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Abstract

Multilayer Perceptron Neural Networks are tested as a new method for data assimilation in DYNAMO
meteorological model. The approach "emulates" the Kalman Filter data assimilation method avoiding recalculation
of the gain matrix at each instant of assimilation. A new prodedure for training the networks is also presented,
based on a modification in the backpropagation algorithm. An Adaptive Extended Kalman Filter was used to
provide examples for network training.
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1.  Introduction

The data assimilation process can be described as a procedure that uses observational data to improve the
prediction made by an inaccurate mathematical model. For example, suppose a computational model where many
properties are only expressed approximately, like turbulent fluxes. Typically, the assimilation process can be
outlined as a two step process:

Forecast step: [ ]a
n

f
n wFw 1−=                      Analysis step: n

f
n

a
n dww += ;

where nw  represents model state variable at n -th time step, [].F  is the mathematical (forecast) model, superscripts

f  and a denote forecasted and analyzed values respectively, and nd is the inovation.

Several methods of data assimilation have been developed for air quality problems (Zanneti, 1990), numerical
weather prediction (Daley, 1991), and numerical oceanic simulation (Bennet, 1992). In the case of atmospheric
continuous data assimilation there are many deterministic and probabilistic methods (Daley, 1991; Todling, 1997).
Deterministic methods include Dynamic Relaxation, Variational Methods and Laplace Transform, whereas
probabilistic methods
include Optimal Interpolation and Kalman Filtering. Dynamic Relaxation assumes the prediction model to be
perfect, as does Laplace Transform. Variational Methods and Optimal Interpolation can be regarded as minimum-
mean-square estimation of the atmosphere. In Kalman Filtering the analysis inovation nd  is computed as a linear

function of the misfit between observation (denoted with superscript o ) and forecast:

( )f
nn

o
nnn wHwGd −=

where nG  is a weighting (gain) matrix, o
nw  is the with error observed value of  nw  and nH is an observation

matrix. An adaptive extended Kalman filter has been tested in strongly nonlinear dynamical systems for
assimilation procedure: the Lorenz chaotic system, and DYNAMO meteorological model - a simplified version of
the shallow water
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equations (Nowosad et al, 1999).  Kalman Filtering has the advantage of minimizing the error in the assimilation
(Nowosad et al, 1999)  plus propagating itself the error from one data insertion to the next. But it can be
computationally too expensive for large systems (Mendel, 1971).

The goal of the present study is to test in DYNAMO meteorological model a new method to compute an
assimilation function, where such function is implemented by an artificial neural network (ANN):

( )o
n

f
nANN

a
n wwFw ,=  (Nowosad et al, 2000). With this intention, the possibilities of  using Neural Networks for

data assimilation are shown. Specifically, it is the objective of this work to examine whether Multilayer Perceptron
Neural Networks can "emulate" the accuracy of Kalman Filtering with economy in computer time.

The multilayer perceptron has been applied to a wide variety of tasks in atmospheric sciences (Gardner et al, 1998).
Applications include prediction of air-quality prediction and severe weather, modeling nonlinear transfer functions
and classification of atmospheric circulation patterns.

In the next sections the paper is organized as follows: in section 2 there is a brief exposition of artificial neural
networks (ANN); in section 3 is described the nonlinear system in which the new approach is tested, the
DYNAMO meteorological model;  in section 4 are shown the numerical results obtained using Multilayer
Perceptrons; and section
5 contains a summary of the results and some comments on the new method.

2.   Multilayer Perceptrons

An artificial neural network (ANN) is an arrangement of units characterized by:
1. a large number of very simple neuron-like processing units;
2. a large number of weighted connections between the units, where the knowledge of a network is stored;
3. highly parallel, distributed control.

The processing element (unit) in an ANN is a linear combiner with multiple weighted inputs, followed by an
activation function. There are several different architectures of ANN's, most of which directly depend on the
learning strategy adopted. It is not the aim of the paper to present an overview on ANN. Instead, a brief description
of the ANN used is focused: the multilayer Perceptron with backpropagation learning (Haykin, 1994).

The Multilayer Perceptron with backpropagation learning, also called the backpropagation neural network, is a
feedforward network composed of an input layer, an output layer, and a number of hidden layers for extracting high
order statistics from the input data (Haykin, 1994, page 19). In order to make the network more flexible to solve
nonlinear problems, the activation functions for the hidden layer are sigmoid functions.

Mathematically, a perceptron network simply maps input vectors of real values onto output vector of real values.
The connections have associated weights that are adjusted during learning process, thus changing the performance
of the network.

2.1   Learning Process: Backpropagation Algorithms

There are two distinct phases in the usage of an ANN: the training phase (learning process) and the running phase
(activation of the network). In the training phase, the weights are adjusted for the best performance of the network
in establishing the mapping of many input-output vector pairs. Once trained, the weights are fixed and new inputs
can be presented to the network  for it to compute corresponding outputs, based on what it has learned.

The training phase of a multilayer perceptron is controlled by a supervised learning algorithm, which differs from
unsupervised learning. The main difference is that the latter uses only information contained in the input data,
whereas the former requires both input and output (desired) data, which permits the calculation of the error of the
network as the difference between the calculated output and the desired vector. Adjustment of the network's
weights is conducted
by backpropagating such error through the network. This adjustment is called Backpropagation Algorithm. The
weight change rule is a development of the Perceptron learning rule. Weights are changed by an amount
proportional to the error at that unit, times the output of the unit feeding into the weight. This is the essence of the
so-called delta rule. The training phase in batch mode is nextly described in more detail.
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Training in batch mode, which uses all examples at the same time, searches a set of weights θ  and biases µ that
minimizes the total squared error

( ) ( )∑
=

−=
N

k
kkANNm XFmXFe

1
2

,,, µθ

where m is the number of the iteration, N is the number of examples in the training set, kX  is the input vector of

example k , θ  and µ are the weights and biases of the network ANNF ,  is the approximation and F is the desired

output value.

Initialization of weights and biases can be done by randomly choosing them or by, for example, the Nguyen-
Widrow method (Nguyen et al, 1990), which is the case here.The Nguyen-Widrow method  linearizes the network
and finds a linear interpolation initial approximation for the desired function.

In the following algorithm jky  is the input to neuron j for each example k  and ik∆  is the gradient of the error at

neuron i for example k . An adaptive backpropagation algorithm in batch mode proceeds like this (Demuth et al,
1994):

0. Start with learning rate 0η , momentum constant 9.0=α , and momentum 00 =α ;

1. Calculate outputs of network and total me ;

2. If ε<me  stop;

3. At iteration m  the backpropagation algorithm calculates:
    3.1 The error gradient of each neuron i  for each example k :  ik∆ ;

    3.2 New tentative weights and biases using, for each neuron i , its inputs j  and each example k

          3.2.1 ( ) ∑∆=∆
k

jkikij yyθ

          3.2.2 ( ) ( ) ( ) ( )ijmmijmij ymm θηαθαθ ∆⋅⋅−+−∆⋅=′∆ 11

          3.2.3 ( ) ( ) ( ) 







∆⋅⋅−+−∆⋅=′∆ ∑

k
ikmmimi mm ηαµαµ 11 ;

4. If 104.1 −⋅> mm ee then mm ηη ⋅=+ 7.01  and 01 =+mα , go to 1;

 • Else
    4.1 if 1−< mm ee  then mm ηη ⋅=+ 05.11 and αα =+1m ;

    4.2 Accept tentative weights and biases ijij θθ ′=  and ii µµ ′=
    4.3 go to 1.

2.2  A Modification of the Adaptive Backpropagation Algorithm

A modification of the Adaptive Backpropagation Algorithm is proposed. In step 3.2.3 of the algorithm the formula
for calculating iµ ′∆  is changed to

( ) ( ) ( ) 







∆⋅⋅−+−∆⋅=′∆ ∑

k
ikmmimi mm 211 ηαµαµ

This modification tends to make the rate of change in biases µ  slower than the rate of change in weights θ ,

because usually 1<η . In the numerical results (section 4) this change lead us to obtain a good assimilation
function.
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3   DYNAMO Meteorologic Model

The assimilation scheme presented in section 2 will be tested in the DYNAMO model for the atmosphere. The one-
dimensional computational model based on shallow-water approach was derived by P. Lynch (Lynch, 1984) to
simulate large-scale (synoptic scale) atmospheric movements. Model DYNAMO assumes periodic boundary
conditions for all perturbed dependent variables, constant density and that the horizontal scale of movements is
much greater than the vertical scale.

The physical equations of the model are:
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where u is longitudinal speed ( x -coordinate), v  is zonal speed ( y -coordinate) and ∫= sh

h
gdz

0

φ  is geopotencial

height.

Using perturbation method these equations are manipulated to produce a one-dimensional version of the shallow-
water equations whose prognostic variables are xv ∂∂= /ζ  and xu ∂∂= /δ , given by the curl and by the
divergence of the motion equations, respectively.

After transforming the resulting equations to a nondimensional form and applying finite difference operators, the
equations of the computational method are obtained:

( )[ ]XWNRXBAW
dt

dW
WO ,2/1 +−=+

where

[ ]
[ ]

( ) ( )

,20
2

1
,

2/12/112/12/1

111

=
∆

−=

=

=

=

−−−−

x

W

T
NNN

T
NNN

N

WRXDC
x

XWN

vvuvX

W

XMW

xxx

xxx

φφ

φδζφδζ

K

K

and 110−=OR  is the Rossby number, yff β+= 0  with 4
0 10−=f  and 11106.1 −×=β  is coriolis force for β -

plane approximation. All matrices appearing in the equation above are shown in (Campos Velho, 1997).

4 Numerical Results

The performance of the assimilation method is now examined. The test is made using the DYNAMO model quoted
in section 3.

It is necessary explain which data will be used to test the assimilation methods. Observations of the real atmosphere
will be simulated by a vector

 nnn WZ υ+=
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where υ  has as components zero-mean gaussian white noises artificially generated and whose magnitude is small
( %1.0 ) compared to the magnitude of W , representing the disturbances in the data assimilation process. The

disturbances are generated as variations of u , v  and φ  transformed into variations of ζ , δ  and φ  through

XMW ∆=∆=υ .

The spatial profile of the disturbance in each component of the vector is given by

( )( ) ( ) ( ) ( ),,)(,cos1)( xVxU
dx
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The result obtained inserting these disturbances without filtering in a simulation of the atmosphere using
DYNAMO without initialization every s4  is illustrated through the evolution of u at the middle-point of the grid
in figure 1. In this figure the dashed line represents the true atmosphere and the solid line the result of simulation
with disturbance.

In the next step the Adaptive Kalman Filter described in (Nowosad et al, 1999) was used to provide the examples
for a network composed of

• an input layer with inputs oU , oV , oφ , fU , fV , fφ ;

• one hidden layer having 80 neurons with activation function ( ) ( )xxf tanh= ;

• an output layer having 60 neurons with activation function ( ) xxf = and outputs aU , aV , aφ .

Instead of assimilating the data at every s4 the filter received data at every s01.0 . The network was trained  by

attaching to its input and output layers respectively the pairs ( )a
n

i
n wx ,  formed by the vectors
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n VUwVUVUx φφφ ==

The vectors are normalized with scaled so that the input and output signals are of the same order of magnitude.
Using as reference

,50.1,00.2,05.0 maxmaxmax === φVU

respectively the maximum absolute values of a
nU , a

nV and a
nφ  given by the Kalman filter at the mid-grid point

2/Ni =  for all n , scaling factors

,,, maxmaxmax φαφαα ⋅=⋅=⋅= ∗∗∗ VVUU

were defined using α  determined experimentally for satisfactory result. In this case 60.2=α  and all signals were
in the range [ ]1,1− . Thus
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The network was trained with the adaptive backpropagation algorithm (section 2.2) using 100  examples of the

Kalman filter taken at every st 4.0=∆  and 4
0 10−=η  until 09.0<me . This experiment will be denominated

experiment 1. Attempts to train multilayer perceptrons with more hidden layers using the adaptive backpropagation
algorithm were unsuccessful.

To test the new assimilation method one attaches to the input of the trained network the vectors

[ ]Tf
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n VVUUVVUUx ∗∗∗∗∗∗= φφφφ //////

and reads at the output layer the vectors

( ) ( ) ( )[ ] .ˆˆˆˆ 321

Taaaa
n nwnwnww =

f
nU , f

nV  and f
nφ  are predicted by DYNAMO and o

nU , o
nV  and o

nφ  are observations. The assimilation output

will actually be
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n ⋅=⋅=⋅= ∗∗∗ φφ

The results inserting data at each st 4=∆  can be seen in figure 2. The dashed lines represent the true signal, the
solid lines the predicted signal. The assimilation was acceptable.

After this first result the modified backpropagation algorithm (section 2.2) was tested on a perceptron with two
hidden layers. The AKF was used to provide the examples for a network composed now of

• an input layer with inputs oU , oV , oφ , fU , fV , fφ ;

• a first hidden layer having 50 neurons with activation function ( ) ( )xxf tanh= ;

• a second hidden layer having 50 neurons with activation function ( ) ( )xxf tanh= ;

• an output layer having 60 neurons with activation ( ) xxf = and outputs aU , aV , aφ .

As in experiment 1 vectors were normalized with scale using 00.1=α . Thus

,50.1,00.2,05.0 === ∗∗∗ φVU

From here on the normalization (with scale) and unnormalization follow the same rule as previously explained.

The network was trained with the modified adaptive backpropagation algorithm (section 2.2) using 500  examples

of the AKF taken at every st 08.0=∆ and 3
0 10−=η  until 6.0<me  . The following restriction had to be made at

the output layer (see step 3.2.1 of the algorithm) to ensure numerical accuracy:
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This experiment will be denominated experiment 2.

The results inserting data at each st 4=∆ can be seen in figure 3. The dashed lines represent the true signal, the
solid lines the predicted signal. The assimilation was very good.

Finally a robustness test was made with the assimilation method. The parameters OR , FR  e βR  of the model for

the true signal ("the atmosphere") were altered using zero-mean white gaussian fluctuations
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where {}⋅E  is temporal expected value, 210=FR , 1106.1 −×=βR , and both true signal and the initial condition

of the filter's model are initialized.  This test is the closest to operational data assimilation, because the atmosphere
is not truly a dynamic system of time-invariant parameters as assumed in DYNAMO model and, on the other side,
the initial condition of the assimilating system will usually be initialized.

The results obtained at the mid-grid point are shown in figures 4 and 5. The Neural Network assimilation with one
hidden layer and adaptive backpropagation algorithm had discontinuity problems at some instants of data insertion,
as seen in figure 4. After st 20≥ there was significant problem, but only after st 30≥ did it start becoming
serious. The Neural Network assimilation with two hidden layers and modified adaptive backpropagation algorithm
also had discontinuity problems at some instants of data insertion, as seen in figure 5. For st 178 ≤≤ and then

after st 24≥  there was significant problem, but only after st 35≥ did it start becoming serious. But in all cases
the errors were much smaller than those of figure 1.
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5   Conclusions

Multilayer Perceptron Neural Networks are used for data assimilation in a nonlinear dynamic system, the shallow-
water model for the atmosphere DYNAMO.This aproach emulated Kalman Filter data assimilation methods
avoiding recalculation of the gain matrix at each instant of assimilation.

Considering computational cost, suppose that a network with 30 2 mm ⋅=  inputs, L hidden layers of 1m  neurons

and an output layer with 3m neurons has been trained to emulate a Kalman Filter. The assimilation function

implemented by the network has complexity of order (Nowosad et al, 2000)

( ) ( ) ( ) .131101 mOmmOmLmOm ⋅+⋅⋅+⋅

If ( ) ( )31 mOmO =  and 3mL <<  then the algorithm to calculate the output of the assimilation function

( )o
n

f
nANN

a
n wwFw ,=  will have complexity ( )2

3mO .

On the other hand, the complexity of a standard Kalman Filter with 3m  state variables and 3m  observables is

( )3
3mO  due to the matrix products at every step (Mendel, 1971).

Modification of an adaptive backpropagation algorithm for training multilayer perceptrons was also proposed. This
modification consisted in practically decreasing the speed of adjustment of biases by using the square of the
learning rate in place of the learning rate itself.
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Two tests were made of data assimilation using this new approach in DYNAMO, a numeric model for the
atmosphere using the shallow-water approach. Firstly two multilayer perceptrons with the backpropagation training
algorithms were tried. Using straightlyforwardly DYNAMO to simulate a stationnary atmosphere the multilayer
perceptron with one hidden layer and trained using adaptive backpropagation training algorithm performed
acceptably. The multilayer perceptron with two hidden layers trained using modified adaptive backpropagation
algorithm performed well.

Secondly robustness was evaluated in networks altering the programming code of DYNAMO to simulate a
nonstationnary atmosphere, because it is a real issue in Numerical Weather Prediction. When the atmosphere was
nonstationary the two multilayer perceptrons performed acceptably.

Finally, it should be pointed out that Kalman filters provided the training sets for the networks, but other
assimilation methods can also be used to train multilayer perceptrons.
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