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ESTIMATION OF BIOMASS BURNING EMISSIONS ON SOUTH AMERICA
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1. ABSTRACT

We describe an estimation technique
of biomass burning emissions in South
America based on a hybrid remote sensing fire
products (GOES-8 WF_ABBA, INPE_AVHRR,
MODIS) and field observations. For each fire
pixel detected by remote sensing the mass of
the emitted tracer is calculated trough field
observations of fire properties related to the
type of vegetation burning. The instantaneous
fire size given by WF_ABBA product is used
as an estimate of burned area. The sources
are then spatially and temporally distributed
and daily assimilated by the CATT-BRAMS
(Coupled Aerosol and Tracer Transport model
to the Brazilian developments on the Regional
Atmospheric Modeling System, Freitas et al.,
2005) which prognoses tracer concentrations.
Two others biomass burning inventories
(EDGAR 3.2 described at Olivier (2002) and
derived from TOMS aerosol index described at
Duncan et al., (2003)) are also used and a
comparison between the three estimations is
shown. Model results present good agreement
with  MODIS aerosol products and local
observations and point out some
improvements on the estimation by the
technique described in this paper. Operational
products are available on a daily basis at
www.cptec.inpe.br/meio_ambiente

2. INTRODUCTION

The high concentration of aerosol
particles and trace gases observed in the
Amazon and Central Brazilian atmosphere
during the dry season is associated with
intense anthropogenic biomass burning activity
(vegetation fires, Andreae, 1991). Most of the
particles are in the fine particle fraction of the
size distribution, which can remain in the
atmosphere for approximately a week
(Kaufman, 1995). In addition to aerosol
particles, biomass burning produces water
vapor and carbon dioxide, and is a major
source of other compounds such as carbon
monoxide (CO), volatile organic compounds,
nitrogen oxides (NO,=NO+NO,), and organic
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halogen compounds. In the presence of
abundant  solar radiation and  high
concentrations of NO,, the oxidation of CO and
hydrocarbons is followed by ozone (Oj3)
formation.

3. THE BIOMASS BURNING INVENTORY

The biomass burning emission
parameterization is based on Freitas (1999)
with several improvements. In this work a
hybrid remote sensing fire product is used to
minimize the missing detections by remote
sensing. The biomass burning source
emission parameterization is based on the
combination of GOES-12 WF_ABBA product
(cimss.ssec.wisc.edu/goes/burn/abba.html,
Prins et al. 1998), AVHRR from CPTEC-INPE
(www.dpi.inpe.br/proarco/bdqueimadas,
Setzer and Pereira, 1987) and MODIS fire
product (Giglio et al. 2003). Fire detection is
merged with a 1 km land use and carbon in
live vegetation (Olson et al. 2000) data to
provide the associated emission factor (Ward
et al. 1992, Andreae and Merlet, 2001,
combustion factor and carbon density. For
each fire detected by remote sensing, the
mass of emitted tracer is calculated and its
emission in the model follows a diurnal cycle of
the burning. The sources are spatially and
temporally distributed and daily assimilated
according to the biomass burning spots
defined by the satellite observations. Figure 1
shows all sources of information used to
estimate biomass burning emissions according
to this technique. This approach is called
Brazilian Fire Emission Model (BFEMO).
Figure 2 shows the estimation for the months
August to November 2002. Three biomass
burning inventories are showed. The first
column from the left corresponds to the
estimation obtained BFEMO model, the
second column refers to Duncan et al. 2003
estimation and the last column is the EDGAR
3.2 product. BFEMO has a general agreement
with Duncan estimation in terms of order of
magnitude for August and September, but not
for the others two months. Both estimations
show obvious finer scale in comparison with
EDGAR 3.2. However, BFEMO resolution can
be as fine as of pixel size of the satellite
sensor used for the fire detection.
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3. INVENTORY VALIDATION FOR 2002 DRY
SEASON

The three inventories described above were
introduced in the CATT-BRAMS model system
(Freitas et al., 2005). Simulation for 2002 dry
season was performed to compare model
results using the three inventories described
with observed data. The model configuration
had 2 grids. The coarse grid had a horizontal
resolution of 140 km covering the South
American and African continents. lts main
purpose was to simulate approximately the
intermittent smoke inflow from the African fires
to South America and to coordinate with and
compare to the long-range transport of smoke
from fires in South America to the Atlantic

Ocean. The nested grid had a horizontal
resolution of 35 km and covering only South
America. The vertical resolution for both grids
was between 150 to 850 m, with the top of the
model at 23 km (42 vertical levels). The time
integration was 135 days, starting on 00Z 15
July 2002. For atmospheric initial and
boundary condition we used the 6 hourly
CPTEC T126 analysis fields trough 4DDA
technique. Three tracers was simulated
representing CO emitted according to each
inventory with initial the same background
values.

Figure 3 shows time series with comparison
between surface CO (ppbv) observed (black),
BFEMO (red), EDGAR (blue) and Duncan
(green) inventories.
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Figure 1. Cartoon describing all sources of information used to estimate biomass burning emissions.
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Figure 2. Three biomass burning inventories: the first column from the left shows the estimation
obtained with the technique described in this paper, the second column refers to Duncan et al. (2003)
estimation and the last column is the EDGAR 3.2 product.
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Figure 3. Time series with comparison between surface CO (ppbv) observed (black), BFEMO (red),
EDGAR (blue) and Duncan (green). The measurements were daily averaged and centered at 12Z.
The error bars are the standard deviations of the mean values. The model results are presented as

instantaneous values at 12Z7.
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Figure 4. CO vertical profiles from the model
(red, blue and green colors) and comparison
with observed CO during SMOCC flight 10.
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Figure 5. CO vertical profiles from the model
(red, blue and green colors) and comparison
with observed CO during SMOCC flight 12.
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4. CONCLUSIONS

The biomass burning inventory
technique developed for South America shows
realistic emission estimation and introduces
new features like the diurnal and daily
variability and higher spatial resolution, being
adequate to use in regional and large scales

atmospheric transport models. The CATT
BRAMS model results showed good
agreement  with surface and aircraft

observations of CO. This technique is
implemented in an operational system for
monitoring the transport of biomass burning
emissions in South America
(www.cptec.inpe.br/meio_ambiente).
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