Interplanetary conditions leading to superintense geomagnetic storms
(Dst \leq -250 \, \text{nT}) during solar cycle 23

E. Echer, W. D. Gonzalez, and B. T. Tsurutani

Received 21 August 2007; revised 27 September 2007; accepted 5 October 2007; published 15 February 2008.

The interplanetary causes of superintense geomagnetic storms (superstorms, Dst \leq -250 \, \text{nT}) that occurred during solar cycle 23 are studied. Eleven superstorms occurred during the cycle, five close to solar maximum (2000–2001) and six in the post-maximum/declining phase (2003–2004). About 1/3 of the superstorms were caused by magnetic clouds (MCs), 1/3 by a combination of sheath and MC fields, and 1/3 by sheath fields alone. The interplanetary parameter best correlated with peak Dst was the time-integrated E_y during the storm main phase (in contrast with peak B_z and/or peak E_y for less intense geomagnetic storms). The range of peak Dst for these storms was 263 to 422 \, \text{nT}. The storm main phase durations had a range of 3–33 \, \text{h}. We conclude from this study that: (1) only MCs and/or interplanetary sheaths had fields intense enough and with long enough durations to cause superstorms; (2) superstorms occurred only in the maximum and declining phases; (3) the total energy transferred from the solar wind to the magnetosphere is best correlated with the time-integrated solar wind Ey parameter. Citation: Echer, E., W. D. Gonzalez, and B. T. Tsurutani (2008), Interplanetary conditions leading to superintense geomagnetic storms (Dst \leq -250 \, \text{nT}) during solar cycle 23, Geophys. Res. Lett., 35, L06S03, doi:10.1029/2007GL031755.

1. Introduction

Geomagnetic storms are large disturbances in the Earth’s magnetosphere, usually measured through the ring current Dst index [Sugiura, 1964; Gonzalez et al., 1994], and produced by enhanced solar wind-magnetosphere energy coupling through the magnetic reconnection mechanism [Dungey, 1961; Gonzalez et al., 1994]. Intense geomagnetic storms are defined when the peak value of this index reaches –100 \, \text{nT}, while extreme storms (also called great magnetic storms or superstorms), are usually defined when Dst reaches values of –250 \, \text{nT} [Tsugutani et al., 1992; Gonzalez et al., 2002]. These very intense events can occur in any part of the solar cycle and have dramatic consequences for space weather. The largest storm so far was the historical flare/storm event reported by Carrington in 1859, with an estimated Dst of –1760 \, \text{nT} [Tsugutani et al., 2003]. In this paper, the interplanetary causes of the 11 superstorms which occurred during solar cycle 23 are studied in detail. The relationship between the storm peak Dst and the peak values of the interplanetary magnetic field (IMF), B_z southward (B_z) component and dawn-dusk electric field (E_y) are also examined, based on the magnetic reconnection mechanism [Dungey, 1961; Akasofu, 1981] and on Burton’s energy conservation equation [Burton et al., 1975]. The superstorm properties will be compared with those for lower intensity storms.

2. Method of Analysis

For this paper we have used the Dst index [Sugiura, 1964] published by the World Data Center for Geomagnetism, Kyoto (http://swdcdb.kugi.kyoto-u.ac.jp/) and the interplanetary data observed by ACE [Stone et al., 1998]. We have used ACE high resolution plasma and magnetic field data (64 s) to identify the interplanetary causes of the geomagnetic storms. Further we have used 1-hour Dst, Vsw, B_z, B_y, and E_y data (OMNIdatabase) to determine the magnetic storm parameters: peak B_z and peak E_y that precede peak Dst, and the integrated E_y value during the storm main phase. The storm main phase was considered from the time when Dst starts to decrease to the peak negative Dst. Only periods with positive E_y were taken into account to calculate the integrals. For the November 2001 and October 2003 events, we used the reprocessed plasma data presented by Skoug et al. [2004], Tsugutani et al. [2004], and Mannucci et al. [2005].

In this paper, only interplanetary structures that contributed to a storm main phase development are noted. Thus, cases when a combination of structures leads to a more complex storm recovery phase are not considered as causes of the geomagnetic storm itself. In the “Sh + MC” category, both structures contribute to the storm main phase development, but the dominant role changed from storm to storm. We have excluded from this category the cases when a sheath field leads to a small Dst increase followed to a recovery to low/positive values and then the MC field drives the storm main phase.

Eleven superstorms (Dst \leq -250 \, \text{nT}) during solar cycle 23 have been identified and studied. Table 1 presents these storms and their geomagnetic and interplanetary parameters. For the identification of the interplanetary causes, the nomenclature and definitions and references cited above are followed. See also a companion paper by Gonzalez et al. [2007].

3. Results

Table 1 presents the geomagnetic and interplanetary parameters for the 11 super-intense magnetic storms of solar cycle 23. In Table 1 we present the time, date and value of the peak Dst, the storm main phase duration, the peak...
values of IMF B_s, IMF magnitude B, solar wind speed V_{sw}, the interplanetary y-component electric field E_y, and the integrated E_y during the storm main phase. Storm peak Dst values vary from -263 to -422 nT. Five storms have peak $Dst > -300$ nT, and only the November 20, 2003 has peak $Dst < -400$ nT. It is noted that the largest storms in this cycle were weaker than the bigger storms observed in other cycles (for solar cycle 22, the March 14, 1989 superstorm was $Dst = -589$ nT). The storm main phase duration varied from 3 h for the 15 May 2005 storm to 33 h for the October 29–30 2003 storm. Figure 1 shows the 1-h Dst indices for these 11 storms. The “double” storms of October 29–30 and 30 2003 and November 8–9 and 9–10 2004 are marked in the same plot as “1” and “2”.

From Figure 1 the reader can note that some storms have a simple, single step main phases, such as those during April 07 2000, July 16 2000, March 31 2001, April 11 2001, the second storm on October 30 2003, November 20 2003 and May 15 2005. The storms that occurred on October 29–30 2003 and November 8–9 and 9–10 2004 have a 2–3 step main phases. The dual superstorms of October 29–30 and 30, 2003 were caused by two ICME events [Mannucci et al., 2005] which were in turn associated with two major solar flares [Tsurutani et al., 2006]. From Mannucci et al., the first storm was caused by a combination of sheath + magnetic cloud fields and the second event shock compression of slow speed cloud material (see also discussion by Skoug et al. [2004] and Farrugia et al. [2006]).

The interplanetary peak B_s values varied from 20.5 nT to 64.0 nT. Five storms had peak $B_s < 30$ nT, four had peak between 30–50 nT and two had peak $B_s > 50$ nT. The peak E_y varied from 15 to 51 mV/m. We notice that these values for all 11 superstorm events are well above the empirical E_y criteria of $B_s > 10$ nT ($E_y > 5 \text{ mV.m}^{-1}$) during 3 hours identified by Gonzalez and Tsurutani [1987] for major ($Dst < -100$ nT) storms. The integrated E_y values were computed for the eleven storms and it varied from 65–200 mV.m-h.

Figure 2 shows the interplanetary and Dst data for the largest geomagnetic storm of solar cycle 23, the event during November 20 2003 [Gopalswamy et al., 2005; Huttunen et al., 2005; Gonzalez et al., 2007]. This storm was caused by B_s magnetic fields in a Y- type magnetic cloud, e.g., a magnetic cloud that has a preferential rotation in the B_y component, with the B_z component remaining southward, in this case. An interplanetary shock, marked by dotted lines, was observed at the ACE location at ~0730 on November 20 2003. The IMF B magnitude jumped from ~8 to ~20 nT, the density and velocity from ~6 to ~20 cm$^{-3}$ and from ~440 to ~610 km/s, respectively. The
IMF B_z after the shock was highly fluctuating, predominantly northward, with a short duration B_x fields that did not lead to the storm development. Later, a MC with a B_y rotation is observed, from ~ 1100 of November 20 to ~ 0000 November 21. The magnetic field inside the MC was very intense, with peak B magnitude of 56 nT and peak B_y of 51 nT. The solar source of this MC was a fast and wide halo CME studied by Gopalswamy et al. [2005].

Figure 3 shows the correlation between peak Dst, and peak Vsw, B, Bs, and Ey, and integrated Ey during the storm main phase. The correlation with peak B_y and Ey is low ($r = 0.23$) and is much lower with Vsw and B ($r = 0.13–0.14$). The highest correlation is found with integrated Ey ($r = 0.623$). The $Dst - B_y$ and $Dst - Ey$ peak scatter plot shows a large dispersion, with two separated cluster of points for storms with $Dst < -300$ and $Dst > -300$ nT. However, the statistics are too low to assess if this separation is indeed real, e.g., there is some change in dynamics of solar wind-magnetosphere energy coupling at $Dst \sim -300$ nT. This of course may be just an artifact of the low sampling.

4. Discussion

[11] We have found that around 1/3 (4 of 11) of the superstorms are caused by MC fields, 1/3 (4 of 11) by a combination of sheath + MC fields and 1/3 (3 of 11) by sheath fields. Thus, all superstorms occurring in cycle 23 were caused by sheath and/or MC fields. There were no cases of a superstorm caused by a corotating interaction region (CIR) or heliospheric current sheet (HCS) fields.

[12] Tsurutani et al. [1992] have studied the five greatest storms in the period 1971–1986 and they found that 2 (40%) were caused by MCs and 3 (60%) by shock compression/field draping effects. Thus the proportion of superstorms caused only by MC and by SH/MC is the same in both studies, despite the low statistical numbers in this previous study. Further, these two studies in different solar cycles enable us to conclude that only MC and sheath fields seems to be important causes for the development of superstorms.

[13] All superstorms have a much lower peak Dst and longer main phase duration than the extreme storm of 1–2 September 1859 with an estimated $Dst = -1760$ nT [Tsurutani et al., 2003]. Thus, we still do not have interplanetary observations associated with the more extreme events in the solar-terrestrial environment. Nevertheless, the results here obtained can give us reasonable ideas about the
interplanetary origins and conditions that lead to more
typical superstorms.

[14] Considering intense storms \((D_{st} < -100 \text{ nT})\) Gonzalez et al. [2007] have observed that four classes of IP structures, MCs (24%), sheath fields (24%), sh + MC fields (14%) and corotating interaction regions STREAMS (13%) are responsible for most of the storms. However, as shown here for superstorm intensity levels \((D_{st} < -250 \text{ nT})\), only MC and sheath fields are important. Echer and Gonzalez [2005] have observed that the combination of two or more IP structures (called a compound structure) is more geo-effective (a larger number of them are followed by higher values of \(D_{st}\)) than simple structures, for geomagnetic storms with \(D_{st} < -100 \text{ nT}\). For superstorms, the combination of two structures (sh + MC and complex) is responsible for \(\sim 1/3\) of the superstorms, against \(\sim 2/3\) caused by only sheath or MC fields. Thus for superstorms it appears that there is a higher probability of single structures causing the events.

[15] Gonzalez and Echer [2005] have studied storms with \(D_{st} < -85 \text{ nT}\) during the period 1997–2002. They have observed a better correlation of peak \(D_{st}\) with peak \(B_{z}\) and \(E_{y}\) than with integrated \(E_{y}\) values. This is in contrast with the results obtained in this study, which implies that, for the superstorm category, the integrated energy rather than the instantaneous power transmitted to the magnetosphere is more important in energizing the ring current. For storms with \(-85 \text{ nT} > D_{st} > -150 \text{ nT}\), they obtained an average integral \(x E_{y}\) during the main phase of 34.3 mV.m\(^{-1}\).h. The values obtained for superintense magnetic storms, are at least double this value. The average main phase duration for that set of storms was \(\sim 10 \text{ h}\), which is similar to that observed for the superstorms class (\(\sim 11 \text{ h}\)). The integrated \(E_{y}\) values for superstorms are also larger than the average values for different classes of IP structures for a variation (not the peak) of 100 nT in \(D_{st}\) (\(\Delta D_{st} = 100 \text{ nT}\)), determined by Vieira et al. [2004]. For instance, those authors have found an integral of 12x mV.m\(^{-1}\).h and 14x–69x mV.m\(^{-1}\).h for sheath and MC caused storms, respectively. The superstorms caused by MC and sheath fields, showed in Table 1, present values of \(\sim 76\) and \(64–199\) mV/m-h, respectively.

[16] De Lucas et al. [2007] have studied the integrated energy during intense and superstorms for the period 1981–2004. They found larger integrated values of \(E_{y}\) for superintense storms, but without a clear separation for the two storm classes, e.g., the electric field distribution was continuous. For intense storms, they have observed a range of integrated \(E_{y}\) values of 23–125 mV.m\(^{-1}\).h with on average of 59 mV.m\(^{-1}\).h, while for the superstorms studied in this paper the range is 65–200 mV.m\(^{-1}\).h and the average is 122 mV.m\(^{-1}\).h, namely about twice the integrated \(E_{y}\) for intense storms.

[17] We note that for \(D_{st} < -100 \text{ nT}\) major storms, GT(1987) found a common interplanetary condition of \(B_{s} > 10 \text{ nT} (E_{y} > 5 \text{ mV/m})\) for \(T > 3 \text{ hrs}\). For the superstorms (\(D_{st} < -250 \text{ nT}\) studied here, the interplanetary conditions \(B_{s} > 15 \text{ nT} (E_{y} > 7.5 \text{ mV/m})\) with \(T > 2 \text{ hrs}\). For slightly more intense storms (\(D_{st} < -280 \text{ nT}\)), the interplanetary conditions were \(B_{s} > 20 \text{ nT} (E_{y} > 10 \text{ mV/m})\) for \(T > 3 \text{ hrs}\).

[18] One explanation for the integrated \(B_{s}\) and \(D_{st}\) correlation could be obtained from the Burton’s model. In the energy balance equation, \(\frac{dD_{st}}{dt} = \frac{\Delta E_{y}}{\tau_{p}}\), where \(\Delta E_{y}\) and \(\tau_{p}\) are the energy input and the ring current decay time constant. For a simple case the energy function is represented by \(E_{y} = \frac{Q}{\tau_{p}}\), where \(Q\) and \(\tau_{p}\) are the energy input and the ring current decay time constant. This might explain the better relation of peak \(D_{st}\) with the integral of the electric field during superstorms.

[19] It is interesting to try to assess the ring current dynamics during superstorms. In a work in preparation, the ring current asymmetry for 15 superstorms (\(D_{st} < -250 \text{ nT}\)), for the period 1981–2004, was investigated using middle latitude geomagnetic observatories [Echer and Gonzalez, 2007]. They have observed that only sheaths and MCs are geoeffective for superstorm occurrence and that the integrated electric field is the most important parameter. Thus for space

\[\text{interplanetary}\]
Acknowledgments. Part of this work was done with the support of “Fundo de Desenvolvimento Científico e Tecnológico” of Brazil. We would like to thank to the WDC-Kyoto for the Dst index and to the ACE team for the solar wind data. EE would like to thank to the Brazilian CNPq (PQ-300104/2005-7 and 470706/2006-6) agencies for financial support. We would like to thank the ACE plasma and magnetometer teams for solar wind data. We also thank the ACE plasma and magnetometer teams for solar wind data. The BTT portion of this work was done at the Jet Propulsion Laboratory, Calif. Inst. Tech., under contract with NASA.

References

E. Echer and W. D. Gonzalez, Geofísica Espacial, Instituto Nacional de Pesquisas Espaciais, C.P. 515, Avenida dos Astronautas 1758, Jardim da Granja, São José dos Campos, SP 12277-010, Brazil. (eecher@dce.inpe.br) B. T. Tsurutani, Jet Propulsion Laboratory, California Institute of Technology, MS 169 – 506, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.