Multiscale analysis of Eta forecasts: Preliminary analysis

Chou S. Chan, Margarete Domingues, Odim Mendes Jr., Paulo Vital

II WorkEta, INPE

1 de junho de 2007
Motivation of this work

Are the short and long range Eta model runs seeing the same time scales?
Wavelet analysis

Tool to understand the \textit{multiscale} aspects of functions or signals.

\textbf{Synthesis and synergy} of:

- \textit{robust mathematic results}
- \textit{efficient computational algorithms}
- under the interest of a broad community

The use of wavelet techniques has exponentially grown, since late 80’s

[Jaffard, Meyer, Ryan (2001), Meneveau (91), Chen (83), Morlet (83)].
The more popular characteristic of the wavelet techniques are the introduction of the time-scale decomposition.

Musical structure => events localized in time.

A piece of music can be understood as a set of musical notes characterized by four parameters:

- frequency, time of occurrence, duration and intensity

[Domingues(2005), Daubechies(92), Lau&Weng(95), Farge(92)].
Continuous wavelet transform (CWT)

CWT of a time series f is defined by

$$\mathcal{W}_f(a, b) = \int_{-\infty}^{\infty} f(u) \overline{\psi}_{a,b}(u) \, du \quad a > 0,$$

where

$$\psi_{a,b}(u) = \frac{1}{\sqrt{a}} \psi \left(\frac{u - b}{a} \right)$$

represents a chosen wavelet function family, named mother-wavelet.
Summary

Motivation of this work

Wavelet analysis

Atmospheric applications

CWT

Preliminary Results

CWT

Can be used in the analysis of non-stationary signals to obtain:

- Information on the pseudo-frequency or scale variations
- The detection of structures localization in time and/or in space.
Summary

Motivation of this work

Wavelet analysis

Atmospheric applications

CWT

Morlet wavelet

Analysis

Preliminary Results
CWT - when scale and localization parameters assume continuous values.

A wavelet function must satisfy the following conditions.

1) The integral of the wavelet function, usually denoted by \(\psi \), must be zero. This assures that the wavelet function has a wave shape and it is known as the admissibility condition.

2) The wavelet function must have unitary energy. This assures that the wavelet function has compact support or has a fast amplitude decay (in a physical vocabulary \(e\text{-folding time} \)), warranting a physical domain localization.
Examples: CWT

Amplitude modulation
Frequency modulation
Abrupt changes in time
Morlet wavelet

It is formed by a plane wave modulated by a gaussian function and it is given by

$$\psi(x) = \pi^{-\frac{1}{4}} \left(e^{i\xi x} - e^{-\frac{\xi^2}{2}} \right) e^{-\frac{x^2}{2}},$$

where ξ is a non dimensional value.
Morlet wavelet - real part
Methodology:

- short and long range Eta model runs
- an observation station data sets
- during part of a summer/fall season
- analysis of variance wavelet: scalogram
- using the continuous wavelet transform with Morlet mother-wavelet, family 6.
Summary
Motivation of this work
Wavelet analysis
Atmospheric applications
CWT
Morlet wavelet Analysis
Preliminary Results

Air Temperature (2 meters)
Precipitation (mm/day)
Relative Humidity (%)
Zonal wind (m/s)
Summary

Motivation of this work

Wavelet analysis

Atmospheric applications

CWT

Morlet wavelet

Analysis

Preliminary Results

Meridional wind (m/s)
Next steps!

- To use more features of this wavelet, as the **phase** and the global wavelet aspects.
- To identify why could be the causes of these differences;
- To study if this behaviour is representative in space:
 - Using a two or three dimensional transform - time-space multiscale analysis.
Other examples: automatic mesh refinement
Other examples: turbulence analysis
Obrigada! Thanks!
margarete@lac.inpe.br
Motivation of this work

Wavelet analysis

Atmospheric applications

CWT

Morlet wavelet Analysis

Preliminary Results

Acoustic Signal/Image Processing and Recognition.
Number 1 in NATO ASI. Springer-Verlag, New York, 1983.

I. Daubechies.

Ten lectures on wavelets, volume 61 of *CBMS-NSF Regional Conference (Series in Applied Mathematics).*

M. O. Domingues, O. Jr. Mendes, and A. Mendes da Costa.

On wavelet techniques in atmospheric sciences.

M. Farge.

Wavelet transforms and their applications to turbulence.

Wavelets. Tools for science and technology (revised).

K-M. Lau and H. Weng.

Climate signal detection using wavelet transform: How to make a time series sing.

C. Meneveau.

Analysis of turbulence in the orthonormal wavelet representation.
Motivation of this work

Wavelet analysis

Atmospheric applications

CWT

Morlet wavelet analysis

Preliminary Results

J. Morlet.

Sampling theory and wave propagation, pages 233–261.

NATO ASI, New York, 1983.