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ABSTRACT
Two nonlinear identification methods are employed in this

paper in an experimental comparative approach to generate dy-
namical models for a thermal-vacuum system. Used for space
environment emulation and satellite qualification, a thermal-
vacuum chamber presents highly nonlinear and time-delay char-
acteristics. While, in the first nonlinear identification approach,
Particle Swarm Optimization (PSO) derive a Takagi-Sugeno
fuzzy model, the second one was based on NARMAX polynomial
identification technique. PSO is a stochastic global optimization
technique that uses a population of particles, where the position
and velocity of each particle represent a solution to the problem.
It is employed as an auxiliary mechanism for finding out a T-S
fuzzy model. The NARMAX polynomial identification technique
uses a criterion called Error Reduction Ratio (ERR) computed by
employing an orthogonal least squares method whose terms are
selected in a forward-regression manner. Results indicate that

∗Address all correspondence to this author.

both methods are feasible solutions for eliciting models from the
available data.

INTRODUCTION
Modelling of nonlinear dynamical processes from operating

data is fundamental to diverse engineering problems. A model
is any sort of abstract description that captures useful relevant
features able to represent a system. Finding out a model for rep-
resenting dynamical behaviour is of particular importance when
dealing with thermal-vacuum chambers used for satellite qual-
ification. In doing so, the model can be employed to estimate
future thermo-dynamical behaviour. This approach, then, may
be applied to support operators to decide what is the best con-
trol action for conducting a thermal-vacuumqualification testing.
Additional advantages of identifying a model are, for instance,
the ability to detect loss of vacuum, presence of unknown heat
sources or sinks, training of thermal-vacuum operators, develop-
ment of a supervisor decision-support system for helping to con-
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trol the whole operation, checking the instantaneous operation
or even the operator’s behaviour or performance, and, ultimately
design an automatic control for the whole system [1, 2].

A question that arises is which modelling approach would be
more suitable for modelling this process. An alternative for mod-
elling this nonlinear and time delay system is to employ Takagi-
Sugeno (T-S) fuzzy model since this methodology exhibits both
flexibility to represent high nonlinearity and robustness to uncer-
tainty in data. This method was used previously for describing
the dynamics of the thermal-vacuum system when employing a
hybrid intelligent approach [2, 3]. Particle Swarm Optimization
(PSO) was employed as an auxiliary mechanism for finding out
T-S fuzzy models. Working in synergy, PSO allows to determine
the premise space partition and to obtain membership functions
and thus to extract the number of IF-THEN fuzzy rules as well
to determine the statements in the consequent of the rules. Ad-
vantages of using fuzzy modelling include its simple structure to
describe nonlinear systems as well as its ability to represent hu-
man being behaviours. Since human beings handle the thermal-
vacuum system, this fuzzy approach seems a natural method for
both designing a control system and/or modelling the dynamical
system.

Despite the suitability of this method to this particular appli-
cation, another question that comes up is concerning the perfor-
mance of this approach in comparison to at least another method
found in the literature. In this paper, NARMAX (Nonlinear
Auto-Regressive Moving Average with eXogenous inputs) poly-
nomial model in conjunction with Error Reduction Rate criterion
(ERR) [4] is employed as an option to deal with nonlinear sys-
tem identification. This representation describes the output of
a discrete-time system as a multivariate polynomial function of
previous output values and input values.

The objective concerning this paper is twofold. This paper
aims to compare the fuzzy T-S/PSO method with the NARMAX
polynomial identification technique as well as to explore the lim-
its to where the previous hybrid fuzzy T-S approach may be em-
ployed in comparison to the other approach.

METHODOLOGIES EMPLOYED IN THERMAL-VACUUM
MODELLING

In this paper two methodologies for identification were em-
ployed to elicit thermal-vacuum models, one of the field of arti-
ficial intelligence and the other one from the field of stochastic
and dynamical analysis.

Identification of T-S/PSO Fuzzy model.
Takagi-Sugeno models consist of IF-THEN rules in which

IF statements define the premise part that is featured as linguistic
terms meanwhile the THEN functions constitute the consequent

part characterized as linear polynomial terms:

R( j) : IF (z1 IS Aj
1) AND . . . AND (zm IS Aj

m)
THEN (y = b j

0 +b j
1x

j
1 +b j

q j x
j
q j),

(1)

where z = [z1, . . . ,zm]T is the input vector of the premise p,
and A j

i , i = 1, . . . ,m are linguistic terms (labels) of fuzzy sets.
The fuzzy sets pertaining to a rule form fuzzy regions (clus-
ters) within the input space, A j

1 x Aj
2 x . . . x A j

m. The element
x = [x j

1, . . . ,x
j
q j ]

T represents the input vector to the consequent
part of R j that comprises q j terms; yi = y j(x j) denotes the j-th
rule output which is a linear polynomial of the consequent in-
put terms u j

1; and b = [b j
0,b

j
1, . . . ,b

j
q j ]

T are the polynomial coef-
ficients that form the consequent parameter set.

Given the input vectors z and x j, j = 1, . . . ,M, the final out-
put of the fuzzy system is inferred by taking the weighted average
of the local outputs y j(x j)

y =
M

∑
j=1

v j(z) · y j(x j) (2)

where M denotes the number of rules and v j(z) is the normalized
firing strength of R( j), which is defined as

v j(z) =
µ j(z)

∑M
j=1 µ j(z)

(3)

and

µ j(z) = µ
Aj

1
(z1) ·µAj

2
(z2) · · ·µAj

m
(zm). (4)

Linguistic labels A j
i may be, for instance, associated with

Gaussian membership functions,

µ
Aj

1
(zi) = exp

[
−1

2
(zi −mi j)2

σ2
i j

]
(5)

where mi j and si j are, respectively, the centres (mean value)
and the spreads (standard deviations) of the Gaussian function
that defines the core and the support of membership functions.
The objective of the optimization process consists of determin-
ing (tuning) these parameters when using measured input-output
data so that a performance measure based on the output errors is
minimized:

min
θ

N

∑
k=1

‖ŷ(k+1)− y(k+1)‖ (6)
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where ŷ(k + 1) is the estimate output used for computing the
square error when compared with the actual output, y(k + 1).
This activity corresponds to the parameter-learning task and,
consequently, the parameter estimation process. Nevertheless,
the identification problem in T-S fuzzy modelling involves not
only parameter estimation but structure selection as well. The
structure selection, in turn, consists of determining the premise
space partition and extracting the number of rules and determin-
ing the structure of the output elements (equations). In this paper,
the structure selection of T-S system is carried out by PSO for
premise part optimization while the consequent part optimiza-
tion is realized by batch least mean squares method.

Particle Swarm Optimization (PSO) was developed by
Kennedy and Eberhart in 1995 [5, 6]. In this population-based
swarm algorithm individuals learn primarily form the successes
of their neighbors. The position of each particle in PSO is a po-
tential solution in the solution space. Each particle has an asso-
ciated random velocity and moves through the problem space.
At each step, each particle changes its velocity flying toward
its pbest and gbest locations (global version of PSO). The term
pbest is associated with the best solution (fitness) each particle
has achieved so far and it corresponds to the coordinates in the
problem space. The element gbest is the overall best value. The
past best position and the best overall position of the group are
employed to minimize (maximize) the solution. Acceleration is
weighted by random terms, with separate random numbers being
generated for acceleration toward pbest and gbest locations. The
main steps of the global version of PSO [7] are:

1. Initialize a population (array) of particles with random po-
sitions and velocities in the n-dimensional problem space
using uniform probability distribution function.

2. For each particle, evaluate its fitness value.
3. Compare each particle’s fitness with the particle’s pbest. If

current value is better than pbest, then set pbest value equal
to the current value and the pbest location equal to the cur-
rent location in n-dimensional space.

4. Compare the fitness with the population’s overall previous
best. If current value is better than gbest, then reset gbest to
the current particle’s array index and value.

5. Change the velocity, vi, and position of the particle, xi, ac-
cording to equations (7) and (8):

vi(t +1) = w · vi(t)+ c1 ·ud() · (pi(t)− xi(t))
+ c2 ·Ud() · (pg(t)− xi(t)) (7)

xi(t +1) = xi(t)+∆t · vi(t +1) (8)

6. Return to step 2 until a stop criterion is met, usually a suf-
ficiently good fitness or a maximum number of iterations
(generations).

The vector xi = [xi1,xi2, . . . ,xin]T stands for the position and
vi = [vi1,vi2, . . . ,vin]T for the velocity of the i-th particle, while
pi = [pi1, pi2, . . . , pin]T represents the best previous position of
the i-th particle (the position giving the best fitness value). The
first part in equation (7) is the momentum of the particle. The
second part is related to the “cognition”, i.e., it represents the
independent behaviour of the particle itself. Equation (8) rep-
resents the updated position, according to its previous position
and speed, considering ∆t = 1. The inertia weight, w, represents
the degree of the momentum of the particles and it is responsible
for dynamically adjusting the velocity of the particles [8]. This
parameter is accountable for balancing between local and global
search. There are distinct mechanisms for chosing it. In this pa-
per, the linear decreasing inertia function is employed since it
reduces the influence of past velocities during the optimization
process. The index g represents the best particle among all the
particles in the group according to the fitness criteria defined lat-
ter. Variables ud(·) and Ud(·) are two random functions in the
range [0,1]. Positive constants c1 and c2 are denominated, re-
spectively, cognitive and social components. They are selected
by the user and are usually set around 2. These are the accelera-
tion constants, responsible for varying the particle speed towards
pbest and gbest. The velocity of the i-th particles on each di-
mension is clamped to a maximum velocity Vmax. and it is used
to determine the resolution with which the regions around the
current solutions are searched.

Among a population of potential solutions to a problem,
every particle has a fitness value for expressing appropriate op-
timization result. The function representing this quality measure
employs the position of the particle, x, that is calculated after
each iteration. In this paper, the fitness criteria chosen for eval-
uating the relationship between the real output and the estimate
output during the optimization process was the Pearson multiple
correlation coefficient. This coefficient gives the rate between
the variability of two measures (variables) in which one is de-
scribed by the variability of the other. This Coefficient represents
the harmonic mean of R of training and validation phases of T-S
fuzzy model conducted by R2

harmonic as given by:

R2
harmonic =

2
1

R2
training + ε

+
1

R2
validation + ε

, (9)

where:

R2
training = 1− ∑0.5Na

k=1 [y(k)− ŷ(k)]2

∑0.5Na
k=1 [y(k)− y]2

R2
validation = 1− ∑Na

k=0.5Na+1 [y(k)− ŷ(k)]2

∑Na
k=0.5Na+1 [y(k)− y]2

(10)
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are, respectively, the R2-training (estimation) and R2-validation
phases of the model; ε is the small tolerance value (10−16), Na
is the total number of samples evaluated, and y is the system real
output. When R(·)2 is close to unit, R(·)2 = 1.0, a sufficient ac-
curate model for the measured data of the system is found. A R 2

between 0.9 and 1.0 is suitable for applications in identification
and model-based control [9].

NARMAX polynomial identification technique.
The NARMAX (Nonlinear Auto-Regressive Moving Aver-

age with eXogenous inputs) models [4] are nonlinear discrete-
time dynamical systems. The models used here are of polyno-
mial type. The general NARMAX polynomial model is repre-
sented by

y(k) =
p

∑
i=1

θixi(k)+ ξ(k) , (11)

where y(k) is the model output at the discrete instant k, ξ(k) is
the one-step prediction error or residue, x i(k) is the i-th term, θi

is its coefficient. The number of terms is p. The terms are given
by

xi(k) = y(k−1)αi1y(k−2)αi2 · · ·y(k−ny)αiny

·u(k−1)βi1u(k−2)βi2 · · ·u(k−nu)βinu

· e(k−1)γi1e(k−2)γi2 · · ·e(k−ne)γine , (12)

where u(k) is the model input at k, e(k) is a noise term respon-
sible for modelling the stochastic part of the data, (α i j,βi j,γi j) ∈
N3 are integer exponents, and ny, nu and ne are the maximum lag
in y, u and e respectively. The quantity

di =
ny

∑
j=1

αi j +
nu

∑
j=1

βi j +
ne

∑
j=1

γi j (13)

is defined as the degree of term i.
The problem of identifying a NARMAX model given

by (11) can be split into two parts. The first one consists of
finding which terms xi of an arbitrary candidate set of terms C
should be included in the model. Such choice must be done in
agreement with the particular system one is trying identify. This
problem is called structure selection. The second part consists in
finding suitable coefficients θi such that the model can correctly
represent the system being identified. This problem is called pa-
rameter estimation.

The structure selection problem is specially important in
nonlinear systems identification. A nonlinear model has more

flexibility in its structure then a linear one. Also, the conse-
quences of a wrong structure are usually more severe in a non-
linear model than in a linear one [10]. Therefore, the structure
selection problem must be addressed carefully. In this work, we
use a criterion called Error Reduction Ratio (ERR) [4, 11, 12].
The ERR is defined as the fraction of the variance of the out-
put signal y(k) that can be explained by a particular term of the
model. The ERR is computed using an orthogonal least squares
method and the terms are selected in a forward-regression man-
ner, step by step. Assume that N samples were taken. Then,
equation (11) can be written once at each sample, thus resulting
in the matrix equation

Y = XΘ+Ξ , (14)

where Y = [y(1),y(2), . . . ,y(N)]T is the vector of outputs, X =
[x1,x2, . . . ,xp] with xi = [xi(1),xi(2), . . . ,xi(N)]T is the regressor
matrix, Θ = [θ1,θ2, . . . ,θp]T is the parameter vector, and Ξ =
[ξ(1),ξ(2), . . . ,ξ(N)]T is the residue vector.

If X has full column rank, it can be decomposed as X = MA,
where A is a p× p unit upper triangular matrix and M is an N× p
matrix whose columns, mi , i = 1, . . . , p, are pairwise orthogonal.
Then, (14) can be rewritten as

Y = (XA−1)(AΘ)+Ξ= MG+Ξ , (15)

where G = AΘ = [g1,g2, . . . ,gp]T is an auxiliary parameter vec-
tor that can be computed by

gi =
YT mi

mT
i mi

i = 1,2, . . . , p . (16)

The ERR of the i-th orthogonal term mi is then defined as

ERRi =
gimT

i mi

YTY
=

(YT mi)2
(YTY )(mT

i mi)
. (17)

The procedure for constructing a parsimonious model using
the ERR as a term selection criterion is the following.

1. Start with an empty model and a set of candidate terms C.
One way to form such set is generating all possible terms up
to some chosen maxima degree, ny, nu and ne.

2. For each term xi in C, compute its corresponding orthogo-
nal regressor by forming an orthogonal basis with the other
terms already in the model. Compute the ERR of this or-
thogonal regressor.

3. Chose the term of largest ERR computed in the previous
step. Include it in the model and remove it from C.
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4. Repeat steps 2. and 3. up to a stop criterion, such as a desired
residue variance or a maximum number of terms. At the end,
there will be a set of terms in the model that parsimoniously
represent the data.

The orthogonal decomposition produced can then be used
to compute the model coefficients, i. e. perform the parameter
estimation part of the identification problem.

There is, however, one unsolved issue: the noise modelling.
In equation (11), in order to compute the terms that involve e, one
would need to know the noise that corrupted the system, which
is usually unavailable. This is solved by an iterative estimator
known as the Extended Least Squares. In brief, this approach
starts the identification with no terms that involve e. Afterwards,
a model is obtained and the residue vector Ξ is computed. The
residue given by ξ(k) at the instant k is then employed as esti-
mate for the noise, e(k), and another model, which includes noise
terms, is computed. Finally, a new residue vector is obtained and
used as a new estimate for e(k). This procedure is repeated until
the convergence of the parameters is accomplished.

PROBLEM FORMULATION
Thermal-vacuumsystems consist of a chamber, a shroud (set

of pipes) which heats or cools off the environment, and some
devices and auxiliary equipment able to reproduce the conditions
of expected post-launch space environments [13, 14].

Since pressure inside thermal-vacuum chamber is low, there
is no convective heat transfer. Furthermore, temperature gradi-
ent inside the payload may be considered negligible if there is
fast heat conduction inside the payload. Because radiation is the
main source of heat transfer between the payload and shroud,
thermal vacuum chambers are inherently nonlinear. This heat
transfer depends nonlinearly on absolute temperature, T 4 [1,15].
In a glimpse, this nonlinear behaviour may be confirmed by
real-world industrial dynamical response corresponding to the
thermal-vacuum system with passive load into it (Fig. 1). The
solid line represents the temperature of the gas inside the shroud
and corresponds to a typical temperature set up for thermal-
vacuum environmental simulation for sattelite qualification. The
dashed line, in turn, is the temperature on the satellite and repre-
sents its thermal response when submitted to step values of tem-
perature.

The schematic and simplified diagram that depicts the op-
erational characteristic of the thermal-vacuum chamber and the
identification block is presented in Fig. 2. This paper focus on the
nonlinear identification for modelling the relationship between
the temperature on the satellite (output) and the controlled tem-
perature of the gas inside shroud (input) which is used to change
the temperature in the interior of the chamber.

Both temperature measured on the satellite and in the gas
of the shroud employed to elicit the nonlinear models shown in
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Figure 1. Temperature on the satellite and in the gas used for nonlinear

identification.

Fig. 1 are split in two data subsets. The first data set (data set 1)
was collected in one day while the second one (data set 2) was
acquired a couple of days latter yielding relative independence
between them. Such independence allows the use of different
data sets for validation and identification.

SIMULATION RESULTS
The two identification approaches were performed using the

data shown in Fig. 1. Instead of eliciting models based on purely
sampled data (black-box approach), a hybrid semi-mechanistic
approach (grey-box approach) is employed. In doing so, the
temperature data was converted from degrees Celsius to Kelvin
since radiation is the main source of heat transfer and the non-
linear characteristics of this process are naturally represented in
absolute (Kelvin) temperatures. Afterwards, the resulting data
was normalized, that is, they were divided by its maximum ab-
solute value so all the data was in the range (0,1]. Finally, data
was also decimated by taking one sample each four.

The data set 1, in Fig. 1, consists of 1900 points and it was
used in the parameter estimation procedure (training) while the
entire set, comprising 3500 points, (data set 1 plus data set 2)
was used for validation. This approach was applied in both iden-
tification methods.

The methodology of comparison includes that both Takagi-
Sugeno Fuzzy models and NARMAX polynomial models were
computed by using 3 inputs, y(k−1), y(k−2) and u(k−1), i.e., it
was considered here a second order model. The validation activ-
ity is carried out in two experiments: one-step ahead simulation
and free simulation.
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Figure 2. Simplified block diagram for thermal-vacuum chamber and identification process.

The number of rules and membership functions in the T-
S/PSO approach were set as 3. Thus, PSO needs to deal with a
vector whose elements are 9 centers and 3 spreads of a Gaussian
membership function. The initial position of particles is ran-
domly generated through an uniform distribution. The sufficient
number of particles for this application was set as 5. Social and
cognitive components were equally fixed as 2.05 while inertia
weight was chosen to be linear decreasing departing from 0.729
and reaching 0.4 as its final value. It is worth mentioning that
only 6 iterations were enough for accomplishing final T-S fuzzy
models, that is, a very low computational cost.

The candidate term set C used in the NARMAX polynomial
approach was formed by taking all terms up to degree 4, n y up to
2 (i.e., up to second order) and nu = 1. The noise terms employed
were linear and up to ne = 5. Models with total number of terms
varying from 1 to 15, plus 5 noise terms, were computed. From
those, the best one was chosen.

The one-step ahead simulation of the best T-S/PSO model
and of the best NARMAX polynomial model along with the orig-
inal system response is shown in Fig. 3(a). The output for the
obtained models and the original system (specimen) are so close
that they can hardly be distinguished. The one-step ahead pre-
diction error for this approach is shown in Fig. 3(b).

The free simulation of both these models and the system’s
output are shown in Fig. 4(a). The free simulation prediction
error is depicted in Fig. 4(b). As expected, the error of both
models is smaller on the data used for training than on the second
part of data.

CONCLUSION
In this paper, two nonlinear identification methods were

employed in eliciting models for representing thermal-vacuum
chambers used to qualify space devices, and satellites. While
Takagi-Sugeno fuzzy modelling based on Particle Swarm Opti-
mization (PSO) is a technique that uses a nonlinear-parameter
representation (linear in the consequent of the rule but nonlinear
for the whole process) the other approach, NARMAX polyno-
mial modelling with ERR criterion, employs a linear-parameter

representation. Results indicate that both approaches were able
to generate satisfactory nonlinear models for one-step ahead and
free simulation forecasting. When dealing with one-step ahead
prediction the proposed methods yields scarcely distinguishable
outputs. However, when free simulation was achieved, results
show that the fuzzy model generates an error greater than the
one obtained by NARMAX polynomial approach.

The performance difference of the two approaches seems
to lie in the nonlinear characteristics of T-S/PSO representation
when compared with the NARMAX polynomial one. Being non-
linear in the parameters, the former needs a nonlinear optimiza-
tion technique for estimating its parameters and this makes find-
ing a good model more difficult, which requires an extensive
search for a T-S/PSO model at least as good as the NARMAX
model. This will be done in a future work.
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