, tracers: CO,[1], CO,[2], CO,[3], CO,[4] and CO,[6] on 08:00, 12:00, 16:00, 18:00 and 22:00 UTC July, 17 2001.
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Fig. 4.4. Comparison between NEE observed and NEE simulated for differents days.
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Fig. 4.5: Time evolution of the CO, concentration for the tracer CO,[1] (shaded, vertical level 14 km), streamline of wind (white) and 1-hour accumulated convective precipitation
(contour in black, mm) between 1800 and 2300 UTC on July, 18 2001. It is observed around 2° S and 59° W a convective activity. Along the time, low concentrations of CO, are
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5. Conclusions
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Fig. 4.6: Compararison between
accumulated precipitation by
TRMM (a, b and c¢) and RAMS
simulation (d, e and f).

The model was able to reproduce the main characteristics of the diurnal cycle of CO, in PBL and the transport from the PBL to

the free troposphere by the shallow and deep moist convection, depicting the rectifier effect. For more realistic simulation, we are
working on a better initial and boundary condition. Also working is going on to make stronger coupling between shallow and deep
cumulus scheme in order to get better diurnal cycle of the simulated precipitation on Amazon basin.
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