Meridional circulation between the Antarctic Peninsula and southeastern South America: cold surges one way and biomass burning emissions the other way

Alberto Setzer, Francisco E. Aquino and Marcelo Romao O.
CPTEC - INPE - Brazil

May 14-16, 2006
University of Colorado • Boulder, CO, USA
http://nsidc.org/events/IPY/APCV/
Abstract

In this paper we present two meridional circulation patterns in the lower troposphere between the north of the Antarctic Peninsula (AP) and South America (SA) that occur in all seasons of the year, so far not yet presented in the literature. Low pressure systems in the Weddell Sea produce outbursts of cold air at surface level that protrude 60° of latitude northwards, causing temperature declines of 10°C and precipitation in tropical areas in southeast and east SA. In the opposite direction, southward flow from central SA reaches the north AP under high pressure ridges, causing temperature increases of also 10°C or more. These meridional flows are corroborated with plenty of evidence of observational data from weather stations in the north of the AP and southeast SA, satellite imagery, synoptic charts, and with aerosol sampling in the South Shetlands.
Wind Vector at 925 hPa.

Note strong circulation South=>North from Weddell Sea to the Brazilian coast

19/june/2005 20/june/2005
Wind Vector at 925 hPa.

Note strong circulation South=>North from Weddell Sea to the Brazilian coast

21/june/2005 22/june/2005
Surface weather chart for 20/June/2005 12 Z

Note the South=>North circulation from the Sea of Weddell to the S and SE coast of Brazil
Surface weather chart for 21/June/2005 12 Z

Note the South→North circulation from the Sea of Weddell to the S and SE coast of Brazil
Change to the GOES animation, 19 to 22/june/2005
11 and 12/September/2005: again, wet Antarctic circulation, brought temperature fall (10°C in 24h) and precipitation (snow and rain in many counties in the southern states of RS and SC). Note longitudinal northern flow from 85°S to 20°S.
Frozen rain at Sao Joaquim, SC, south Brazil, 11/Sep/2005 (source: “A Notícia”)

This Antarctic air is always wet because of the moisture absorbed when flowing over the SE Atlantic ocean, causing overcast skies and precipitation.

Very different conditions from episodes of frosts, with clear skies and dry air in anticiclonic systems.
Summary of the South ➔ North circulation:

- Unique meteorological phenomena: antarctic air from high latitudes in the Weddell Sea reaches South and Southeast Brasil, covering up to 60° of latitude (~7,000 km !) flowing from S ➔ N at lower levels with speed of ~15 m/s (~50 km/h).

- Marked effects in temperature and precipitation, mainly in the coastal regions of S and SE Brazil, and SE of South America.

- The number and persistence of such cases define the intensity of summers and winters in S and SE Brazil. The summer/2004 was the coldest in the last decades with more Antarctic air, while that of 2005 was one of the warmest, with little antarctic air.

- Phenomena not considered by forecasters, with no description found in the literature.
Frontal systems in the Drake Pass produce NW and N surface winds that transport Radon from South America to the South Shetland Islands.

CONCLUSIONS

Radon kept an almost constant baseline average concentration of about 0.02 Bq.m⁻³ all year round, with peaks of up to 0.4 Bq.m⁻³ always corresponding to an increase of local atmospheric temperature. Other local meteorological parameters such as humidity, pressure, and wind, did not correlate well with radon.

The study of weather satellite pictures and synoptic charts revealed that the radon observed at Ferraz comes from the tip of the South American continent during the passage of frontal systems moving east in the Drake Passage.

A characteristic periodicity of about 25 days was resolved from the radon time series by applying a very efficient computational method for spectral estimates (MESA).
Maps of biomass burning in Brazil: hundreds of thousands of events each year.
Smoke from vegetation burning in west of South America as imaged by AQUA/MODIS on 14/Sp/2004.

Note continental dimension of the smoke pall and its transport to the south.
Example of smoke pume reaching high levels of the troposphere (Deforestation fires, Rondônia, 2002)

2004: 26,100 km² of deforestation in the Brazilian Amazon
Emissions from the vegetation burning in South America also reach the South Shetland Islands with frontal systems in the Drake Passage. Measurements of Black Carbon and circulation patterns corroborate the transport of pollutants.

Apportionment of black carbon in the South Shetland Islands, Antarctic Peninsula

Enio Bueno Pereira
Center for Weather Forecasts and Climate Studies, National Institute for Space Science, Cachoeira Paulista, São Paulo, Brazil

Heitor Evangelista and Kely Cristine Dalia Pereira
Laboratory of Radioecology and Global Change, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Iracema F. A. Cavalcanti and Alberto W. Setzer
Center for Weather Forecasts and Climate Studies, National Institute for Space Science, Cachoeira Paulista, São Paulo, Brazil

Received 25 April 2005; revised 24 August 2005; accepted 11 October 2005; published XX Month 2006.

Figure 9. (left) BC and fire spot numbers monthly averages for the winter-to-spring; (right) a global dispersion model of BC with focus on Latin America-West Antarctic area (based on Penner et al. [1993]).