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Abstract. In this paper we investigate the stability of James, 1992; Kurgansky et al, 1996). For these reasons,
zonal flow in a baroclinic atmosphere with respect to finite- investigation of peculiarities in the behaviour of ultra-long
amplitude planetary-scale disturbances by applying Arnold’swaves is important for undestanding of climate processes and
method. Specifically, we examine the sign of the second varifor the construction of climate simulation models.

ation of a conserved functional for the case of a polytropic at- Some of the principal properties of ultra-long waves are
mosphere (i.e. one with a linear lapse rate) and with a linearelated to the stability of the atmospheric zonal flow. The
profile of zonal wind. Sufficient stability conditions for an growth rates and the height distribution of the amplitudes of
infinite atmosphere (i.e. with a temperature lapse rate equalinstable ultra-long waves are central characteristics that, to
to zero) are satisfied only for an atmosphere in solid bodya great extent, define the dynamics of the large-scale atmo-
rotation. For a polytropic atmosphere of finite extent (a lapsespheric circulation.

rate is not equal zero) the sufficient conditions of stability In Lynch (1979), the instability of zonal flow with respect
can be satisfied if a lid is placed below ri#finax, polytropic  to ultra-long waves was studied by means of linearised plan-

atmospheric height). The dependence of heighixon val-  etary geostrophic equations of type Il. These equations de-
ues of the vertical gradient of the zonal wind and the zonalscribing planetary-scale disturbances were first proposed by
temperature distribution is calculated. Burger (1958) and were later used in the works of Wiin-

Nielsen (1961), Phillips (1963), Pisnichenko (1980, 1983),
and others. Important insights into the dependence of the
growth rate of ultra-long waves on the wind shear and the
coefficient of static stability were obtained using this linear

Ultra-long atmospheric waves play a significant role in the appr.oach. . . o .
formation of weather and climate regimes. The longest It is also interesting to solve the problem in its nonlinear
waves dominate the spectral distribution of kinetic and avail-formulation and to study the role of nonlinearity on zonal
able potential energy. The ultra-long waves are responsibldOW stability. Beginning with Arnol'd (1965), the method
for both energy transfer through the spectrum (Baines 19760f construction and investigation of a conserved functional
Starr, 1968) and for heat transfer from the lowest layer of thefrom instantaneous states of hydrodynamical fields has been

troposphere to the stratosphere (Charney and Drazin, 19611yidely used in the study of fluid flow stability. Application
McNulty, 1976). The first three spherical harmonic compo- of this method to determine the stability of three-dimensional

nents (/ff’ w%’ wl—l) are directly connected with the angular baroclinic flows in meteorological models first appeared in

momentum of the Earth (Barnes et al, 1983; PisnichenkoPiKly (1965) and Dikiy and Kurgansky (1971), and later

1990). There is a large correlation between events of block!N Studies such as Mcintyre and Shepherd (1987); Shepherd
ing formation and the values of amplitudes and phases of1989); Mu and Shepherd (1994); Yongming and Mu (1996).
stationary spherical harmonics with = 2, 3 in the geopo- This paper add_resses zonal .flqw stability W|.th respect to
tential field (Kurbatkin, 1970; Bengtsson, 1981). PlanetaryUltra-long wave disturbances within a fully nonlinear frame-
waves are also responsible for low-frequency atmospheri?vork. We consider the problem in the approximation of plan-
variations and, as a consequence, for the manner of the ten®tary geostrophic equations which are presented in Sect. 2,

poral evolution of stochastic atmospheric regimes (James antPgether with conservation laws for the model in question. In
Sect. 3, Bernoulli's theorem is formulated for this system. It

Correspondence td: A. Pisnichenko is also shown that the stream function of the flow under inves-
(pisnitch@cptec.inpe.br) tigation is fully defined by potential vorticity and potential
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temperature fields. Section 4 is devoted to the calculation ot) conservation of any globally-integrated mass-weighted
first and second variations of a functional composed of confunction of potential vorticity and potential temperature
servation integrals. The conditions of sign definiteness of the

second variation define the sufficient conditions of zonal flow_ [// pP(Q,s)dt = = 9)
stability. The general equation obtained here are applied forl!

the case of polytropic atmospheres in Sect. 5. whered is any function of2 ands;

d) conservation of transposed angular momentum (the angu-
lar momentum of the atmosphere if it were in solid rotation
with the earth)

We will consider three-dimensional baroclinic atmospheric 4
/// wa Coszgapdr_—zo

2 The model equations

flow of planetary scale on the spherical Earth. The equations;, (10)

used are the quasi-geostrophic equations of type Il first de— _
rived by Burger (1958). For the dry adiabatic case they are€) conservation of any surface-integratgeveighted func-

written in the form: tion of entropy
1 9p d dpP
. 1 — G(s)do = — =0, 11
= ® 5[ e = )
1 ap whereG is an arbitrary function of specific entropy and the
—fv = "~ pacosg 9 (2 integral is calculated over the plane Earth’s surfacslifould
be equal to zero at the Earth’s surface).
1lap
8 = —;E 3
3 Bernoulli’'s theorem
5 TV-v=0 (4)  we will investigate the stability of atmospheric zonal flow
according to the scheme described by Dikiy (1965) and Dikiy
d_S —0 ) and Kurgansky (1971). We begin by showing that a steady
dt flow (9/9¢ = 0) described by Egs. (1-6) satisfies Bernoulli's
» = RpT ©6) theorem. To prove this, multiply Egs. (1), (2), and (3) by

ady, acospd) anddz, respectively, and add. We obtain:

whereu, v, w are the zonal, meridional and vertical compo-
nents of velocity vectow; p, p, ands are respectively the fuady —vacospdi)+gdz=—— dp (12)
air pressure, density, and specific entropy of dry air with gas P

constantR; f = 2wsing is the Coriolis parametet is the ~ For a streamline,

angular velocity of the Earth’s rotatiog;is the gravitational
acceleration force for unit mass; aid ¢, z are longitude,
latitude and height above the surface of a spherical Earth of

radiusa. Differential operators of total derivativé/dt and  so the parenthetical term in Eq. (12) drops out along a stream-

acospdr adp dz
u v w

divergence in spherical coordinates are line, leaving Bernoulli's theorem:
d 0 u 90 v 0 d 1
— =+t — =+ ——+tw—. - _
dt ~ 3t  acospdr  ady dz dgz= pdp' (13)
1 9 1 9 d — i i
V.v=+ ou + 2 (cosp v)+ _w Next we show thatls = 0 along a streamline. For this,
acosyp dk  acosyp d¢ multiply Eq. (5) for steady flow by/z and note that dr =
From equations (1 - 6), the following conservation Iaws cand Cosp di, vdt = ady, andwdt = dz. Then, using the first
be obtained: law of thermodynamics, we obtaif(gz + c,T) = 0 or

a) conservation of the planetary potential vorticity (trans-
posed potential vorticity) of an air parcel (see Appendix for
details) along a streamline.

Let us assume further thats x VQ # 0, so that isen-
tropic and isovorticial surfaces do not touch each other any
where in steady flow. One can show that this property will
be conserved for all time (Kurgansky, 1993). Thus, every
streamline is uniquely determined bynd<2. That is

d drl
7 /f/ p(gz+c,T)dr = T 0; B) W, ¢.z,1)=gz+c,T =¥, Q).
\%4

Z+cpT = const

9
dfa—é_dQ_O. @
dt p — dt =7

b) globally-integrated conservation of total potential energy
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4 A conserved functional and its first and second varia- Here we designat& = f/p 8(3s/dz) — f/p?ds/dz8p,
tions and ®q, o, ... as partial derivatives of functioh with

respect ta, s.
To investigate the stability of a zonal flow let us compose the  pjtferentiating Eq. (17) with respect tg we find:

functional from the integrals of motion (Egs. 8—11). This

procedure is to some extent similar to finding conditional ex- foQ 129 foQ

tremum of a function with the help of a Lagrange multiplier. Pys — Pass — ‘DQQSEE = afz(q’sm;g) - T |, (20)
The integrals of motion that we use here correspond to con-

straints that set some limitations on possible motions. and finally differentiating Eq. (16) with respectgoand tak-

ing into account Eq. (17), we obtain:
H=l‘I—|—F—|—P+qM=/// plgz+cT + O(s, )+
14

p(gwa?sin 2p + 735 ¢ 8—T)
+qwa® cog go] dt + // fG(s)do. (14) Dgq = dp ~ Py 21)
s (s, Qaf

The temperaturd” in functional H can be expressed in
terms of specific entropy a6 = T*exp(s/cy)(p/p0)* *
wherex = ¢,/c, andT* is a constant having the dimension
of temperature. Symbal corresponds here to any arbitrary
constant. Denoting the value of the functiofatorrespond- 1 90
ing to the zonal flow under discussion Hs and expanding 8°H = f// {—(K —DepT(3p)* +2 [(K -DT + <8_>
the functionalH in a Taylor series in the vicinity offy we V. P <
write: ' fu+ qwasin2p
(s, €2)

Here(s, Q) = (9s/0¢ 02/3z — 92/0¢ds/9z)/a.
Using Egs. (17), (20), (21) we can rewrite the second vari-
ation of H as:

0?(fu + qwa sin 2p)

, Q
H = Ho+8H|m + 8°Hlmo + ... VACRY)

) ] o ) T 1[0 (02 fu+ qwasinZy 2
If the first functional variatior§ H |, is equal to zero, then » [C— + P [a (5 T) - Tzﬂ (ds) }df
the zonal flow corresponding to the functional valdgis a g QZ . !

stationary point in the functiongk2, s}-space. Performing 4+ // o (fu +qwasin2p)
the calculation we will obtain the following expression for s So (s, €2)

the first variation ofH ;

} 8pds + (6)%+

(85)%do. (22)

The surface integral expression was obtained by differentiat-

SH — /// [(\p +®— Do + gwa’ co (p> 80 ing Eq. (18) with respect tp. We also have used here the
14 alternative form of Eq. (1)
19
+p (T—i—CDS—CDSQQ - CDQQ;Z)_Z s | dt cp 0T T 0s

fu=-L°" 4

—— 23
a dp ady (23)

+//S f(Gs — ®gq) 8sdo. (15)

One can see from Eq. (15) that necessary conditions fo
8H = 0 are the following

Note thats? H represents a functional from two independent
functions becausg can be expressed throughands.
If we consider zonal flow withH = 0, and if §H is

W+ — DoQ + gwa®cog g =0 (16)  sign-definite at a certain point in functional space of two in-
R dependent functions, then this point will be a maximum (or
®; — Posf — Pog - +T =0 (A7) minimum) of functionalH in this functional space. Level
p functional surfaces in functional space around this point will
G'(s) — @al:=0 =10 (18)  be closed and inserted one into another. Thus, in the case of

Note here that Eq. (17) is a consequence of Eq. (16). T& finite disturbance of the zonal flow, the phase point cor-
prove this, it suffices to differentiate Eq. (16) with respect to "esponding to the new disturbed state will shift to one of
z and then to divide the result obtained by/dz # 0. If  these surfaces and will stay on it, &8//dr = 0. During
arbitrary functionsd andG are chosen to satisfy Egs. (16) all next time, the phase point WI!| not stron'gly'dewate from
and (18) then for our zonal flowo will be a stationary point. the extremum point corresponding to the initial zonal flow

For the second variation df we will have: (Arnol'd, 1965).
2 (k — DecpT 5 .
8°H = T(Sp) +2(kT — P30 5 The case of a polytropic atmosphere
\%4
+0,)8p8s + pDPaq(32)% + p ((Dss + T Doy Q Let us now consider a polytropic atmospheTer-é Tg—yz)._
Cy We will assume that the wind changes linearly with a height:

foQ V = Vo + Az, as is frequently used in zonal flow stability
—¢9m;¥ (85)% | dT + //s (Gys — Do) f (85)°do. (19) investigations.
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For further calculations it is convenient to express termsSubstituting values fof = Ty — yz and foru = ug + Az

entering the functional (22) through, y, T, p. we can rewrite it as
-2
: 1 Cglfu+qoasinlr—y) | KA | Pea—y)
82H = =k =DepT - () + k—1 fVa
v (MJrﬂg()}a—y))ya g2
k= Ya — —
{Z [o« )B2g fzy Y=Y | s onpey? +
+qwasin2o) (v, + k(k — D)y, — “
) (K_l)T_g(fu qc;c;\ ! Zpﬂgy(y k(k =D (ya—7)) $pis+ . 3222 .
a R ' _ _ _ a
(K—1+ fVa ) Ve +2K f A YaVy K(Z K)A,Bg}/u}/ c—1 (2+K(K—1)> +
T T Ay, 22 f20%y,
i . * cp(y. V_ y)  (fAx ﬂg(fya —y)/) - +2ho { Kf— 1 : FR@=K)Agya — k(@ =10Mpgy +
vootpia (m‘l‘T) R(ya—v)
‘ L2k =Dy (a =) |
¢(fu+quasin2)(y, - y) 352 dot 12y,
(fAKlJr Pe(Va —y)>cgya (€ — D280 — 7)
- Ja +T2ABg + LA A8 $4) (26)
// F2u0+ RTB)(fuo + qwa S|n2(p 00Ya (55 4o (24) ez
§ (”g A fAKl + Pa( }}"ya )(Va - y)Rf? For an atmosphere of any vertical extent this inequality
h he followi will be satisfied everywhere only whekh = 0, (because at
Here we Fje3|gnat@f/aago = p and have used the following -y ol the term in rectangular parenthesigatill be neg-
equation: ative for anyA), that is, when the whole atmosphere rotates
s (Ya—=V)cp, Q- Sa—v)ep as a solid body (note that = —ga cosgp).
9z T ’ - oT ’ For the case of isothermal stratification Eq. (26) will take
Qe o5 fu A Ve — v the form
Q=—2 —=(=- = -2
RT' adg \T yva—v/) v (KfA+/3_g>
BQ—Q fu+Tﬁ ; Q= 8p); K_izjzcz 2 2
we ~ T\ R TF) = 0); {_KfA)/a[(K—l) +K]22+KToAya'
(k —1)? '
_ Ql fAe  BEWa—y)
(S’Q)___ K—1+ f : ZfZKA
Va [ o+ (Z—K),Bg:| z+
Letug = —ga cosy. This means that the wind on the Earth’s (=1
surface represents solid body rotation. The intensity and di- (k — 1) Tozﬁzgz
rection of the wind is defined by the arbitrary parametein +rTEABg + 2 >0 (27)

this case, the surface integral in Eq. (24) is zero, and the suffi-
cient conditions required for the volume integral pars®H Hence it follows that Eq. (27) is satisfied everywhere only
to be sign-definite quadratic form, are also sufficient condi-for the trivial case ofA = 0. The quadratic forns2H for

tions for stability of the zonal flow with respect to planetary an jsothermal atmosphere will be sign-indefinite for an at-

scale disturbances. _ _ o mosphere of any vertical extent, when
The second variatiod? H will be sign-definite if:

27242 2
g°TeA 2fkA 5
. [Bg(2—K) + 17+
1 K2g(fu + qwa sin2p)(va — y) c3 (c — 1)
; (k —1)CPT_ fAk B2(Va — ) 4f2g2A2[(K 1)2-|-K 1 g 2.2 2
G=1t+t = fy v + - > [ 2( — DT?B* + kBgT*Al <O.
T Ty csk = 1) f
[_ t - It can be seen that for the whole atmosphere or a hemisphere
Cy Cp(ya V) . e . . .
this cannot be satisfied because it requires an infinite value
FT Ay, e(fu+qoasin2)(y — y) of negative wind shift at the equatof ¢~ 0 at the equator).
- — - Therefore, to draw rigourous conclusions about the stabil-
fAk B8Wa=1) o, o ap (S L B =), 2 L - .
(—7+ Ja=VIR (= + )CyYa ity or instability of the zonal flow to planetary-scale distur-
k-1 fva k=17 fr. : _ o :
2 bances in an isothermal atmosphere, it is necessary to inves-
e(fu+qoasin2)(ye +xk — V(e — 7)) tigate the problem further: to solve the initial value problem

-l -7~

>0.(25) or to prove Chetaev’s theorem of instability for a continuous

A
SA 4 B80a = V), medium (Chetaev, 1990).

(K_l f}’a
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Fig. 1. The areas of stability for a finite atmosphere are located
to the right of the curves. The curves marked from top to bottom
correspond to lapse rates pf= 0 K/m, 0.003 K/m, 0.006 K/m,
0.009 K/m.

On the other hand, the quadratic fodfH can be sign-
definite for an atmosphere of finite height. For this, it is nec-

essary that one of the roots of Eq. (26) be positive and theZ
other be non-positive, and a lid has to be placed at a heighé
that is equal to or less then the positive root value. Hence theé

82H will be sign-definite for a finite isothermal atmosphere
if
gBk — 1)

[

and the atmosphere is capped by a lid at positive hedght
Zmax Where

A > —

Zmax =

Be—k) | 2f2A 22k +3)
T< Kk +ﬁ+\/ k=1

4f4A2
(c=1)?

4 fZﬂg(K2+K DA
k(k—=1)2

) .(28)

2127 Alk=D*+%)
k=12

Because the zonal velocity changes quasi-linearly wit

height in free atmosphere, it can be expected that velopause

position will be close t&Zmax In Fig. 1, the area of stabil-

ity corresponding to isothermal stratification is situated to the¢r aZ

right of the curve marked as 0.0.

Figure 2 shows the dependenceZfax on ¢ and A for
isothermal stratification when = const in the whole atmo-
sphere, and’ is expressed using the thermal wind equation
asT = TequC"s‘/’. Here the following designation are used:
D =2wA/g, Teqis a surface temperature on the equator.

Figure 3 presents the dependence&Zgfik on latitude,g,
and the equator-to-pole temperature contrast, Specif-
ically, we model the surface temperature Bs= T, +
AT cosgp, whereT), is the surface temperature at the pole
andAT = Teq—Tp.

In the general case of a polytropic finite atmosphere,

the area of stability decreases with increasing lapseyate
(Fig. 1). In the model used; does not depend on latitude
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Fig. 2. Dependence ofmax in a vertically isothermal atmosphere
(y = 0) on the zonal wind vertical gradiemt (a) and latitudeyp
(b) for the case whem\ is constant in the whole atmosphere.
(a), curves 1-4 correspond to latitude$ 305°, 60°, and 90. In
(b), curves 1-5 correspond to = —0.005 s 1, 0571, 0.001 51,
0.002 s, and 0.00551.

In

@. To show this, it suffices to differentiate the momentum

hequation (23) with respect tp

T 9%
a 9z9¢

109s 0T

adp 0z

2
Toou_ cp 0°T

a 0z0¢

(29)

Using Eq. (23) and the thermal wind equation

_ vfu

CpYa 0T
T

Ta dp

one can express the meridional gradient of entropy as
10s

_[fu
aatp_[

T
Substituting this result into Eq. (29) we conclude that
82T /92309 = 3y /dp = 0.
The maximum height of a polytropic stable finite atmo-
sphere model is mifTy/y, Zmax). Zmax for this case de-
pends ong, A, y, andug = acosy. In Figs. 4, 5, 6 the

FA

:|Va_y
Ya =Y Ya
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10000
dependence of max On these parameters is presented. Re-
sults depend weakly om. Here the calculations were made
for « = 5m/s. For the calculations witt\ which do not R S e - S e e
depend on latitude, to satisfy the thermal wind equation we fatude, degrees
modelled surface temperaturze for the flow of interestps: Fig. 4. Dependence of the maximum heighiax of a finite sta-
Teq€xp{B(coSp — 1)}4-24/B*(1+B) exp{B(cosy — 1)}~ ble atmosphere on latitudefor three values of: 0.003K /m - in
2A/B*(1 + Bcosp), where A = ywa/ag, and B = (a) 0,006K /m - in (b), and 0009K /m - (c). The curves labelled
2whalg. 1-5 correspond to constant values of = —0.005~1, 0 s71,

0.001s1,0.002s1, and 0.005 5.

In these figures one can see that the rate of the change
of Z,..x With latitude noticeably depends both anand y
(Fig. 4). However the minimum height &fmax on a pole 6 Discussion and conclusions
does not strongly vary and is equal to approximately 8-9 km
(Fig. 5b). The dependence #f,,, on the pole-equator tem- In this work we have studied the stability of zonal flow in a
perature differenc@ T, latitudey and temperature gradient baroclinic atmosphere with respect to ultra-long waves. We
y shows that the area of stability strongly diminishes underhave considered finite amplitude disturbances and applied
the approximatiory equalsy, (Fig. 6a). Arnol'd’s method to type Il geostrophic equations.

5000 - © A
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Fig. 5. Dependence of the maximum height of a finite stable at- Fig. 6. Dependence oZmax on AT (a) and ¢ (b) for the case
mosphereZmax on the zonal wind vertical gradiert. In (a) for where the meridional surface temperature distribution is described
latitudep = 60° the curves marked by numbers correspond to: "1’ asT = T, + AT cosgp. In (a) the curves marked as '1a’, '1b’, '1c’
toy = 0.003K/m, 2" - y = 0.006K/m, '3 - y = 0.009K /m,; correspond to latitudes 4560°, 90° andy = 0.003 K/m; '2a’,

on (b) for the stratification withy = 0.006K /m the curves marked '2b’, '2c¢’ correspond to the same latitude apd= 0.006 K/m;

by numbers corresponding: '1’' tp = 307, '2' - ¢ = 45°,'3" - and '3a’, '3b’, '3c’ correspond to the same latitude gne= 0.009
¢ =60°,'4"- ¢ = 90°. The calculations correspond to the case of K/m. In (b) y = 0.006 K/m, and curves '1 -3’ corresponds to
A = const. AT =25 K, 40 K, and 55 K.

For the case of surface wind in solid body rotation, the sta-
bility of the zonal flow depends on the sign-definiteness only As expected, the area of stability in latitude aid/dz
of that part the second variation of a functional which is rep- parameter space decreases as the vertical temperature gradi-
resented by the three-dimensional integral. Zonal flow stabil-ent y increases. For an adiabatic lapse rate, the zonal flow
ity was examined directly for the case when the zonal windcan become unstable for all valuesddf/az, even in a finite
changes linearly with height in a polytropic atmosphere.  atmosphere. The area of instability appears near the equator
In an isothermal atmosphere of infinite height, the zonaland extends to the poles with increasjng
flow is stable only if the whole atmosphere rotates as a solid
body. In an atmosphere bounded by an upper lid, the zonaA di
flow can be stable when vertical shear in zonal wind exists. ~ PPN

For a negative value of the zonal wind vertical gradient 1, prove Eq. (7) itis necessary to apply to Eq. (1) an operator
(0V/az < 0), that is, when surface air temperatures iNCrease) /,cosp9a and to Eq. (2) an operaterd /adyp and to add.
from equator to pole, the atmosphere is always unstable. FORg 5 result we obtain (expressingand p throughs and T
a positive value od V' /dz, stability depends on the height at {0, ideal gas entropy equation)
which the lid is placed. The height of the lid in turn depends
onadV/adz and latitude, and decreases wlin/dz and lati- ar + f <8_“ + I COW)) —
tude increase. For stability, the minimum height at which the dt ~ acosg \ 91 de
lid would have to be placed at the pole is 8-9 km for the case 1 <8T ds 0T 8s>

of the observed values of vertical shear. a2cospp? \ Or d¢p 3¢ I

(30)
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Differentiating the entropy conservation Eq. (5) with re- Dikiy, L. A.: Nonlinear theory of hydrodynamic instability(in Rus-

spect toz, we have sian). lzv. Acad. Nauk SSSR, Applied mathematics and mechan-
ics, 29, 852-855, 1965.
i ﬁ + 1 ﬁa_“ + ds 3_” + 8_s8_w (31) Dikiy, L. A. and Kurgansky, M. V.: Integral conservation law for
dt \ 0z acosg X 3z ade dz 9z Az disturbances of zonal flow and his application to study of stability
. . . (in Russian), lzv. Acad. Nauk SSSR, Fiz. Atmos. Okeana, 7, 9,
Then using equations for thermal wind 939-945, 1971.
ou  oT 9s 9T s Kurbatkin, G. P.: Investigation of ultralong atmospheric waves, in
o= “Numerical methods for solving weather forecast and general
a dz ad dp 0
N Lady  adg oz atmospheric circulation problems”. Novosibirsk, VTS SO AN
v 1 aT 9s 1 9T 9s SSSR, 174-226, 1970
f—=- — Yt Kurgansky, M. V.: Introduction to large scale atmospheric dynamics
9z acosg 9z 9k acosp 9 9z (Adiabatic invariants and how to use them) (in Russian), Hidrom-
and equation for vertical gradient of entropy eteoizdat, Saint Petersburg, 1993.
Kurgansky, M. V., Dethloff, K., Pisnichenko, I. A., Gernandt, H.,
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