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ABSTRACT

Modified f(R) gravity in the Palatini approach has been presently applied to Cosmology as a realistic
alternative to dark energy. In this concern, a number of authors have searched for observational
constraints on several f(R) gravity functional forms using mainly data of type Ia supenovae (SNe Ia),
Cosmic Microwave Background (CMB) radiation and Large Scale Structure (LSS). In this paper, by
considering a homogeneous and isotropic flat universe, we use determinations of the Hubble function
H(z), which are based on differential age method, to place bounds on the free parameters of the
f(R) = R − β/Rn functional form. We also combine the H(z) data with constraints from Baryon
Acoustic Oscillations (BAO) and CMB measurements, obtaining ranges of values for n and β in
agreement with other independent analyses. We find that, for some intervals of n and β, models based
on f(R) = R− β/Rn gravity in the Palatini approach, unlike the metric formalism, can produce the
sequence of radiation-dominated, matter-dominated, and accelerating periods without need of dark
energy.
Subject headings: Cosmology: cosmological parameters — Cosmology: observations

1. INTRODUCTION

Nowadays, one of the key problems at the interface
between fundamental physics and cosmology is to
understand the physical mechanism behind the late-
time acceleration of the Universe. In principle, this
phenomenon may be the result of unknown physical pro-
cesses involving either modifications of gravitation theory
or the existence of new fields in high energy physics.
Although the latter route is most commonly used,
which gives rise to the idea of a dark energy component
(see, e.g., (Peebles & Ratra 2003; Padmanabhan 2003;
Copeland et al. 2006; Alcaniz 2006; Dev et al. 2003)),
following the former, at least two other attractive
approaches to this problem can be explored. The
first one is related to the possible existence of extra
dimensions, an idea that links cosmic acceleration
with the hierarchy problem in high energy physics,
and gives rise to the so-called brane-world cosmol-
ogy (Randall & Sundrum 1999; Deffayet et al. 2002;
Alcaniz 2002; Sahni & Shtanov 2003; Maia et al. 2005).
The second one, known as f(R) gravity, examine
the possibility of modifying Einstein’s general rela-
tivity (GR) by adding terms proportional to powers
of the Ricci scalar R to the Einstein-Hilbert La-
grangian (Kerner 1982; Barrow & Ottewill 1983;
Barrow & Cotsakis 1988; Li & Barrow 2007).

The cosmological interest in f(R) gravity dates back
at least to the early 1980s and arose initially from the
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fact that these theories may exhibit an early phase
of accelerating expansion without introducing new de-
grees of freedom (Starobinsky 1980). Recently, f(R)
gravity began to be thought of as an alternative to
dark energy (Capozziello et al. 2005; Carroll et al. 2004;
Soussa & Woodard 2004; Nojiri & Odintsov 2004) and
a number of authors have explored their theeoretical
and observational consequences also in this latter con-
text. As a consequence, many questions have been
raised and there is nowadays a debate about the via-
bility of such theories (see, e.g., (Amendola et al. 2007a;
Amendola et al. 2007b; Capozziello et al. 2006)). How-
ever, it seems that most of problems pointed out can-
not be generalized for all functional forms of f(R).
For example, it has been shown that specific forms of
the function f(R) may be consistent with both cos-
mological and solar system-tests (Hu & Sawicki 2007;
Starobinsky 2007). By considering non-minimum cou-
pling between f(R) and the Lagrangian density of mat-
ter, (Bertolami et al. 2007; Bertolami & Páramos 2005)
discussed connections with MOND theory as well as
comparison with solar observables. Besides, by start-
ing from general principles such as the so-called energy
conditions, and by generalizing them to f(R) gravity,
(Santos et al. 2007) have shown how to place broad con-
straints to any class of f(R) theory.

Another important aspect worth emphasizing concerns
the two different variational approaches that may be fol-
lowed when one works with modified gravity theories,
namely, the metric and the Palatini formalisms (see, e.g.,
(Sotiriou & Liberati 2007)). In the metric formalism the
connections are assumed to be the Christoffel symbols
and variation of the action is taken with respect to the
metric, whereas in the Palatini variational approach the
metric and the affine connections are treated as inde-
pendent fields and the variation is taken with respect to
both. In fact, these approaches are equivalents only in
the context of GR, that is, in the case of linear Hilbert
action; for a general f(R) term in the action they give
different equations of motion.
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For the metric approach, a great difficulty in pratice
is that the resulting field equations are fourth order cou-
pled differential equations which presents quite unpleas-
ant behavior. In addition, simplest f(R) gravity models
of the type f(R) = R−β/Rn have shown difficulties in is-
sues such as passing the solar system tests (Chiba 2003;
Amendola & Tsujikawa 2008), having the correct New-
tonian limit (Sotiriou 2006a; Sotiriou 2006b) and gravi-
tational stability (Dolgov & Kawasaki 2003). In a recent
study (Amendola et al. 2007a; Amendola et al. 2007b)
have shown that these theories cannot produce a stan-
dard matter-dominated era followed by an accelerated
expansion.

On the other hand, the Palatini variational ap-
proach provides second order differential field equa-
tions which can also account for the present cos-
mic acceleration without need of dark energy. Re-
cent studies (Amarzguioui et al. 2006; Fay et al. 2007)
have shown that the above cited power-law func-
tional forms are capable of producing the last three
phases of the cosmological evolution, i.e., radiation-
dominated, matter-dominated, and late time acceler-
ating phases. Some issues still of debate in litera-
ture are whether f(R) theories in Palatini formalism
satisfy the solar system tests and have the correct
Newtonian limit (Nojiri & Odintsov 2003; Olmo 2007;
Faraoni 2006a) and whether they are free of gravitational
instabilities (Faraoni 2006b; Meng & Wang 2004).

From the observational viewpoint, however, it is im-
portant to look into whether these theories of grav-
ity are indeed compatible with different kinds of cur-
rently available cosmological data. In particular, the
observational viability of some functional forms of
f(R) gravity have been studied using mainly data of
SNe Ia and CMB radiation (Amarzguioui et al. 2006;
Fairbairn & Rydbeck 2007; Fay et al. 2007).

In this paper, by following (Samushia & Ratra 2006),
we use determinations of the Hubble parameter as a
function of redshift (Jimenez & Loeb 2002) to derive
constraints on the parameters of the f(R) = R − β/Rn

theory of gravity in the Palatini approach. These
determinations, based on differential age method,
relates the Hubble parameter H(z) directly to
measurable quantity dt/dz and can be achieved
from the recently released sample of old passive
galaxies from Gemini Deep Deep Survey (GDDS)
(Abraham et al. 2004; McCarthy et al. 2004) and
archival data (Dunlop et al. 1996; Spinrad et al. 1997;
Nolan et al. 2001). The same data, along with other
age estimates of high-z objects, were recently used to
reconstruct the shape and redshift evolution of the
dark energy potential (Simon et al. 2005), to place
bounds on holography-inspired dark energy scenarios
(Yi & Zhang 2007), as well as to impose constraints
on the dark energy equation of state parameter (w) by
transforming the selected GDDS observations into look-
back time determinations (Dantas et al. 2007). We also
combine H(z) data with BAO (Eisenstein et al. 2005)
and the CMB shift parameters (Spergel et al. 2007) to
better constrain the free parameters of our f(R) model.
A brief discussion on the cosmic eras in the context of
the Palatini approach is also included.

2. BASIC EQUATIONS IN THE PALATINI APPROACH

The simplest action that defines an f(R) gravity is
given by

S =
1

2κ

∫

d4x
√−gf(R) + Sm , (1)

where κ = 8πG, G is the gravitational constant and
Sm is the standard action for the matter fields. Here
R = gαβRαβ(Γ̃ρ

µν) and Γ̃ρ
µν is the affine connection,

which in the Palatini approch is different from the Levi-
Civita connection Γρ

µν .
By varying the action with respect to the metric com-

ponents we obtain the field equations

fRRµν(Γ̃)− f

2
gµν = κTµν , (2)

where fR = df/dR and Tµν is the matter energy-
momentum tensor which, for a perfect-fluid, is given
by Tµν = (ρm + pm)uµuν + pmgµν , where ρm is the
energy density, pm is the fluid pressure and uµ is the
fluid four-velocity. Variation of action (1) with re-
spect to the connection provides the equation that deter-
mines the generalized connection: ∇̃β [fR

√−ggµν ] = 0,

where ∇̃ is the covariant derivative with respect to the
affine connection Γ̃ρ

µν . This equation implies that one

can write the conection Γ̃ as the Levi-Civita connec-
tion of a conformal metric γµν = fRgµν (Li et al. 2007b;
Koivisto & Kurki-Suonio 2006). The generalized Ricci
tensor is written in terms of this connection as

Rµν(Γ̃) = Γ̃α
µν,α − Γ̃α

µα,ν + Γ̃α
αλΓ̃λ

µν − Γ̃α
µλΓ̃λ

αν . (3)

We next consider an homogeneous and isotropic uni-
verse and investigate the cosmological dynamics of f(R)
gravity in a flat Friedmann-Lemaitre-Roberston-Walker
(FLRW) background metric gµν = diag(−1, a2, a2, a2),
where a(t) is the cosmological scale factor. By express-
ing the generalized Ricci tensor (3) in terms of the Ricci
tensor Rµν(g) associated with the metric gµν we obtain
the generalized Friedmann equation (Vollick 2003)

6fR

(

H +
fRRṘ

2fR

)2

− f = κρm (4)

where H = ȧ/a is the Hubble parameter and a dot de-
notes derivative with respect to the cosmic time t. Here,
we adopt the notation fR = df/dR, fRR = d2f/dR2 and
so on. The trace of Eq. (2) gives

fRR− 2f = −κρm , (5)

where we have considered the fluid as a pressureless dust
satisfying the conservation equation ρ̇m +3Hρm = 0. By
combining this equation with the time derivative of Eq.
(5) we find

Ṙ =
3κHρm

fRRR− fR
. (6)

Now, by substituing Eq. (6) into Eq. (4) we obtain

H2 =
2κρm + fRR− f

6fRξ2
, (7)

where

ξ = 1− 3

2

fRR(fRR− 2f)

fR(fRRR− fR)
. (8)

Note that the usual Friedmann equations are fully recov-
ered from the above expressions if f(R) = R, in which
case the action (1) reduces to the Einstein-Hilbert one.
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Fig. 1.— The Hubble parameter H(z) as a function of the
redshift for the best-fit values of n and Ωmo using H(z) data only
and a combined fit including BAO and CMB shift measurements.
For the sake of comparison, the standard ΛCDM model prediction
is also shown. The data points are the measurements of the H(z)
by (Simon et al. 2005).

2.1. Parameterization

In this work we are particularly interested in testing
the viability of a general functional form given by

f(R) = R− β/Rn . (9)

In a recent paper, (Amarzguioui et al. 2006) have found
that this model can be compatible with the supernova
“Gold” data set from (Riess et al. 2004) for a given
interval of the parameters β and n. More recently,
(Fay et al. 2007) have shown that models of this kind are
compatible with the Supernova Legacy Survey (SNLS)
data (Astier et al. 2005) and also found narrow ranges
for the values of n and β consistent with that from
(Amarzguioui et al. 2006). Here we will follow the nu-
merical scheme used by (Fay et al. 2007) to obtain the
Hubble function H(z).

Firstly, we rewrite Eqs.(5) and (7) in terms of redshit
parameter z = a0/a−1 and the density ρm = ρmo(1+z)3:

fRR− 2f = −3H2
0Ωmo(1 + z)3 , (10)

and
H2

H2
0

=
3Ωmo(1 + z)3 + f/H2

0

6fRξ2
(11)

with

ξ = 1 +
9

2

fRR

fR

H2
0Ωmo(1 + z)3

RfRR − fR
. (12)

where Ωmo ≡ κρmo/(3H2
0 ). An important aspect worth

emphasizing at this point is that Eqs. (10) and (11)
evaluated at z = 0 impose a relation among n, Ωmo and
β, so that specifying the values of two of these parameters
the third is automatically fixed. In other words, in the
Palatini approach, a f(R) = R−β/Rn theory introduces
only one new parameter: n or β. In the following, we will
always work with n as the free parameter.

3. ANALYSES AND DISCUSSION
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Fig. 2.— Contour plots at 95.4% and 99.73% c.l. in the n×Ωmo

plane for a f(R) = R − β/Rn theory using the SVJ05 sample of
H(z) measurements.

In order to impose constraints on models of f(R) grav-
ity given by Eq. (9), we minimize the χ2 function

χ2 =

9
∑

i=1

[Hth(zi|s)−Hobs(zi)]
2

σ2(zi)
(13)

where Hth(zi|s) is the theoretical Hubble parameter at
redshift zi given by (11) which depends on the com-
plete set of parameters s ≡ (H0, Ωmo, n); Hobs(zi) are
the values of the Hubble parameter obtained from the
data selected by (Simon et al. 2005) (SVJ05) and σ(zi)
is the uncertainty for each of the nine determinations
of H(z). In what follows, we are going to work with
n and Ωmo as free parameters and study the bounds
on them imposed by the SVJ05 H(z) data sample.
The value for the Hubble parameter today is taken as
H0 ≃ 70 km/s/Mpc, in agreement with current estimates
(Freedman et al. 2001).

In Figure 1 we show the evolution of the Hubble pa-
rameter with redshift for the two best-fit values for n
and Ωmo discussed in this paper, as well as the predic-
tion from the standard ΛCDM model (Ωmo = 0.27). The
three curves are superimposed on the data points of the
SVJ05 sample. Note that all models seem to be able to
reproduce fairly well the H(z) measurements.

Figure 2 shows the first results of our statistical analy-
ses. Contour plots (95.4% and 99.7% c.l.) in the n×Ωmo

plane are shown for the χ2 given by Eq. (13). We clearly
see that the measurements of H(z) alone do not tightly
constrain the values of n and Ωmo, allowing for a large
interval of values for these parameters, with n ranging
from -1 to even beyond 1, and Ωmo consistent with both
vacuum solutions (Ωmo = 0), as well with universes with
up to 60% of its energy density in the form of nonrela-
tivistic matter. The best-fit values for this analysis are
Ωmo = 0.04, n = −0.89 and β = 1.11, with a reduced
χ2

ν ≃ 1.17.
Figure 3a shows the effective equation of state

weff = −1 +
2(1 + z)

3H

dH

dz
(14)

as a function of the redshift for the best-fit values above.
To plot this curve we have included a component of ra-
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Fig. 3.— a) Effective equation of state [Eq. (14)] as a function of redshift for the best-fit value of n and Ωmo from H(z) data analysis.
A radiation component with Ωγo = 5× 10−5 has been included. b) Same as in Fig. 2 when BAO and CMB shift parameters are included
in the χ2 analysis. c) Same as in Panel 3a when BAO and CMB shift parameters are included in the statistical analysis.

TABLE 1
Best-fit values for n and β

Test Ref. n βa

SNe Ia (SNLS) (Fay et al. 2007) 0.6 12.5
SNe Ia (SNLS) + BAO + CMB (Fay et al. 2007) 0.027 4.63
SNe Ia (Gold) (Amarzguioui et al. 2006) 0.51 10
SNe Ia (Gold) + BAO + CMB (Amarzguioui et al. 2006) -0.09 3.6
H(z) This Paper -0.89 1.11
H(z) + BAO + CMB This Paper -0.18 3.0

aThe ΛCDM model corresponds to n = 0.0 and β = 4.38.

diation Ωγo = 5 × 10−5. It is worth mentioning that
the best-fit point is not representative from the statisti-
cal point of view, given the weak power of constraining
shown in Figure 2. Note also that, similarly to some
results in the metric formalism (Amendola et al. 2007a;
Amendola et al. 2007b), for these specific values of the n
and Ωmo parameters, there is no matter-dominated era
followed by an accelerated expansion.

3.1. Joint Analysis

In (Fay et al. 2007) it was shown that when the mea-
surements of SNe Ia luminosity distances are combined
with information concerning the Baryon Acoustic Oscil-
lation (BAO) peak (measured from the correlation func-
tion of luminous red galaxies) and the CMB shift param-
eter (which relates the angular diameter distance to the
last scattering surface with the angular scale of the first
acoustic peak in the CMB power spectrum), the con-
straining power of the fit to f(R) paramenters is greatly
improved. Following such an approach we examine here
the effects of summing up the contributions of these two
parameters into the χ2 of Eq. (13).

In fact, when the BAO (Eisenstein et al. 2005)

A0.35 =











0.35
∫

0

dz

H





2

z

H(z)







1/3

= 0.469± 0.017 (15)

and the CMB shift parameter (Spergel et al. 2007)7

R1089 =
√

ΩmoH2
0

1089
∫

0

dz

H
= 1.70± 0.03 (16)

are included into the fit, a considerable enhancement of
the constraining power over n and Ωmo takes place, as
can be seen in Fig. 3b, which shows the countour curves
in the n × Ωmo plane. The best-fit value (n = −0.18,
β = 3.0, Ωmo = 0.27 with χ2/ndof = 1.02) is consis-
tent with current estimates of the contribution of non-
relativistic matter to the total energy density in a flat
universe. The fit also constrains the parameters n to
lie in the intervals n ∈ [−0.5, 0.3] and β ∈ [1.6, 4.4] at
99.7% c.l., which is consistent with the results obtained
in Refs. (Amarzguioui et al. 2006; Fay et al. 2007) us-
ing the supernova Gold and the SNLS data sets, re-
spectively. For the best-fit solution, the universe goes
through the last three phases of cosmological evolution,
i.e., radiation-dominated (w = 1/3), matter-dominated
(w = 0) and the late time acceleration phase (in this case
with w ≃ −1), as shown in Fig. 3c. In Table I we sum-
marize the main results of this paper compare them with
recent determinations of the parameters n and β from
independent analyses.

4. CONCLUSIONS

7 To include the CMB shift parameter into the analysis, the equa-
tions of motion had to be integrated up to the matter/radiation
decoupling (z ≃ 1089), so that radiation is no longer negligible and
was properly taken into account.
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By considering a flat FRW cosmology we have analyzed
the f(R) = R − β/Rn theory of gravity, with equations
of motion derived from the generalized action (1), ac-
cording to the Palatini approach. We have performed
consistency checks and tested the cosmological viability
for a theory of this type by using current determinations
of the Hubble parameter at different redshifts obtained
from differential ages techniques. The use of these data
to constrain cosmological models is interesting because,
differently from distance measurements, the Hubble pa-
rameter is not integrated over. This means that the dif-
ferential age method is less sensitive to systematic errors
than the standard distance methods. We find that the
determinations of H(z), when combined with the BAO
and CMB shift parameter, lead to constraints competi-
tive to those achieved with SNe Ia Gold and SNLS data,

as given by (Amarzguioui et al. 2006; Fay et al. 2007).
The FRW cosmology correspoding to the best-fit solu-
tion for a combined H(z)+BAO+CMB χ2 minimization
presents all three last phases of the Universe evolution,
namely, radiation era, matter era and a phase of acceler-
ation at late times. We emphasize that even though the
current data sample of H(z) is small, the differential age
technique is very promissing and, with the large amount
of data that is expected in the near future, these observ-
ables will certainly provide strong additional constraints
on cosmological parameters such as those coming from
SNe Ia, CMB and LSS data.

JS thanks financial support from PRONEX
(CNPq/FAPERN). JSA is supported by CNPq.
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