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Abstract. In this paper we investigate the stability of
zonal flow in a baroclinic atmosphere with respect to finite-
amplitude planetary-scale disturbances by applying Arnold’s
method. Specifically, we examine the sign of the second vari-
ation of a conserved functional for the case of a polytropic at-
mosphere (i.e. one with a linear lapse rate) and with a linear
profile of zonal wind. Sufficient stability conditions for an
infinite atmosphere (i.e. with a temperature lapse rate equal
to zero) are satisfied only for an atmosphere in solid body
rotation. For a polytropic atmosphere of finite extent (a lapse
rate is not equal zero) the sufficient conditions of stability
can be satisfied if a lid is placed below min(Zmax, polytropic
atmospheric height). The dependence of heightZmax on val-
ues of the vertical gradient of the zonal wind and the zonal
temperature distribution is calculated.

1 Introduction

Ultra-long atmospheric waves play a significant role in the
formation of weather and climate regimes. The longest
waves dominate the spectral distribution of kinetic and avail-
able potential energy. The ultra-long waves are responsible
for both energy transfer through the spectrum (Baines, 1976;
Starr, 1968) and for heat transfer from the lowest layer of the
troposphere to the stratosphere (Charney and Drazin, 1961;
McNulty, 1976). The first three spherical harmonic compo-
nents (ψ0

1, ψ
1
1, ψ

−1
1 ) are directly connected with the angular

momentum of the Earth (Barnes et al, 1983; Pisnichenko,
1990). There is a large correlation between events of block-
ing formation and the values of amplitudes and phases of
stationary spherical harmonics withm = 2,3 in the geopo-
tential field (Kurbatkin, 1970; Bengtsson, 1981). Planetary
waves are also responsible for low-frequency atmospheric
variations and, as a consequence, for the manner of the tem-
poral evolution of stochastic atmospheric regimes (James and
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James, 1992; Kurgansky et al, 1996). For these reasons,
investigation of peculiarities in the behaviour of ultra-long
waves is important for undestanding of climate processes and
for the construction of climate simulation models.

Some of the principal properties of ultra-long waves are
related to the stability of the atmospheric zonal flow. The
growth rates and the height distribution of the amplitudes of
unstable ultra-long waves are central characteristics that, to
a great extent, define the dynamics of the large-scale atmo-
spheric circulation.

In Lynch (1979), the instability of zonal flow with respect
to ultra-long waves was studied by means of linearised plan-
etary geostrophic equations of type II. These equations de-
scribing planetary-scale disturbances were first proposed by
Burger (1958) and were later used in the works of Wiin-
Nielsen (1961), Phillips (1963), Pisnichenko (1980, 1983),
and others. Important insights into the dependence of the
growth rate of ultra-long waves on the wind shear and the
coefficient of static stability were obtained using this linear
approach.

It is also interesting to solve the problem in its nonlinear
formulation and to study the role of nonlinearity on zonal
flow stability. Beginning with Arnol’d (1965), the method
of construction and investigation of a conserved functional
from instantaneous states of hydrodynamical fields has been
widely used in the study of fluid flow stability. Application
of this method to determine the stability of three-dimensional
baroclinic flows in meteorological models first appeared in
Dikiy (1965) and Dikiy and Kurgansky (1971), and later
in studies such as McIntyre and Shepherd (1987); Shepherd
(1989); Mu and Shepherd (1994); Yongming and Mu (1996).

This paper addresses zonal flow stability with respect to
ultra-long wave disturbances within a fully nonlinear frame-
work. We consider the problem in the approximation of plan-
etary geostrophic equations which are presented in Sect. 2,
together with conservation laws for the model in question. In
Sect. 3, Bernoulli’s theorem is formulated for this system. It
is also shown that the stream function of the flow under inves-
tigation is fully defined by potential vorticity and potential
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temperature fields. Section 4 is devoted to the calculation of
first and second variations of a functional composed of con-
servation integrals. The conditions of sign definiteness of the
second variation define the sufficient conditions of zonal flow
stability. The general equation obtained here are applied for
the case of polytropic atmospheres in Sect. 5.

2 The model equations

We will consider three-dimensional baroclinic atmospheric
flow of planetary scale on the spherical Earth. The equations
used are the quasi-geostrophic equations of type II first de-
rived by Burger (1958). For the dry adiabatic case they are
written in the form:

f u = −
1

ρa

∂p

∂ϕ
(1)

−f v = −
1

ρa cosϕ

∂p

∂λ
(2)

g = −
1

ρ

∂p

∂z
(3)

∂ρ

∂t
+ ∇ · ρv = 0 (4)

ds

dt
= 0 (5)

p = RρT (6)

whereu, v, w are the zonal, meridional and vertical compo-
nents of velocity vectorv; p, ρ, ands are respectively the
air pressure, density, and specific entropy of dry air with gas
constantR; f = 2ω sinϕ is the Coriolis parameter;ω is the
angular velocity of the Earth’s rotation;g is the gravitational
acceleration force for unit mass; andλ, ϕ, z are longitude,
latitude and height above the surface of a spherical Earth of
radiusa. Differential operators of total derivatived/dt and
divergence in spherical coordinates are

d

dt
=
∂

∂t
+

u

a cosϕ

∂

∂λ
+
v

a

∂

∂ϕ
+ w

∂

∂z
.

∇ · v = +
1

a cosϕ

∂u

∂λ
+

1

a cosϕ

∂

∂ϕ
(cosϕ v)+

∂w

∂z

From equations (1 - 6), the following conservation laws can
be obtained:
a) conservation of the planetary potential vorticity (trans-
posed potential vorticity) of an air parcel (see Appendix for
details)

d

dt

f ∂s
∂z

ρ
=
d�

dt
= 0; (7)

b) globally-integrated conservation of total potential energy

d

dt

∫∫∫
V

ρ(gz+ cvT ) dτ =
d5

dt
= 0; (8)

c) conservation of any globally-integrated mass-weighted
function of potential vorticity and potential temperature

d

dt

∫∫∫
V

ρ8(�, s) dτ =
dF

dt
= 0, (9)

where8 is any function of� ands;
d) conservation of transposed angular momentum (the angu-
lar momentum of the atmosphere if it were in solid rotation
with the earth)

d

dt

∫∫∫
V

ωa2 cos2 ϕρ dτ =
dM

dt
= 0. (10)

e) conservation of any surface-integratedf -weighted func-
tion of entropy

d

dt

∫∫
S

fG(s) dσ =
dP

dt
= 0, (11)

whereG is an arbitrary function of specific entropy and the
integral is calculated over the plane Earth’s surface (w should
be equal to zero at the Earth’s surface).

3 Bernoulli’s theorem

We will investigate the stability of atmospheric zonal flow
according to the scheme described by Dikiy (1965) and Dikiy
and Kurgansky (1971). We begin by showing that a steady
flow (∂/∂t = 0) described by Eqs. (1–6) satisfies Bernoulli’s
theorem. To prove this, multiply Eqs. (1), (2), and (3) by
a dϕ, a cosϕ dλ anddz, respectively, and add. We obtain:

f (u a dϕ − v a cosϕ dλ)+ g dz = −
1

ρ
dp. (12)

For a streamline,

a cosϕ dλ

u
=
a dϕ

v
=
dz

w
,

so the parenthetical term in Eq. (12) drops out along a stream-
line, leaving Bernoulli’s theorem:

d gz = −
1

ρ
dp. (13)

Next we show thatds = 0 along a streamline. For this,
multiply Eq. (5) for steady flow bydt and note thatu dt =

a cosϕ dλ, vdt = a dϕ, andwdt = dz. Then, using the first
law of thermodynamics, we obtaind(gz+ cpT ) = 0 or

gz+ cpT = const

along a streamline.
Let us assume further that∇s × ∇� 6= 0, so that isen-

tropic and isovorticial surfaces do not touch each other any
where in steady flow. One can show that this property will
be conserved for all time (Kurgansky, 1993). Thus, every
streamline is uniquely determined bys and�. That is

9(λ, ϕ, z, t) = gz+ cpT = 9(s,�).
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4 A conserved functional and its first and second varia-
tions

To investigate the stability of a zonal flow let us compose the
functional from the integrals of motion (Eqs. 8—11). This
procedure is to some extent similar to finding conditional ex-
tremum of a function with the help of a Lagrange multiplier.
The integrals of motion that we use here correspond to con-
straints that set some limitations on possible motions.

H = 5+ F + P + qM =

∫∫∫
V

ρ [gz+ cvT +8(s,�)+

+qωa2 cos2 ϕ
]
dτ +

∫∫
S

fG(s) dσ. (14)

The temperatureT in functionalH can be expressed in
terms of specific entropy asT = T ∗ exp(s/cv)(ρ/ρ0)

κ−1

whereκ = cp/cv andT ∗ is a constant having the dimension
of temperature. Symbolq corresponds here to any arbitrary
constant. Denoting the value of the functionalH correspond-
ing to the zonal flow under discussion asH0 and expanding
the functionalH in a Taylor series in the vicinity ofH0 we
write:

H = H0 + δH |H0 + δ2H |H0 + . . . .

If the first functional variationδH |H0 is equal to zero, then
the zonal flow corresponding to the functional valueH0 is a
stationary point in the functional{�, s}-space. Performing
the calculation we will obtain the following expression for
the first variation ofH :

δH =

∫∫∫
V

[(
9 +8−8��+ qωa2 cos2 ϕ

)
δρ

+ρ

(
T +8s −8s�� − 8��

f

ρ

∂�

∂z

)
δs

]
dτ

+

∫∫
S

f (Gs −8�) δs dσ. (15)

One can see from Eq. (15) that necessary conditions for
δH = 0 are the following

9 +8−8��+ qωa2 cos2 ϕ = 0 (16)

8s −8�s�−8��
f

ρ

∂�

∂z
+ T = 0 (17)

G′(s)−8�|z=0 = 0 (18)

Note here that Eq. (17) is a consequence of Eq. (16). To
prove this, it suffices to differentiate Eq. (16) with respect to
z and then to divide the result obtained by∂s/∂z 6= 0. If
arbitrary functions8 andG are chosen to satisfy Eqs. (16)
and (18) then for our zonal flowH0 will be a stationary point.

For the second variation ofH we will have:

δ2H =

∫∫∫
V

[
(κ − 1)cpT

ρ
(δρ)2 + 2(κT −8s��

+8s)δρδs + ρ8��(δ�)
2
+ ρ

(
8ss +

T

cv
−8�ss�

−8��s
f

ρ

∂�

∂z

)
(δs)2

]
dτ +

∫∫
S

(Gss −8�s) f (δs)
2dσ. (19)

Here we designateδ� = f/ρ δ(∂s/∂z) − f/ρ2∂s/∂zδρ,
and 8�, 8s , . . . as partial derivatives of function8 with
respect to�, s.

Differentiating Eq. (17) with respect toz, we find:

8ss −8�ss −8��s
f

ρ

∂�

∂z
=

1

sz

[
∂

∂z
(8��

f

ρ

∂�

∂z
)− Tz

]
, (20)

and finally differentiating Eq. (16) with respect toφ and tak-
ing into account Eq. (17), we obtain:

8�� =

ρ(qωa2 sin 2ϕ + T ∂s
∂ϕ

− cp
∂T
∂ϕ
)

(s,�)af
. (21)

Here(s,�) = (∂s/∂ϕ ∂�/∂z − ∂�/∂ϕ∂s/∂z)/a.
Using Eqs. (17), (20), (21) we can rewrite the second vari-

ation ofH as:

δ2H =

∫∫∫
V

{
1

ρ
(κ − 1)cpT (δρ)

2
+ 2

[
(κ − 1)T +

(
∂�

∂z

)
·
f u+ qωa sin 2ϕ

(s,�)

]
δρδs +

ρ2(f u+ qωa sin 2ϕ)

f (s,�)
(δ�)2+

ρ

[
T

cv
+

1

sz

[
∂

∂z

(
∂�

∂z

f u+ qωa sin 2ϕ

(s,�)

)
− Tz

]]
(δs)2

}
dτ

+

∫∫
S

ρ
�ϕ

sϕ

(f u+ qωa sin 2ϕ)

(s,�)
(δs)2dσ. (22)

The surface integral expression was obtained by differentiat-
ing Eq. (18) with respect toϕ. We also have used here the
alternative form of Eq. (1)

f u = −
cp

a

∂T

∂ϕ
+
T

a

∂s

∂ϕ
. (23)

Note thatδ2H represents a functional from two independent
functions because� can be expressed throughρ ands.

If we consider zonal flow withδH = 0, and if δ2H is
sign-definite at a certain point in functional space of two in-
dependent functions, then this point will be a maximum (or
minimum) of functionalH in this functional space. Level
functional surfaces in functional space around this point will
be closed and inserted one into another. Thus, in the case of
a finite disturbance of the zonal flow, the phase point cor-
responding to the new disturbed state will shift to one of
these surfaces and will stay on it, asdH/dt = 0. During
all next time, the phase point will not strongly deviate from
the extremum point corresponding to the initial zonal flow
(Arnol’d, 1965).

5 The case of a polytropic atmosphere

Let us now consider a polytropic atmosphere (T = T0 −γ z).
We will assume that the wind changes linearly with a height:
V = V0 + 3z, as is frequently used in zonal flow stability
investigations.
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For further calculations it is convenient to express terms
entering the functional (22) through3, γ , T , ρ.

δ2H =

∫∫∫
V

 1

ρ

(κ − 1)cpT −
κ2g(f u+ qωa sin 2ϕ(γa − γ )(

f3κ
κ − 1 +

βg(γa − γ )
f γa

)
γa

 (δρ)2+
+2

(κ − 1)T −
g(f u+ qωa sin 2ϕ)(γa + κ(κ − 1)(γa − γ ))(

f3κ
κ − 1 +

βg(γa − γ )
f γa

)
Rγa

 δρδs+

+ρ

 T
cv

+
T γ

cp(γa − γ )
−

f T3γa(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)
R(γa − γ )

−

−
g(f u+ qωa sin 2ϕ)(γa − γ )(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)
c2
vγa

 (δs)2
 dτ+

+

∫∫
S

(f 2u0 + RTβ)(f u0 + qωa sin 2ϕ)ρ0γa

(
u0
T0

−
3

γa − γ )(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)(γa − γ )Rf 2
(δs)2dσ. (24)

Here we designate∂f/a∂ϕ = β and have used the following
equation:

∂s

∂z
=
(γa − γ )cp

T
; � =

f (γa − γ )cp

ρT
;

�z =
�g

RT
;

∂s

a∂ϕ
=

(
f u

T
−

f3

γa − γ

)
γa − γ

γa
;

∂�

a∂ϕ
=
�

T

(
f u

R
+
Tβ

f

)
; δ� = −

�

cvρ
(ρδs + cpδρ);

(s,�) = −
�

T

[
f3κ

κ − 1
+
βg(γa − γ )

f γa

]
.

Letu0 = −qa cosϕ. This means that the wind on the Earth’s
surface represents solid body rotation. The intensity and di-
rection of the wind is defined by the arbitrary parameterq. In
this case, the surface integral in Eq. (24) is zero, and the suffi-
cient conditions required for the volume integral part ofδ2H

to be sign-definite quadratic form, are also sufficient condi-
tions for stability of the zonal flow with respect to planetary
scale disturbances.

The second variationδ2H will be sign-definite if:

1

ρ

(κ − 1)cpT −
κ2g(f u+ qωa sin 2ϕ)(γa − γ )

(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)γa


·ρ

[
T

cv
+

T γ

cp(γa − γ )
−

−
f T3γa

(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)(γa − γ )R

−
g(f u+ qωa sin 2ϕ)(γa − γ )

(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)c2
vγa



−

(κ − 1)T −
g(f u+ qωa sin 2ϕ)(γa + κ(κ − 1)(γa − γ ))

(
f3κ
κ − 1 +

βg(γa − γ )
f γa

)Rγa


2

>0.(25)

Substituting values forT = T0 − γ z and foru = u0 + 3z

we can rewrite it as(
κf3

κ − 1
+
βg(γa − γ )

f γa

)−2

·{
z2

[
(κ − 1)β2g2γ 2(γa − γ )

f 2γa
+ κ(3 − κ)3βgγ 2

+

+2κ2f 232γaγ − κ(2 − κ)3βgγaγ −
κ3f 232γ 2

a

κ − 1

(
2 +

1

κ(κ − 1)

)]
+

+zT0

[
2κ2f 232γa

κ − 1
+ κ(2 − κ)3βgγa − κ(4 − κ)3βgγ +

+
2(κ − 1)β2g2γ (γa − γ )

f 2γa

]
+

+κT 2
03βg +

(κ − 1)T 2
0 β

2g2(γa − γ )

f 2γa

}
>0. (26)

For an atmosphere of any vertical extent this inequality
will be satisfied everywhere only when3 = 0, (because at
the pole the term in rectangular parenthesis atz2 will be neg-
ative for any3), that is, when the whole atmosphere rotates
as a solid body (note thatu0 = −qa cosϕ).

For the case of isothermal stratification Eq. (26) will take
the form(
κf3

κ − 1
+
βg

f

)−2

·{
−
κ2f 232γ 2

a [(κ − 1)2 + κ2
]

(κ − 1)2
z2

+ κT03γa
·

[
2f 2κ3

(κ − 1)
+ (2 − κ)βg

]
z+

+κT 2
03βg +

(κ − 1)T 2
0 β

2g2

f 2

}
>0. (27)

Hence it follows that Eq. (27) is satisfied everywhere only
for the trivial case of3 = 0. The quadratic formδ2H for
an isothermal atmosphere will be sign-indefinite for an at-
mosphere of any vertical extent, when

g2T 232

c2
v

[βg(2 − κ)+
2f 2κ3

(κ − 1)
]
2
+

+
4f 2g232

[(κ − 1)2 + κ2
]

c2
v(κ − 1)2

[
g2

f 2
(κ − 1)T 2β2

+ κβgT 23] < 0.

It can be seen that for the whole atmosphere or a hemisphere
this cannot be satisfied because it requires an infinite value
of negative wind shift at the equator (f → 0 at the equator).
Therefore, to draw rigourous conclusions about the stabil-
ity or instability of the zonal flow to planetary-scale distur-
bances in an isothermal atmosphere, it is necessary to inves-
tigate the problem further: to solve the initial value problem
or to prove Chetaev’s theorem of instability for a continuous
medium (Chetaev, 1990).
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Fig. 1. The areas of stability for a finite atmosphere are located
to the right of the curves. The curves marked from top to bottom
correspond to lapse rates ofγ = 0 K/m, 0.003 K/m, 0.006 K/m,
0.009 K/m.

On the other hand, the quadratic formδ2H can be sign-
definite for an atmosphere of finite height. For this, it is nec-
essary that one of the roots of Eq. (26) be positive and the
other be non-positive, and a lid has to be placed at a height
that is equal to or less then the positive root value. Hence the
δ2H will be sign-definite for a finite isothermal atmosphere
if

3 > −
gβ(κ − 1)

f 2κ

and the atmosphere is capped by a lid at positive heightZ0 ≤

Zmax where

Zmax =

T
(
βg(2−κ)

κ
+

2f 23
κ−1 +

√
β2g2(κ+3)

κ−1 +
4f 2βg(κ2+κ−1)3

κ(κ−1)2
+

4f 432

(κ−1)2

)
2f 2γa3[(κ−1)2+κ2]

(κ−1)2

.(28)

Because the zonal velocity changes quasi-linearly with
height in free atmosphere, it can be expected that velopause
position will be close toZmax. In Fig. 1, the area of stabil-
ity corresponding to isothermal stratification is situated to the
right of the curve marked as 0.0.

Figure 2 shows the dependence ofZmax on ϕ and3 for
isothermal stratification when3 = const in the whole atmo-
sphere, andT is expressed using the thermal wind equation
asT = Teqe

Dcosϕ . Here the following designation are used:
D = 2ω3/g, Teq is a surface temperature on the equator.

Figure 3 presents the dependence ofZmax on latitude,ϕ,
and the equator-to-pole temperature contrast,1T . Specif-
ically, we model the surface temperature asT = Tp +

1T cosϕ, whereTp is the surface temperature at the pole
and1T = Teq − Tp.

In the general case of a polytropic finite atmosphere,
the area of stability decreases with increasing lapse rateγ

(Fig. 1). In the model used,γ does not depend on latitude
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Fig. 2. Dependence ofZmax in a vertically isothermal atmosphere
(γ = 0) on the zonal wind vertical gradient3 (a) and latitudeϕ
(b) for the case when3 is constant in the whole atmosphere. In
(a), curves 1–4 correspond to latitudes 30◦, 45◦, 60◦, and 90◦. In
(b), curves 1–5 correspond to3 = −0.005 s−1, 0 s−1, 0.001 s−1,
0.002 s−1, and 0.005 s−1.

ϕ. To show this, it suffices to differentiate the momentum
equation (23) with respect toz:

f

cp

∂u

∂z
= −

cp

a

∂2T

∂z∂ϕ
+
T

a

∂2s

∂z∂ϕ
+

1

a

∂s

∂ϕ

∂T

∂z
(29)

Using Eq. (23) and the thermal wind equation

f3 = −
γf u

T
−
cpγa

T a

∂T

∂ϕ

one can express the meridional gradient of entropy as

1

a

∂s

∂ϕ
=

[
f u

T
−

f3

γa − γ

]
γa − γ

γa
.

Substituting this result into Eq. (29) we conclude that
∂2T/∂z∂ϕ = ∂γ /∂ϕ = 0.

The maximum height of a polytropic stable finite atmo-
sphere model is min(T0/γ, Zmax). Zmax for this case de-
pends onϕ, 3, γ , andu0 = α cosϕ. In Figs. 4, 5, 6 the
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Fig. 3. Dependence ofZmax on the equator-to-pole temperature
contrast,1T (a), and on latitude,ϕ (b). The meridional surface
temperature distribution is modelled asT = Tp + 1T cosϕ, and
vertical temperature gradient is constant (γ = 0). In (a), curves 1–4
correspond to latitudes 45◦, 60◦, 75◦, and 90◦. In (b), curves 1–3
correspond to1T = 25 K, 35 K, 45 K, and 55 K.

dependence ofZmax on these parameters is presented. Re-
sults depend weakly onα. Here the calculations were made
for α = 5m/s. For the calculations with3 which do not
depend on latitude, to satisfy the thermal wind equation we
modelled surface temperature for the flow of interest asT0 =

Teqexp{B(cosϕ − 1)}+2A/B2(1+B) exp{B(cosϕ − 1)}−
2A/B2(1 + B cosϕ), whereA = γωα/ag, and B =

2ω3a/g.

In these figures one can see that the rate of the change
of Zmax with latitude noticeably depends both on3 andγ
(Fig. 4). However the minimum height ofZmax on a pole
does not strongly vary and is equal to approximately 8-9 km
(Fig. 5b). The dependence ofZmax on the pole-equator tem-
perature difference1T , latitudeϕ and temperature gradient
γ shows that the area of stability strongly diminishes under
the approximationγ equalsγa (Fig. 6a).
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Fig. 4. Dependence of the maximum heightZmax of a finite sta-
ble atmosphere on latitudeϕ for three values ofγ : 0.003K/m - in
(a), 0.006K/m - in (b), and 0.009K/m - (c). The curves labelled
1–5 correspond to constant values of3 = −0.005s−1, 0 s−1,
0.001 s−1, 0.002 s−1, and 0.005 s−1.

6 Discussion and conclusions

In this work we have studied the stability of zonal flow in a
baroclinic atmosphere with respect to ultra-long waves. We
have considered finite amplitude disturbances and applied
Arnol’d’s method to type II geostrophic equations.



I. A. Pisnichenko: Nonlinear instability of baroclinic atmosphere 369

 0

 5000                                                                                                                                              (a)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

-0.004 -0.002  0  0.002  0.004

m
ax

 a
lti

tu
de

 o
f t

he
 s

ta
bl

e 
at

m
os

ph
er

e,
 m

zonal wind vertical gradient,  1/s 

11 2

2

3

3

 0

 5000                                                                                                                                                (b)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

-0.004 -0.002  0  0.002  0.004

m
ax

 a
lti

tu
de

 o
f t

he
 s

ta
bl

e 
at

m
os

ph
er

e,
 m

zonal wind vertical gradient,  1/s 

1

1

2

2

3

3

4

4

Fig. 5. Dependence of the maximum height of a finite stable at-
mosphereZmax on the zonal wind vertical gradient3. In (a) for
latitudeϕ = 60◦ the curves marked by numbers correspond to: ’1’
to γ = 0.003K/m, ’2’ - γ = 0.006K/m, ’3’ - γ = 0.009K/m;
on (b) for the stratification withγ = 0.006K/m the curves marked
by numbers corresponding: ’1’ toϕ = 30o, ’2’ - ϕ = 45◦, ’3’ -
ϕ = 60◦, ’4’ - ϕ = 90◦. The calculations correspond to the case of
3 = const .

For the case of surface wind in solid body rotation, the sta-
bility of the zonal flow depends on the sign-definiteness only
of that part the second variation of a functional which is rep-
resented by the three-dimensional integral. Zonal flow stabil-
ity was examined directly for the case when the zonal wind
changes linearly with height in a polytropic atmosphere.

In an isothermal atmosphere of infinite height, the zonal
flow is stable only if the whole atmosphere rotates as a solid
body. In an atmosphere bounded by an upper lid, the zonal
flow can be stable when vertical shear in zonal wind exists.

For a negative value of the zonal wind vertical gradient
(∂V/∂z < 0), that is, when surface air temperatures increase
from equator to pole, the atmosphere is always unstable. For
a positive value of∂V/∂z, stability depends on the height at
which the lid is placed. The height of the lid in turn depends
on ∂V/∂z and latitude, and decreases when∂V/∂z and lati-
tude increase. For stability, the minimum height at which the
lid would have to be placed at the pole is 8–9 km for the case
of the observed values of vertical shear.
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Fig. 6. Dependence ofZmax on 1T (a) andϕ (b) for the case
where the meridional surface temperature distribution is described
asT = Tp +1T cosϕ. In (a) the curves marked as ’1a’, ’1b’, ’1c’
correspond to latitudes 45◦, 60◦, 90◦ andγ = 0.003 K/m; ’2a’,
’2b’, ’2c’ correspond to the same latitude andγ = 0.006 K/m;
and ’3a’, ’3b’, ’3c’ correspond to the same latitude andγ = 0.009
K/m. In (b) γ = 0.006 K/m, and curves ’1 –3’ corresponds to
1T =25 K, 40 K, and 55 K.

As expected, the area of stability in latitude and∂V/∂z
parameter space decreases as the vertical temperature gradi-
ent γ increases. For an adiabatic lapse rate, the zonal flow
can become unstable for all values of∂V/∂z, even in a finite
atmosphere. The area of instability appears near the equator
and extends to the poles with increasingγ .

Appendix

To prove Eq. (7) it is necessary to apply to Eq. (1) an operator
∂/acosϕ∂λ and to Eq. (2) an operator−∂/a∂ϕ and to add.
As a result we obtain (expressingp andρ throughs andT
from ideal gas entropy equation)

df

dt
+

f

acosϕ

(
∂u

∂λ
+
∂(v cosϕ)

∂ϕ

)
=

1

a2cosϕρ2

(
∂T

∂λ

∂s

∂ϕ
−
∂T

∂ϕ

∂s

∂λ

)
. (30)
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Differentiating the entropy conservation Eq. (5) with re-
spect toz, we have

d

dt

(
∂s

∂z

)
+

1

acosϕ

∂s

∂λ

∂u

∂z
+

∂s

a∂ϕ

∂v

∂z
+
∂s

∂z

∂w

∂z
. (31)

Then using equations for thermal wind

f
∂u

∂z
=
∂T

∂z

∂s

a∂ϕ
−
∂T

a∂ϕ

∂s

∂z

f
∂v

∂z
= −

1

a cosϕ

∂T

∂z

∂s

∂λ
+

1

a cosϕ

∂T

∂λ

∂s

∂z

and equation for vertical gradient of entropy

∂s

∂z
=
cp

T

(
g

cp
+
∂T

∂z

)
and adding Eq. (30) divided byf and Eq. (31) divided by
∂s/∂z and subtracting the continuity Eq. (4) divided byρ we
come to the equation

d

dt

f ∂s
∂z

ρ
= 0.
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