Towards Automatic Systems Architecting

From abstract concept to architecture

Gustavo Pinheiro, Felipe Simon and Geilson Loureiro
July, 2007
Agenda

• Intro to the Project
• The Current Approach vs. The New Approach
• Applications
• The Hierarchical OPN
• Further Development / Conclusion
Introduction

• Systems Architecture Domain
 – To Consider *many options* when designing a system
 – To be able to model a *specific solution/architecture* in an efficient manner

 – Available Languages / Tools :
 • *OPM*, Structured Analysis, UML, SysML …
 • *OPN* (Decision-Support tool)

• Goal:
 – To define a *new approach* that allows *both perspectives* to be considered
The Current Approach

- Currently, decision-support tools are *completely separated* from system architecture modeling tools:
 - When *deciding*: you do not have instruments for a common visual understanding of the system
 - When *modeling*: you do not have instruments for deciding which way to move forward

- OPM Model:
The Current Approach

- OPN Graph (Higher-Lever of Abstraction):
The New Approach

- Association OPM-OPN
 - Model the **Space of Options** with OPM
 - **Systematic Translation** to OPN
 - **Results** presented using **OPM notation** (for each architecture)

- That’s what we call “Automatic Systems Architecting”
The New Approach – Step-by-Step

1. Define the *function* to be performed by your system.

2. Define *Boundary Conditions* (BC) to your Problem (they hinder the change from an initial state to a final state).

3. Assign *Functions* that “solve” these boundary conditions and the parameters which are important for making a decision to “feed” the OPN model.

4. Show *Specialization* possibilities for this solution and how they alter the parameter’s values.

5. If necessary, define *New BC* to these functions (iterate between 2, 3 and 4).

6. Check *Architectures* selected by OPN
Application 1

– Market of Sodas – **Logistic issues**
Application 1

– Market of Sodas – **Logistic issues**
Application 1

- *Adding parameters* that will feed the OPN model

The functions are “described” in terms of these parameters
Application 1

- **Translating** the decisions to be made to OPN

- Modeling the decisions made using **OPM** notation
Application 1

- Eventually, the decisions made can be modeled in the form of the *actual system* with OPM

 (This OPM model represents an architecture pointed out by OPN)
Applications - Questions

• For a simple application, a **single** OPN model may be sufficient to model all the “points of decision” to be considered.

• The **more complex** our system becomes, the more difficult it is to integrate knowledge from different domains (i.e. decisions in different areas) in a single OPN model.

• To try to model such a system using OPN current features leads to a model with **low cohesion** and **high coupling**.
The Hierarchical OPN

- But what we need is **high cohesion** and **low coupling**!
- **Solution**: The Hierarchical OPN
- The recursivity presented in the new approach would be defined in **lower levels** OPN models.
- At **higher levels**, complexity would be hidden.
The Hierarchical OPN

- Pros:
 - To allow the *design of complex systems* (that involves experts from multiple domains) using OPN tool.
 - To provide *higher cohesion* and *lower coupling*.

- The New Approach:
 - Tool that integrates OPM with Hierarchical OPN
 - Note: When *different notations* are been used, one should to *translate* all of them to OPM. We’ve verified it’s quite easy translation between SA, OPM, SysML, UML.
Application 2

- **Lunar Lander** (Under Development)
 - This example will show:
 - Exactly how the *different levels* will *communicate* with each other during simulation process; (parameters from higher levels modifying lower levels parameters and vice-versa).
 - That this “better organized” approach (high cohesion and low coupling) will lead to *model reuse*.
Further Development / Conclusions

- How to figure out to which extent we should model? We could spend effort *modeling a solution that will never be developed*!

- How can the models evolve?

- Conclusion of current study case (Lunar Lander)

- Implementation of an *user-friendly* tool able to mechanize the proposed approach (Association OPM + Hierarchical OPN)