<table>
<thead>
<tr>
<th>1. Classificação</th>
<th>INPE-COM.10/PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDU</td>
<td>681.327.64</td>
</tr>
</tbody>
</table>

| 2. Período | Julho de 1976 |

<table>
<thead>
<tr>
<th>3. Palavras Chave (selecionadas pelo autor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAVAÇÃO DE DADOS EM "CASSETTE",</td>
</tr>
<tr>
<td>GRAVAÇÃO DIGITAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Critério de Distribuição:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interna □</td>
</tr>
<tr>
<td>Externa X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Relatório n°</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPE-909-PE/030</td>
</tr>
</tbody>
</table>

| 6. Data | 06.07.76 |

<table>
<thead>
<tr>
<th>7. Revisado por</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Eduardo W. Bergamini</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Título e Sub-Título</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAVAÇÃO DE DADOS DIGITAIS EM FITAS "CASSETTE"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Autorizado por</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Nelson de J. Parada Diretor</td>
</tr>
</tbody>
</table>

| 10. Setor DAT | Código 5.00 |

| 11. N° de cópias | 10 |

<table>
<thead>
<tr>
<th>12. Autoria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luiz Carlos Perondini Corato</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Assinatura Responsável</th>
</tr>
</thead>
</table>

| 14. N° de páginas | 9 |

| 15. Preço | |

<table>
<thead>
<tr>
<th>16. Sumário/Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trata-se de um circuito adaptador ("interface") que permite a gravação de dados digitais em fitas "cassette", utilizando um gravador comum de áudio-frequências, monofônico. O projeto foi orientado para o acoplamento da interface a um computador Hewlett-Packard modelo HP 2116-B, e a velocidade de gravação e de reprodução é de cerca de 1200 bits por segundo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabalho a ser apresentado na XXVIII Reunião Anual da Sociedade Brasileira para o Progresso da Ciência, em Brasília, no período de 7 a 14 de julho de 1976.</td>
</tr>
<tr>
<td>Capítulo</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SUMÁRIO

Este projeto foi desenvolvido durante um estágio realizado no INPE (São José dos Campos) em 1975, por Luiz Carlos Perondini Corato e Gustavo do Rosário Batista, então cursando o quinto ano de engenharia eletrônica no Instituto Tecnológico de Aeronáutica.

Trata-se de um circuito adaptador ("interface") que permite a gravação de dados digitais em fitas "cassette", utilizando um gravador comum de áudio-frequências, monofônico. O projeto foi orientado para o acoplamento da interface a um computador Hewlett-Packard modelo HP 2116-B, e a velocidade de gravação e de reprodução é de cerca de 1200 bits por segundo.
I. **INTRODUÇÃO - OBJETIVOS**

O projeto do adaptador ("interface") foi feito tendo como principal condição de contorno a utilização de gravadores "cassette" do tipo de uso doméstico, sem modificação alguma. As limitações que essa exigência acarreta ficarão evidentes a seguir.

A aplicação mais imediata de um sistema com esse é o seu emprego como eventual substituto de leitora e/ou perfuradora de fitas de papel, com a vantagem da maior facilidade de manejo das fitas "cassette" em relação às de papel perfurado.

O diagrama abaixo resume os objetivos do trabalho:

![Diagrama](image)

Fig. I.1 - Configuração básica do sistema
II. DESCRIÇÃO DA INTERFACE

2.1 NECESSIDADE DE CODIFICAÇÃO E MODULAÇÃO

Como a gravação é realizada em um só canal, é necessário que o sinal gravado transporte, além dos dados propriamente ditos, umas base de tempo que permita a posterior recuperação deles. Dito de outra maneira: um sinal de tempo ("clock") deve estar embutido no sinal gravado.

Existem vários processos para se obter tal característica, mas a tendência atual é a padrонização da codificação "Bi-phase", que por isso mesmo foi escolhida no presente trabalho.

Na codificação "Bi-phase" estabelece-se, para cada bit, uma "cela" de duração definida e preenche-se cada cela do seguinte modo: se o bit correspondente for 1, a cela é dividida em duas partes com níveis 0 e 1, ou vice-versa, respectivamente; se o bit correspondente for zero, a cela é preenchida com um único nível (0 ou 1). Pode-se, evidentemente, inverter essa codificação.

Fig. II.2 - Codificação "Bi-phase"
Dessa forma, cada início de cela é bem definido pela transição de nível que obrigatoriamente ocorre, e tem-se então a informação de tempo ("clock") requerida.

Por outro lado, após codificado o sinal deve, de alguma maneira, modular uma portadora senoidal de frequência conveniente para permitir sua gravação. Aqui se estabelece o primeiro compromisso entre a limitação da resposta em frequência dos gravadores "cassette" e a "densidade" de gravação dos dados.

A interface converte o sinal, já codificado, em "pacotes" de senoides, como mostra a figura.

Fig. II.3 - Modulação
A frequência do sinal senoidal é de 4840 Hz, tendo esse valor sido determinado experimentalmente, atendendo ao compromisso já mencionado.

2.2 O CODIFICADOR

A função desse bloco é efetuar a conversão paralelo/série dos dados apresentados pelo computador, a codificação "bi-phase" propriamente dita e a modulação da portadora senoidal.

![Diagrama de Blocos do Codificador](image-url)
Observe-se que o sinal senoidal está sincronizado com a onda quadrada que comanda a conversão paralelo/série, mesmo porque é isso que vai garantir o correto posicionamento dos "pacotes" senoidais dentro das celas dos bits, após a modulação.

2.3 O DECODIFICADOR

Para se realizar o decodificador é necessário um circuito que recupere a informação de tempo ("clock") presente no sinal codificado em "bi-phase" para então controlar a conversão série/paralelo. Após o que, montados em paralelo os dados ficam disponíveis para serem recebidos pelo computador.

Fig. II.5 - Diagrama de Blocos do Decodificador
Característica bastante favorável desse processo de decodificação é uma relativa imunidade a variações na de velocidade de rotação do gravador.

Além dessas duas partes básicas, a interface contem os circuitos relativos ao processamento dos sinais de controle necessários ao seu "dialogo" com o computador.

Foi previsto também um circuito gerador e testador de paridade, respectivamente na codificação e decodificação.

2.4 OS SINAIS DE CONTROLE

Foi implementado um sistema de controle bastante simplificado, com vistas a um desenvolvimento posterior.

Os sinais de controle são: IOG(B), LSCL, LSCM, CLF, SFS e SKF. A saber:

a) IOG(B), LSCL e LSCM são os sinais de "endereçamento" dos vários periféricos; seleccionam qual periférico terá acesso aos dados num determinado instante.

b) CLF inicializar o processo de gravação

c) SFS é enviado periodicamente à interface, que "responde" com um sinal SKF quando termina a gravação de uma palavra, solicitando uma nova inicialização.
- 7 -

Note-se que nesta primeira fase não foi implementado o sistema de interrupção.

III. CONCLUSÕES - COMENTÁRIOS

3.1 CONFIABILIDADE

O sistema revelou-se bastante confiável, não tendo o corrido nenhum erro nos diversos testes realizados.

Nesses testes foram empregados gravadores Philips modelo EL e Aiwa modelo TPR-601, e fitas "cassette" de diversas procedências.

3.2 VERSATILIDADE

O sistema de armazenamento de dados aqui descrito deve ser visto como uma primeira etapa de desenvolvimento de um sistema completo.

Sem dúvida o equipamento ora montado pode ser de gran de utilidade para o usuário como uma opção para entrada, saída e armazenamento de dados.

Por outro lado, seriam extremamente desejáveis, e mesmo indispensáveis, características adicionais, como a possibilidade de variação da velocidade da fita, localização de determinados trechos
de gravação, avanço e retrocesso, comandados por programação, e outras.

No entanto, tais recursos de comando exigiriam de imediato o uso de mecanismos especiais no gravador, o que contrariaria frontalmente as diretrizes iniciais do projeto. O usuário, portanto, deve ter sempre em mente essas "condições de contorno" para estar ao par das possibilidades e limitações do equipamento.

Acredita-se que este trabalho tenha fornecido uma boa base para desenvolvimentos futuros de sistemas "cassette" mais sofisticados.
BIBLIOGRAFIA

HEWLETT-PACKARD CO. - "Manuais do Computador HP-2116B", em particular:

KAYE, D.N. - "Focus on cassette nand cartridge records". Electronic Design, Rochelle Park, NJ, USA; 20(18), Set. 1972.

THE ENGINEERING STAFF OF TEXAS INSTRUMENTS INC. - Components Group, The TTL Data Book for Design Engineers, Dallas, Texas Instruments Inc.

THE ENGINEERING STAFF OF TEXAS INSTRUMENTS INC. - Components Group, The Linear and Interface Circuits Data Book for Design Engineers, Dallas, Texas Instruments Inc.